

Development and validation of analytical RP-HPLC method for the quantitative determination of avapritinib in pure substances and marketed pharmaceutical tablet forms

P Rasagna ^{1*}, G Kalyani ²

¹ Department of Pharmaceutical Analysis, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad, Telangana, India

² Associate Professor, Department of Pharmaceutical Chemistry, Teegala Krishna Reddy College of Pharmacy, Medbowli, Meerpet (V), Balapur (M), Ranga Reddy (Dist), Hyderabad, Telangana, India

* Corresponding Author: P Rasagna

Article Info

ISSN (online): 2582-7138 Impact Factor: 5.307 (SJIF) Volume: 05 Issue: 01 January-February 2024 Received: 26-10-2023; Accepted: 28-11-2023 Page No: 100-107

Abstract

The present work includes a simple, economic, rapid, accurate and precise isocratic RP-HPLC method development for estimation of Avapritinib in bulk form and its marketed formulation. Estimation was done at 286nm which was found to be λ max of Avapritinib. The simple, selective, isocratic RP-HPLC method for Avapritinib was developed on Phenomenex Luna (C₁₈) RP Column; 250 mm x 4.6 mm, 5µm with a mobile phase of Phosphate Buffer (pH-4.6) and Methanol were taken in the ratio of 65:35% v/v at a flow rate of 1.0 ml/min and detection wavelength 286nm. The developed method was validated successfully according to ICH Q2 (R1) guidelines. The chromatographic methods showed a good linear response with r2 values of 0.9995. The percentage relative standard deviation for method was found to be less than two, indicating that the methods were precise. The mean percentage recovery was for RP-HPLC method was 100.437%. From the results it could be concluded that both the developed method was specific, selective and robust. The method could be successfully applied for analysis of Bulk form and Marketed formulation of Avapritinib.

Keywords: Avapritinib, RP-HPLC, Method Development, Validation, ICH Guidelines

Introduction

Avapritinib, or BLU-285, is a selective tyrosine kinase inhibitor of KIT and platelet derived growth factor receptor alpha indicated for the treatment of unresectable, metastatic gastrointestinal stromal tumours ^[1]. It is one of the first medications available for the treatment of multidrug resistant cancers. Avapritinib shares a similar mechanism with [Ripretinib]. Avapritinib was granted FDA approval on 9 January 2020. Avapritinib is a selective kinase inhibitor that negatively modulates the action of cell transporters to resensitize them to other chemotherapies. It has a long duration of action as it is given once daily.3 Patients should be counseled regarding the risk of intracranial hemorrhage, CNS effects, and embryo-fetal toxicity. Avapritinib has a negative modulating effect on the transporters ABCB1 and ABCG2, which mediate the multidrug resistance phenotype of some cancers ^[2]. This modulation may be due to interactions of Avapritinib with the drug binding pocket of these transporters. Negative modulation of these transporters, resensitizes cancerous cells to treatment with chemotherapeutic agents like paclitaxel ^[3]. The IUPAC name of Avapritinib is (1S)-1-(4-fluorophenyl)-1-[2-[4-[6-(1-methylpyrazol-4-yl)pyrrolo[2,1-f][1,2,4]triazin-4-yl]piperazin-1-yl]pyrimidin-5-yl] ethanamine. The Chemical Structure of Avapritinib shown in follows.

Fig 1: Chemical Structure of Avapritinib

Materials and Methods

Table 1: List of Instrument used

S. No.	Instruments/Equipments/Apparatus
1.	HPLC with Empower2 Software with Isocratic with UV-Visible Detector (Waters).
2.	ELICO SL-159 UV – Vis spectrophotometer
3.	Electronic Balance (SHIMADZU ATY224)
4.	Ultra Sonicator (Wensar wuc-2L)
5.	Thermal Oven
6.	Symmetry ODS RP C ₁₈ ,5µm, 15mm x 4.6mm i.d.
7.	P ^H Analyzer (ELICO)
8.	Vacuum filtration kit (BOROSIL)

