

International Journal of Multidisciplinary Research and Growth Evaluation.

An Advanced Machine Learning Model for Detecting Synthetic Identity Fraud in E-Commerce Platforms

Oghenemaiga Elebe ^{1*}, Nafiu Ikeoluwa Hammed ², Gbenga Olumide Omoegun ³, Oladapo Fadayomi ⁴, Adepeju Deborah Bello ⁵

¹ Tata Consultancy Services Memphis, Tennessee, USA

² Independent Researcher, GERMANY

³ Independent Researcher, United Kingdom

⁴ ND Western Limited, Lagos, Nigeria

⁵ Nottingham Trent University, United Kingdom

* Corresponding Author: Oghenemaiga Elebe

Article Info

ISSN (online): 2582-7138

Impact Factor: 5.307 (SJIF)

Volume: 04

Issue: 06

November-December 2023

Received: 03-10-2023

Accepted: 04-11-2023

Published: 03-12-2023

Page No: 1418-1429

Abstract

The rapid growth of e-commerce has created unprecedented opportunities for global trade, yet it has simultaneously exposed platforms to sophisticated fraudulent activities, among which synthetic identity fraud (SIF) represents a particularly insidious threat. SIF involves the creation of fictitious identities, combining real and fabricated information, to exploit digital commerce systems, often evading traditional identity verification mechanisms. The detection of such fraudulent behavior presents unique challenges due to the hybrid nature of synthetic identities, the high-dimensionality of user data, and the dynamic evolution of fraudulent tactics. This study presents an advanced machine learning (ML) model designed to identify synthetic identities in e-commerce platforms by leveraging multi-layered feature extraction, ensemble learning strategies, and anomaly detection techniques. The proposed model integrates supervised and unsupervised learning approaches to enhance detection accuracy while reducing false positives. In addition, it incorporates adaptive learning mechanisms that adjust to evolving fraud patterns, thereby increasing robustness against adversarial attempts. Empirical evaluation on large-scale e-commerce datasets demonstrates the model's effectiveness in distinguishing synthetic from legitimate users, offering a scalable solution for real-world application. The findings contribute to both the academic understanding of synthetic identity fraud and practical solutions for enhancing e-commerce platform security.

DOI: <https://doi.org/10.54660.IJMRGE.2023.4.6.1418-1429>

Keywords: Synthetic identity fraud, e-commerce, machine learning, anomaly detection, ensemble learning, fraud detection

1. Introduction

E-commerce has become a cornerstone of the contemporary global economy, providing rapid and convenient access to goods and services for millions of consumers(Abed, 2020; Babatunde *et al.*, 2020; Escudero-Santana *et al.*, 2022; Filani, Nnabueze, *et al.*, 2022). Digital platforms, ranging from online marketplaces to subscription-based services, have grown exponentially, leveraging technological innovations to facilitate transactions, personalize user experiences, and optimize supply chains(Adeyoyin *et al.*, 2022; Aduloju *et al.*, 2022; Akinleye & Adeyoyin, 2022). However, this growth has simultaneously created fertile ground for sophisticated forms of fraud(Ayodeji, Oladimeji, *et al.*, 2022; Eboseremen *et al.*, 2022). Among the most challenging forms is synthetic identity fraud (SIF), a category of financial crime characterized by the creation of fictitious user identities that combine real and fabricated personal information to exploit online systems(Essien, Cadet, *et al.*, 2022; Owoade, Odogwu, *et al.*, 2022). Unlike traditional identity theft, where an existing individual's credentials are misused, SIF often involves entirely constructed personas, making detection particularly difficult(Odogwu *et al.*, 2022; Owoade, Adekunle, *et al.*, 2022).

The mechanisms underlying synthetic identity fraud are diverse. Fraudsters typically gather partial data from legitimate sources, such as public records, leaked databases, or purchased information, and integrate this with fabricated elements, such as fictitious names, addresses, phone numbers, or email addresses. These synthetic profiles are then used to open accounts, conduct transactions, or manipulate credit systems in ways that evade conventional anti-fraud checks (Adanigbo *et al.*, 2022; Essien, Nwokocha, *et al.*, 2022). The hybrid nature of synthetic identities poses a fundamental challenge: they often appear legitimate when evaluated against traditional verification mechanisms, while simultaneously being engineered to circumvent anomaly detection systems that rely on known fraud signatures. This dual challenge necessitates the development of advanced analytical approaches capable of detecting subtle patterns indicative of SIF.

Machine learning (ML) has emerged as a powerful tool for addressing complex fraud detection challenges. Unlike rule-based systems, which rely on predefined heuristics and static thresholds, ML algorithms can identify patterns and relationships in large, high-dimensional datasets, uncovering anomalies that may signal fraudulent activity. In the context of synthetic identity fraud, ML techniques are particularly valuable because they can adaptively learn from evolving data, incorporate heterogeneous information sources, and combine multiple decision criteria into a cohesive detection framework (Nnabueze *et al.*, 2022; Olatunde-Thorpe *et al.*, 2022a). Despite these advantages, deploying ML for SIF detection presents multiple technical challenges. First, synthetic identities are designed to mimic legitimate behavior, resulting in class imbalance, where fraudulent instances constitute only a small fraction of the overall user population. Second, e-commerce datasets are often heterogeneous, containing transactional logs, behavioral metrics, device information, geolocation data, and social interaction features. Integrating these diverse data types into effective ML models requires sophisticated feature engineering and preprocessing strategies. Third, fraudsters continuously adapt their tactics, creating adversarial environments that can reduce the effectiveness of static detection models (Eynade *et al.*, 2022; Olatunde-Thorpe *et al.*, 2022b).

Existing approaches to fraud detection in e-commerce have largely focused on financial transactions, credit card usage, or account access patterns, with less attention to the unique characteristics of synthetic identities. Rule-based systems, such as those employed by payment processors or credit bureaus, typically identify fraud through predefined thresholds or blacklists of suspicious accounts. While effective against well-known attack vectors, these systems are limited in detecting novel or hybridized fraudulent behavior (Olaogun *et al.*, 2022; Oshomegie *et al.*, 2022). Statistical anomaly detection techniques offer improvements by identifying outliers in user behavior or transaction distributions. However, traditional statistical methods may fail to capture complex, non-linear relationships inherent in high-dimensional e-commerce datasets, especially when synthetic identities are carefully engineered to blend in with legitimate users (Filani, Nwokocha, *et al.*, 2022; Uduokhai *et al.*, 2022).

Recent studies have increasingly explored ML-based approaches, including supervised classification, unsupervised anomaly detection, and ensemble methods, to

overcome these limitations. Supervised learning techniques, such as decision trees, support vector machines, random forests, and gradient boosting, require labeled datasets containing both fraudulent and legitimate accounts. They can achieve high detection accuracy when trained on representative datasets but may struggle with generalization when fraud tactics evolve or when labeled data are scarce (Essien *et al.*, 2021; Morah *et al.*, 2021; P. B. Okare *et al.*, 2021b). Unsupervised approaches, including clustering, autoencoders, and density-based methods, identify anomalies without relying on explicit labels. These methods are particularly useful in detecting previously unseen synthetic identities but may produce higher false-positive rates if legitimate users exhibit atypical behaviors (Cadet *et al.*, 2021; Owoade *et al.*, 2021a). Ensemble methods, which combine multiple learning algorithms, have demonstrated improved robustness and accuracy by aggregating the strengths of individual models while mitigating their weaknesses (Erigha *et al.*, 2021a; Owoade *et al.*, 2021b). An additional challenge in SIF detection is the dynamic and adaptive nature of fraud. Unlike traditional anomalies, synthetic identities evolve over time, incorporating feedback from failed detection attempts and exploiting new vulnerabilities in e-commerce platforms. Adaptive ML models, capable of incremental learning or online updating, are therefore critical. These models can continuously refine their decision boundaries as new user data arrive, maintaining effectiveness in the presence of rapidly changing fraud patterns. Moreover, hybrid approaches that integrate both supervised and unsupervised components allow the model to leverage labeled historical data while simultaneously identifying emergent patterns in previously unseen identities (Adekunle *et al.*, 2021; Ogbuefi, Odofin, *et al.*, 2021).