Table 2: List of Chemicals Used

C No	Numera	Specifications		Manufa atoma /Some Har	
5. INO.	Name	Purity	Grade	Manufacturer/Supplier	
1.	Doubled distilled water	99.9%	HPLC	Sd fine-Chem ltd; Mumbai	
2.	HPLC Grade Water	99.9%	HPLC	Sd fine-Chem ltd; Mumbai	
3.	Methanol	99.9%	HPLC	Loba Chem; Mumbai.	
4.	Hydrochloric Acid	99.9	A.R.	Sd fine-Chem ltd; Mumbai	
5.	Acetonitrile	99.9%	HPLC	Loba Chem; Mumbai.	
6.	Sodium Hydroxide	99.9	A.R.	Sd fine-Chem ltd; Mumbai	
7.	Ethanol	99.9	A.R.	Sd fine-Chem ltd; Mumbai	
8.	Octanol	99.9	A.R.	Sd fine-Chem ltd; Mumbai	

Optimization of Chromatographic Conditions: The chromatographic conditions ^[4-6] was optimized by different means. (Using different column, different mobile phase,

different flow rate, different detection wavelength & different diluents for sample preparation etc.

|--|

Column Used	Mobile Phase	Flow Rate	Wave length	Observation	Result
Xterra ODS (C18) RP Column, 150	Methanol: Acetonitrile:	0.8m1/min	286nm	Voru Low response	Method
mm x 4.6 mm, 5µm	Water = 40:30:30	0.8111/11111	2801111	Very Low response	rejected
Zorbax ODS (C18) RP Column, 250	Methanol: Acetonitrile = 70:	0.0m1/min	286nm	Low response	Method
mm x 4.6 mm, 5µm	30	0.9111/11111	2801111	Low response	rejected
Develosil ODS (C18) RP Column, 150	Acetonitrile: Methanol = 60:	1.0ml/min	286nm	Tailing paaks	Method
mm x 4.6 mm, 5µm	40	1.0111/11111	2001111	Tannig peaks	rejected
Phenomenex Luna (C18) RP Column,	Phosphate Buffer (pH-5.2):	1.0m1/min	296000	Desclution was not good	Method
250 mm x 4.6 mm, 5µm	Methanol = 80:20	1.0111/11111	2001111	Resolution was not good	rejected
Phenomenex Luna (C18) RP Column,	Phosphate Buffer (pH-3.8):	1.0ml/min	286nm	Tailing paak	Method
250 mm x 4.6 mm, 5µm	Methanol = 55:45	1.0111/11111	2001111	Taning peak	rejected
Phenomenex Luna (C18) RP Column,	Phosphate Buffer (pH-4.6):	1.0ml/min	286nm	Nice peak	Method
250 mm x 4.6 mm, 5µm	Methanol = 65:35	1.0111/11111	2001111	Nice peak	accepted

Preparation of Mobile Phase: 650ml of prepared phosphate buffer and 350ml of HPLC Grade Methanol were mixed well and degassed in ultrasonic water bath for 15 minutes. The solution was filtered $^{[7]}$ through 0.45 μm filter under vacuum filtration.

Analytical Method Validation

Method validation is the process used to confirm that the analytical procedure employed for a specific test is suitable for its intended use. Results from method validation ^[8-10] can be used to judge the quality, reliability and consistency of analytical results; it is an integral part of any good analytical practice.

System Suitability Parameters: The theory of chromatography has been used as the basis for system-suitability tests, which are set of quantitative criteria that test the suitability of the chromatographic system to identify and quantify drug related samples by HPLC at any step of the pharmaceutical analysis.

Specificity: Specificity is the ability to assess unequivocally the analyte in the presence of components which may be expected to be present. Typically these might include impurities, degradants, matrix, etc. Lack of specificity of an individual analytical procedure may be compensated by other supporting analytical procedure(s).

Accuracy: The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value and the value found. This is sometimes termed trueness.

Precision: The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions. Precision may be considered at three levels: repeatability, intermediate precision and reproducibility. Precision should be investigated using homogeneous, authentic samples.

Repeatability: Repeatability expresses the precision under the same operating conditions over a short interval of time. Repeatability is also termed intra-assay precision.

Intermediate precision: Intermediate precision expresses within-laboratories variations: different days, different analysts, different equipment, etc.

Reproducibility: Reproducibility expresses the precision between laboratories (collaborative studies, usually applied to standardization of methodology).

Detection Limit: The detection limit of an individual analytical procedure is the lowest amount of analyte in a

sample which can be detected but not necessarily quantitated as an exact value.

Quantitation Limit: The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy. The quantitation limit is a parameter of quantitative assays for low levels of compounds in sample matrices, and is used particularly for the determination of impurities and/or degradation products.