Beyond model development, the practical deployment of ML-based SIF detection requires careful consideration of operational constraints. False positives, where legitimate users are misclassified as fraudulent, can undermine customer trust, reduce user engagement, and generate operational costs associated with manual review processes. Conversely, false negatives, where synthetic identities evade detection, pose financial risks and reputational damage to the platform. Balancing these competing objectives necessitates the use of multi-metric evaluation strategies, including precision, recall, F1-score, area under the receiver operating characteristic (ROC) curve, and cost-sensitive measures (Ike *et al.*, 2021; Olatunde-Thorpe *et al.*, 2021). In addition, explainability and interpretability of ML models are increasingly recognized as critical factors, particularly when regulatory compliance or customer dispute resolution is involved. Techniques such as feature importance analysis, SHAP values, and local interpretable model-agnostic explanations (LIME) can provide transparency into the decision-making process of complex ML models (Hammed *et al.*, 2021; Ogbuefi, Olatunde-Thorpe, *et al.*, 2021).

The integration of ML for SIF detection also benefits from advanced feature engineering and data augmentation strategies. Feature engineering involves extracting relevant behavioral, transactional, and device-level characteristics that capture the subtle distinctions between synthetic and legitimate users. These may include temporal patterns of activity, IP geolocation consistency, device fingerprinting, account creation anomalies, social network connectivity, and interaction dynamics with platform features. Data augmentation and synthetic data generation techniques can

address class imbalance, ensuring that the ML model is exposed to sufficient examples of fraudulent behavior while avoiding overfitting to particular fraud instances (Alao *et al.*, 2021; Olaogun *et al.*, 2021).

This study contributes to the literature by developing an advanced ML model that synthesizes multiple approaches for enhanced detection of synthetic identity fraud in e-commerce platforms. The model integrates supervised and unsupervised learning, employs ensemble strategies for improved robustness, incorporates adaptive updating to respond to evolving fraud tactics, and leverages comprehensive feature extraction to capture complex behavioral and transactional patterns. The proposed framework is evaluated on large-scale e-commerce datasets, demonstrating superior performance relative to baseline approaches, highlighting the potential for real-world deployment in commercial platforms.

The remainder of this paper is structured as follows: Section 2 provides a detailed review of the existing literature on SIF and ML-based fraud detection methods; Section 3 presents the proposed model architecture, including feature extraction, learning algorithms, and ensemble strategies; Section 4 discusses model evaluation, results, and performance analysis; and Section 5 concludes the study, highlighting key findings, implications, limitations, and directions for future research.

2. Literature Review

The detection of synthetic identity fraud (SIF) in e-commerce has become a critical area of research due to the increasing sophistication of fraudulent actors and the expansion of digital commerce platforms (Erigha *et al.*, 2021b; B. P. Okare *et al.*, 2021). Unlike traditional identity theft, synthetic identities combine real and fabricated information, often making them difficult to detect with conventional rule-based systems or static verification processes (Akinleye & Adeyoyin, 2021; P. B. Okare *et al.*, 2021a). Fraudsters exploit gaps in verification, system design weaknesses, and the high-volume, fast-paced nature of online transactions to evade detection, resulting in financial losses, reputational risks, and regulatory challenges for e-commerce platforms.

2.1. Evolution of Fraud Detection Approaches

Early studies on fraud detection primarily focused on transaction-level anomalies, credit card misuse, or identity theft (Akintayo *et al.*, 2020; Owoade *et al.*, 2020). These approaches typically relied on expert-defined rules, blacklists, or simple threshold-based monitoring. For example, transactions exceeding predetermined limits, account activities inconsistent with prior behavior, or the use of suspicious IP addresses could trigger alerts (Abayomi *et al.*, 2020; Obuse, Etim, *et al.*, 2020). While effective against well-known patterns of fraud, these methods lacked the flexibility to detect synthetic identities, which often appear as normal, compliant users until they exploit system vulnerabilities.

Subsequent research introduced statistical and probabilistic techniques for fraud detection. Methods such as clustering, principal component analysis, Bayesian inference, and distance-based anomaly detection allowed analysts to identify unusual behavior in high-dimensional datasets (Amini-Philips *et al.*, 2020; Farounbi *et al.*, 2020). For instance, Mahalanobis distance and z-score-based techniques were applied to detect outliers in transactional and demographic features (Abdulsalam *et al.*, 2020; Aifuwa *et*

al., 2020). Density-based clustering and unsupervised anomaly detection were used to identify accounts that did not conform to the general behavior of legitimate users (Obuse, Erigha, *et al.*, 2020). While these methods offered improvements over simple rule-based systems, they were limited by the non-linear and dynamic characteristics of synthetic identities. Fraudsters could adapt their behavior to evade statistical thresholds, and high-dimensional e-commerce datasets often contained noise and heterogeneity that reduced detection accuracy (Filani *et al.*, 2020).

2.2. Machine Learning for Fraud Detection

Machine learning (ML) has emerged as a powerful tool for detecting complex and evolving fraud patterns (Carboneau *et al.*, 2008; Karniadakis, 2018). Unlike rule-based or purely statistical methods, ML algorithms can learn patterns from historical data, adapt to new behaviors, and handle high-dimensional feature spaces. Supervised learning techniques, such as decision trees, support vector machines (SVMs), random forests, and gradient boosting, have been widely applied for fraud detection tasks (Ayodeji, Obuse, *et al.*, 2022; Bukhari, Oladimeji, & Etim, 2022). These models require labeled datasets containing known fraudulent and legitimate accounts. When trained effectively, supervised models can achieve high accuracy, precision, and recall, making them suitable for detecting synthetic identities that share some observable traits with legitimate users (Bukhari, Oladimeji, Etim, *et al.*, 2022; Filani, Nnabueze, *et al.*, 2022; Osho *et al.*, 2020).

Random forests and gradient boosting have been particularly effective due to their ability to handle heterogeneous features, non-linear interactions, and complex decision boundaries (IfesinachiDaraojimba *et al.*, 2021; Patel *et al.*, 2022). SVMs, by maximizing the margin between classes, provide robustness to noisy datasets and partial feature overlap between legitimate and synthetic accounts. However, supervised methods face challenges in practice: labeled fraud datasets are often imbalanced, with fraudulent instances representing a small fraction of the total population, and fraud patterns evolve rapidly, potentially rendering historical labels less informative (E. D. Balogun *et al.*, 2022; Nacchia *et al.*, 2021).

To address these limitations, unsupervised and semi-supervised approaches have been explored. Unsupervised models, including clustering, isolation forests, one-class SVMs, and autoencoders, identify anomalous behavior without relying on explicit labels (Etim *et al.*, 2019). Autoencoders, for example, can learn compressed representations of normal user behavior and flag accounts with high reconstruction error as potential fraud (Nwafor *et al.*, 2019). Isolation forests are particularly suited for detecting outliers in large datasets, where synthetic identities are rare and designed to mimic legitimate behavior. Semi-supervised methods combine labeled and unlabeled data, improving generalization while mitigating the challenges of data scarcity in rare fraud classes (Essien, Cadet, *et al.*, 2019).

2.3. Ensemble Learning Approaches

Ensemble learning, which combines multiple individual models to improve predictive performance, has shown significant promise in fraud detection (Oshomegie *et al.*, 2019). By aggregating models with complementary strengths, ensembles can reduce overfitting, enhance

robustness, and improve classification accuracy. Techniques such as bagging, boosting, and stacking have been applied to SIF detection in e-commerce platforms. Bagging methods, such as random forests, reduce variance by training multiple decision trees on bootstrapped samples, while boosting methods, like AdaBoost and gradient boosting, iteratively refine weak classifiers to focus on misclassified instances (Essien, Nwokocha, *et al.*, 2019). Stacking combines predictions from heterogeneous base models using a meta-classifier, offering a mechanism to leverage diverse learning paradigms, including supervised, unsupervised, and probabilistic models (Li & Yao, 2020; MS Riaz, 2020).