Linearity: The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample.

Range: The range of an analytical procedure is the interval between the upper and lower concentration (amounts) of analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy and linearity.

Robustness: The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage.

Results and Discussion Development of Analytical Method Selection of Wavelength

The standard & sample stock solutions were prepared separately by dissolving standard & sample in a solvent in mobile phase ^[11] diluting with the same solvent. (After optimization of all conditions) for UV analysis. Itscanned in the UV spectrum in the range of 200 to 400nm. This has been performed to know the maxima of Avapritinib, so that the same wave number can be utilized in HPLC UV detector for estimating the Avapritinib. The scanned UV spectrum is attached in the following page,

Sample & Standard Preparation for the UV-Spectrophotometer Analysis: 25 mg of Avapritinib standard ^[12] was transferred into 25 ml volumetric flask, dissolved & make up to volume with mobile phase. Further dilution was done by transferring 1ml of the above solution into a 10ml volumetric flask and make up to volume with mobile phase.

Fig-2: UV Spectrum for Avapritinib

Observation: While scanning the Avapritinib solution we observed the maxima at 286nm. The UV spectrum ^[13] has

been recorded on ELICO SL-159 make UV – Vis spectrophotometer model UV-2450.

Optimization of Method Summary of Optimized Chromatographic Conditions:

The Optimum Chromatographic conditions ^[14-16] obtained from experiments can be summarized as below:

Table 4: Summary of optimized	I Chromatographic Conditions
-------------------------------	------------------------------

Mobile phase	Phosphate Buffer (pH-4.6): Methanol = 65:35%
Column	Phenomenex Luna (C18) RP Column, 250 mm x 4.6 mm, 5µm
Column Temperature	Ambient
Detection Wavelength	286 nm
Flow rate	1.0 ml/ min.
Run time	10 min.
Temperature of Auto sampler	Ambient
Diluent	Mobile Phase
Injection Volume	20µ1
Type of Elution	Isocratic
Retention time	4.817 minutes

Fig 3: Chromatogram for Blank Solution

Fig 4: Chromatogram of Avapritinib in Optimized Condition

Observation: The selected and optimized mobile phase was Phosphate Buffer (pH-4.6): Methanol = 65:35% and conditions optimized were flow rate (1.0 ml/minute), wavelength (286nm), Run time was 10 mins. Here the peaks were separated and showed better resolution, theoretical plate count and symmetry ^[17]. The proposed chromatographic conditions were found appropriate for the quantitative determination of the drug.

Validation of Analytical Method 1. System Suitability Test

System suitability testing is an integral part of many analytical procedures. The tests are based on the concept that the equipment, electronics, analytical operations and samples to be analysed constitute an integral system that can be evaluated as such. Following system suitability test parameters ^[18-19] were established. The data are shown in Table-5 & 6.

S. No.	Injection No.	RT	Area	USP Plate Count	USP Tailing
1	Injection 1	4.817	745236	6986	1.39
2	Injection 2	4.783	743652	6857	1.37
3	Injection 3	4.840	742587	6856	1.36
4	Injection 4	4.783	742946	6847	1.39
5	Injection 5	4.817	743654	6896	1.38
6	Injection 6	4.778	741698	6874	1.37
Mean			743295.5	6886	1.37666
S.D			1199.773604		
%RSD			0.161412736		

Table 5: Data of System Suitability Test

Table 6: Data of System Suitability Parameter

S. No.	Parameter	Limit	Result
1	Retention Time	RT> 2	Avapritinib= 4.778
2	Asymmetry	$T \leq 2$	Avapritinib= 1.35
3	Theoretical plate	N > 2000	Avapritinib= 6859
4	Tailing Factor	T<2	Avapritinib= 1.37

2. Linearity

To evaluate the linearity, serial dilution of analyte were prepared from the stock solution was diluted with mobile phase to get a series of concentration ranging from 60- 140μ g/ml. The prepared solutions were sonicated. From these

solutions, 10μ l injections of each concentration were injected into the HPLC system and chromatographed under the optimized conditions. Calibration curve ^[20] was constructed by plotting the mean peak area (Y-axis) against the concentration (X-axis).

Fig 5: Calibration Curve of Avapritinib

Table 7: Linearity Data for Avapritinib

Conc. (µg/ml)	Area
0	0
60	461404
80	606157
100	748506
120	891041
140	1032196

3. Accuracy: The accuracy of the method was determined by recovery studies and the percentage recovery ^[21] was calculated. The recoveries of Avapritinib were found to be in the range of 99-102%. The proposed Liquid Chromatographic method was applied to the determination of Avapritinib. The results for Avapritinib comparable with the corresponding labeled amounts.

Accuracy	Amount Added	Amount Recovered	Peak Area	% Recovery	Mean Recovery
	80	80.798	604517	100.997	
80%	80	80.673	603598	100.841	
	80	80.756	604213	100.945	100 42704
	100	99.933	745471	99.933	100.437%
100%	100	100.083	746574	100.083	
	100	100.365	748652	100.365	

	120	120.290	895415	100.241
120%	120	120.201	894762	100.167
	120	120.442	896541	100.368

4. Precision

Repeatability: The precision ^[22] of each method was ascertained separately from the peak areas & retention times obtained by actual determination of six replicates of a fixed

amount of drug. Avapritinib (API). The percent relative standard deviation was calculated for Avapritinib are presented in the table-9.

S. No.	Injection	Peak Area
1	Injection 1	743826
2	Injection 2	745277
3	Injection 3	742506
4	Injection 4	747576
5	Injection 5	746715
6	Injection 6	741278
7	Average	744529.6667
8	SD	2440.4116
9	% RSD	0.32777

Table 9: Repeatability Data for Avapritinib

Intermediate Precision:

The Intermediate Precision ^[23-25] consists of two methods:-**Intra Day:** In Intra Day process, the 80%, 100% and 120% concentration are injected at different intervals of time in same day.

Inter Day:In Inter Day process, the 80%, 100% and 120% concentration are injected at same intervals of time in different days.

Table 10: Results of intra-assay & inter-assay

	Observed Conc. of Avapritinib (µg/ml) by the proposed method			
Conc. of Avapritinib(API) (µg/ml)	Intra-Day		Inter-Day	
	Mean (n=6)	% RSD	Mean (n=6)	% RSD
80	80.096	0.487	79.685	0.688
100	100.074	0.968	100.057	0.789
120	120.056	0.847	120.016	0.698

Observations: The intra & inter day variation of the method was carried out for standard deviation & % RSD (% RSD < 2%) within a day & day to day variations for Avapritinib revealed that the proposed method is precise ^[26].

5. Specificity

Specificity can be determined by comparing the chromatograms obtained from the drugs with the chromatogram obtained from the blank solution. Blank solution was prepared by mixing the excipients in the mobile phase without drug. Drug solutions were prepared individually and the sample containing one drug was also prepared. Now these mixtures were filtered by passing through 0.45 μ membrane filter before the analysis. In this observation no excipient peaks were obtained near the drug in the study run time. This indicates that the proposed method was specific ^[28].

Observation: In this test method blank, standard solutions were analyzed individually to examine the interference. The abovechromatograms show that the active ingredient was well separated from blank and their excipients and there was no interference of blank with the principal peak. Hence the method is specific.

6. Limit of Detection (LOD) and Limit of Quantification (LOQ)

The LOD ^[29] and LOQ parameter was evaluated by mistreatment the slope of line and variance obtained from accuracy studies.

The detection limit (LOD) and quantization limit (LOQ) may be expressed as:

L.O.D. = 3.3(SD/S) L.O.Q. = 10(SD/S)

Where, SD = Standard deviation of the response S = Slope of the calibration curve

The slope S may be estimated from the calibration curve of the analyte.

The Minimum concentration level at which the analyte can be reliable detected (LOD) & quantified ^[30] (LOQ) were found to be $1.469 \& 4.454 \mu g/ml$ respectively.

7. Method Robustness: Influence of small changes in chromatographic conditions such as change in flow rate 1.0 ml (\pm 0.1 ml/min), Wavelength of detection 286 (\pm 2nm) & organic phase content in mobile phase (\pm 5%) studied to determine the robustness ^[31] of the method are also in favour of (Table-11, % RSD < 2%) the developed RP-HPLC method for the analysis of Avapritinib (API).

Effect of Variation of Flow Conditions

recorded.

The sample was analyzed at 0.9 ml/min and 1.1 ml/min instead of 1ml/min, remaining conditions are same. 10μ l of the above sample was injected and chromatograms were recorded.