Ensemble methods are particularly useful in addressing the challenges posed by synthetic identities, which often exhibit subtle deviations from legitimate behavior. By integrating multiple perspectives on user activity, ensemble approaches can capture complex patterns that single models might overlook. Recent studies have demonstrated that hybrid ensembles combining supervised and unsupervised components achieve superior detection rates, balancing the identification of known fraud with adaptability to new, previously unseen synthetic profiles (Oneto *et al.*, 2017).

2.4. Feature Engineering and Behavioral Analysis

Effective fraud detection hinges on feature engineering, the process of extracting informative representations from raw data (Abbasi *et al.*, 2020; Tsai & Chen, 2010). In e-commerce environments, data sources include user account metadata, transaction logs, device fingerprints, geolocation information, browsing patterns, social network interactions, and historical behavioral sequences. Feature extraction techniques aim to capture both static attributes (e.g., age, account creation date) and dynamic patterns (e.g., time between transactions, clickstream sequences) that differentiate synthetic identities from legitimate users (R Verma, 2021; Rajkomar *et al.*, 2018).

Behavioral analytics has emerged as a critical component of SIF detection. Studies have shown that synthetic identities exhibit distinct temporal and relational patterns: unusual login times, rapid adoption of multiple payment methods, inconsistencies between geolocation and IP addresses, and atypical social interactions within the platform (RK Patel, 2021). Temporal features, such as inter-event timing, session duration, and activity bursts, can highlight automated or orchestrated account activity (Khan *et al.*, 2020). Network-based features, derived from social connections, referral links, or co-purchase networks, can reveal clusters of fraudulent accounts linked through shared behavioral fingerprints (Kim *et al.*, 2017).

Recent research emphasizes the integration of multiple feature types: transactional, behavioral, and network-based to create comprehensive representations of user activity (Spiliotis *et al.*, 2022). High-dimensional feature spaces enable ML models to distinguish synthetic identities from legitimate users with greater precision, but they also necessitate careful preprocessing, dimensionality reduction, and normalization to avoid overfitting and computational inefficiency (V Jadhav, 2020).

2.5. Adaptive Learning and Concept Drift

One of the defining challenges in SIF detection is concept drift, where the statistical properties of fraudulent behavior change over time. Fraudsters continuously adapt, creating new synthetic identities that bypass existing detection rules.

Adaptive learning methods, including online learning, incremental model updates, and sliding-window retraining, allow ML models to respond to evolving fraud patterns without requiring complete retraining from scratch (Vithitsoontorn & Chongstivatana, 2022).

Incremental learning approaches update the model using new data batches while preserving prior knowledge, maintaining detection performance even in the presence of changing attack strategies (Anahtar *et al.*, 2021). Online learning techniques, applied in streaming environments, facilitate near real-time detection, which is essential for mitigating losses in high-volume e-commerce platforms. These adaptive mechanisms ensure that detection systems remain robust, even as fraudsters introduce novel tactics or manipulate synthetic profiles to mimic legitimate user behavior.

2.6. Challenges and Limitations in Current Approaches

Despite advances in ML for fraud detection, several challenges persist. Class imbalance is a recurring issue, as synthetic identities are rare relative to legitimate users. This imbalance can bias model training and evaluation, leading to high false-negative rates (Stokes *et al.*, 2021). Techniques such as synthetic minority oversampling (SMOTE), cost-sensitive learning, and anomaly scoring have been proposed to mitigate this problem, though they introduce additional complexity and risk of overfitting (Adelusi, Osamika, *et al.*, 2022; Osamika *et al.*, 2022).

Another challenge lies in interpretability. Complex models, particularly deep learning architectures, may achieve high accuracy but lack transparency, making it difficult for platform operators or regulators to understand why specific accounts are flagged (Afrihyia *et al.*, 2022; Okoli *et al.*, 2022). Explainable AI (XAI) techniques, including SHAP, LIME, and feature importance analysis, have been applied to enhance interpretability, yet balancing model performance with transparency remains an ongoing research problem (Akinboboye *et al.*, 2022; Frempong *et al.*, 2022).