Effect of Variation of Mobile Phase Organic Composition The sample was analyzed by variation of mobile phase i.e. Methanol: Phosphate Buffer was taken in the ratio and 40:60, 30:70 instead of 35:65, remaining conditions are same. 20µl of the above sample was injected and chromatograms were

Parameter Used for Sample Analysis	Peak Area	Retention Time	Theoretical Plates	Tailing Factor
Actual Flow rate of 1.0 mL/min	742946	4.778	1.37	2896
Less Flow rate of 0.9 mL/min	698965	4.783	1.39	2986
More Flow rate of 1.1 mL/min	786598	4.817	1.42	2985
Less organic phase	732642	4.842	1.29	3102
More organic phase	702546	4.773	1.37	3247

Table 11: Results for Robustness

8. Estimation of Avapritinib in Pharmaceutical Dosage Form

Label Claim: 100mg

Each tablet contains: 100mg

Twenty Tablets were taken and the I.P. method was followed to determine the average weight. Above weighed tablets were finally powdered and triturated well. A quantity of powder equivalent to 25 mg of drugs were transferred to 25 ml volumetric flask, make and solution was sonicated for 15 minutes, there after volume was made up to 25 ml with same solvent. Then 10ml of the above solution was diluted to 100 ml with mobile phase. The solution was filtered through a membrane filter (0.45 μ m) and sonicated to degas. The solution prepared was injected in five replicates into the HPLC system and the observations were recorded. The Assay ^[32] data are shown in Table-12.

Assay

Assay % =

$$\frac{AT}{AS} \times \frac{WS}{DS} \times \frac{DT}{WT} \times \frac{P}{100} \times Avg Wt = mg$$

Where:

AT = Peak Area of drug obtained with test preparation AS = Peak Area of drug obtained with standard preparation WS = Weight of working standard taken in mg WT = Weight of sample taken in mg DS = Dilution of Standard solution

DT = Dilution of sample solution

P = Percentage purity of working standard

Table 12: Recovery	/ Data for Estimation	n Avapritinib	in Ayvakit Tablet
--------------------	-----------------------	---------------	-------------------

Brand name of Avapritinib	Labelled amount of	Mean (± SD) amount (mg) found	Assay %
	Drug (mg)	by the proposed method (n=6)	(± SD)
Ayvakit Tablet (Blueprint Medicines)	100mg	99.685 (± 0.698)	99.743 (±0.268)

Result & Discussion: The amount of drug in Ayvakit Tablet was found to be 99.685 (± 0.698) mg/tab for Avapritinib& %Purity was 99.743%.

Summary and Conclusion

To develop a precise, linear, specific & suitable stability indicating RP-HPLC method for analysis of Avapritinib, different chromatographic conditions were applied & the results observed are presented in previous chapters. Isocratic elution is simple, requires only one pump & flat baseline separation for easy and reproducible results. So, it was preferred for the current study over gradient elution. In case of RP-HPLC various columns are available, but here Phenomenex Luna (C18) RP Column, 250 mm x 4.6 mm, 5µmColumn was preferred because using this column peak shape, resolution and absorbance were good. Detection wavelength was selected after scanning the standard solution of drug over 200 to 400nm. From the U.V spectrum of Avapritinib it is evident that most of the HPLC work can be accomplished in the wavelength range of 286 nm conveniently. Further, a flow rate of 1.0 ml/min & an injection volume of 20µl were found to be the best analysis. The result shows the developed method is yet another suitable method for assay and stability related impurity studies which can help in the analysis of Avapritinib in different formulations.

References

- 1. https://go.drugbank.com/drugs/DB15233
- 2. https://pubchem.ncbi.nlm.nih.gov/compound/Avapritini b
- 3. https://en.wikipedia.org/wiki/Avapritinib
- 4. "Principles of Instrumental Analysis", 5th edition, Harcourt Publishes Int Company, Skoog, Holler and

Nieman, Chapter 28, p.726-766.

- 5. "HPLC Columns" Theory, Technology and Practice. Uwe D. Neue, Wiley-VC
- 6. Handbook of HPLC, Vol.78, by Elena Katz *et al*. Marcel Dekker Inc.
- "Instrumental Methods of Chemical Analysis", 5th Edition, Galen W. Ewing, McGraw Hill Book Company, 1988.
- 8. "HPLC in Pharmaceutical Industry", Fong and Long, Marcel Dekker Series
- "Instrumental Method of Chemical Analysis" by Chatwal Anand, Himalaya Publishing House, p.no.615-623.
- 10. Dr. Kealey and P.J Haines, Analytical Chemistry, 1stedition, Bios Publisher, 2002, 1-7.
- "Practical Pharmaceutical Chemistry", 4th edition, Part 2, by Beckett and Stenlake, CBS Publishers and Distributors, 157-174.
- Govt. of India, Ministry of Health and Family Welfare. Vol. 2. Delhi: Publication by Controller of Publication. Indian Pharmacopoeia, 2007, 484-554.
- British Pharmacopoeia. (International Ed.) 1993; Vol. 1:429, 483. Published on the Recommendation of the Medicines Commissions Pursuant to Medicines Act 1968-1993.
- 14. United States Pharmacopoeia 29 NF 24, Published on the Recommendation of the Medicines Commissions Pursuant to Medicines, page no. 587.
- Skoog, West, Holler, Crouch, "Fundamentals of analytical chemistry", eighth edition, (Indian edition), Cengage learning India Pvt ltd, New Delhi, 2009, 271-280.
- 16. AV Kasture, KR Mahadik, SG Wadodkar, HN. More, A textbook of pharmaceutical analysis, Instrumental

methods", Nirali Prakashan, 2, 9th edition, 5-7, 28-30.

- 17. Settle FA, In: Handbook of Instrumental Techniques for Analytical Chemistry. 1st Ed, Singapore, Pearson Education Inc.2004.
- Willard HH and Dean AJ. Instrumental Methods of Analysis. CBS Publishers and distributors, 7th Ed, 1986, 513-515.
- Connors AK. In: A Text Book of Pharmaceutical Analysis. A Wiley Interscience Publication, 3rd Ed, 2005, 373-400.
- Ahuja S. In: High Pressure Liquid Chromatography of Comprehensive Analytical Chemistry. Elsevier Publications. 2006.
- 21. Principles and Methods. In: Amesham Biosciences of Reversed Phase Chromatography. 6-8.
- 22. Synder LR, Kirkland JJ and Glajch JL. In: Practical HPLC Method Development, 2nd Ed, John Wiley and Sons Inc. Canada, 1997.
- 23. Mohammad T *et al.*, HPLC Method Development and Validation for Pharmaceutical Analysis- A Review. International Pharmaceutica Sciencia. 2012, 2(3), 14.
- 24. Snyder LR, Kirkland JJ and Glajch JL. In: Practical HPLC Method Development. 2nd ed, 2001.
- 25. Vibha G *et al.*, Development and validation of HPLC method a review. International Research Journal of Pharmaceutical and Applied Sciences. 2012, 2(4), 22-23.
- 26. Bliesner DM. In: Validating Chromatographic Methods. John Wiley & sons Inc. 2006, 88-92.
- Validation of Analytical Procedures: Methodology. ICH-Guidelines Q2B, Geneva. 1996, 11. (CPMP/ICH/281/95).
- Development and validation of HPLC method A Review, Vibha Gupta *et al*, International Research Journal of Pharmaceutical and Applied Sciences, 2012; 2(4):17-25.
- 29. A Review: HPLC Method Development and Validation, Santosh Kumar Bhardwaj **et al.* International Journal of Analytical and Bioanalytical Chemistry, accepted 20 November, 2015.
- 30. Method Development: A Guide to Basics Quantitative & Qualitative HPLC, LC, GC chromacademy.
- 31. Lalit V Sonawane* Bioanalytical Method Validation and Its Pharmaceutical Application- A Review Pharmaceutica Analytical Acta 2014, 5:3Center for Drug Evaluation and Research (CDER) Reviewer Guidance.
- 32. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology.
- 33. Thakur Gajender Singh*1, Jagadeesh Babu Vadlakonda2 and V. Rama Mohan Gupta2, Analytical Method Development and Validation of Avapritinib by RP-HPLC Method, World Journal of Pharmacy and Pharmaceutical Sciences, 9(10), 1834-1840.
- Gowri Kusuma Kumari*, 1, Dr. Kantipudi Rambabu1, Bio-analytical Method Development and Validation for Avapritinib in Rat Plasma by LC-MS/MS, /J. Pharm. Sci. & Res. 2021; 13(3):134-137.