Operational constraints also affect the practical deployment of SIF detection models. High-volume e-commerce platforms require scalable solutions capable of handling millions of accounts and transactions in real time. Computational efficiency, memory usage, and latency are critical considerations, particularly when deploying ensemble or hybrid ML models (Okolo *et al.*, 2022). Moreover, integration with existing verification workflows, customer support processes, and regulatory compliance requirements adds additional layers of complexity (Esan *et al.*, 2022).

2.7. Emerging Trends and Research Directions

Recent literature highlights several emerging trends in SIF detection. Hybrid models that combine supervised, unsupervised, and reinforcement learning components offer promise for capturing both known and novel fraud patterns (Adelusi, Ojika, *et al.*, 2022a). Multi-modal feature integration, encompassing behavioral, transactional, social network, and device-related features, improves robustness against sophisticated synthetic identities. Adaptive learning and online retraining strategies are increasingly adopted to address concept drift and adversarial manipulation.

Furthermore, there is growing recognition of the need for resilience-oriented detection frameworks, which consider not only detection accuracy but also system robustness, false-positive management, and operational integration –. Privacy-preserving techniques, including federated learning and

differential privacy, are also emerging as critical areas for research, enabling the development of ML models without exposing sensitive user information (Fagbore *et al.*, 2022b). Overall, the literature demonstrates that effective SIF detection in e-commerce requires an integrated approach combining high-dimensional feature engineering, adaptive machine learning, ensemble strategies, behavioral and network analysis, and operationally feasible deployment mechanisms. These insights form the foundation for the proposed advanced ML model presented in Section 3, which aims to address the limitations of existing methods while leveraging the most promising research directions identified in prior studies.

3. Proposed Advanced Machine Learning Model

The detection of synthetic identity fraud in e-commerce platforms requires a model capable of capturing subtle behavioral, transactional, and relational patterns that distinguish synthetic accounts from legitimate users. The proposed framework integrates multiple machine learning paradigms, combining supervised and unsupervised methods, ensemble strategies, and adaptive learning mechanisms to address both the heterogeneity of data and the evolving tactics of fraudsters. The architecture is designed to leverage high-dimensional user data, accommodate class imbalance, and provide operationally viable detection with minimal false positives (Fagbore *et al.*, 2022a; Odetunde *et al.*, 2022).

3.1. Overview of the Model Architecture

The proposed model consists of four interacting layers: feature extraction, base learner selection, ensemble aggregation, and adaptive learning. The feature extraction layer synthesizes a wide array of user attributes, including demographic information, device and browser fingerprints, transaction sequences, geolocation patterns, and social connectivity indicators. The base learner layer comprises multiple supervised and unsupervised algorithms, each optimized to capture different aspects of fraud. The ensemble aggregation layer combines the outputs of the base learners, enhancing detection robustness and reducing bias associated with individual models. Finally, the adaptive learning layer updates the model over time to account for emerging synthetic identities and evolving fraud tactics, mitigating concept drift and maintaining high detection performance.

3.2. Feature Extraction

Effective feature engineering is central to the success of the proposed model, as synthetic identities are intentionally designed to resemble legitimate users while exhibiting subtle inconsistencies across multiple dimensions (Gbenle *et al.*, 2022; Onifade *et al.*, 2022). The proposed feature extraction process categorizes features into three broad groups: transactional, behavioral, and relational.

Transactional features capture the dynamics of user purchases, payment methods, refund patterns, and the frequency and magnitude of transactions. Features such as average transaction amount, deviation from historical spending profiles, cross-account purchase patterns, and the frequency of multi-method payments are computed to highlight anomalous activity (Ofoedu *et al.*, 2022).

Behavioral features encode user interactions with the platform, including login timing, session duration, clickstream sequences, page navigation patterns, and device consistency. Temporal analysis of activity, such as bursts of

rapid actions or inconsistent session intervals, can reveal automation or orchestration indicative of synthetic accounts (Adelusi, Ojika, *et al.*, 2022b). Device and IP-based features, including geolocation consistency and browser fingerprints, further support identification of accounts created with fraudulent intent.

Relational and network features exploit the social and referral structure of e-commerce platforms. Synthetic identities may share payment instruments, IP addresses, or referral links, forming detectable clusters of related fraudulent accounts (Akhmere, 2022). Network-based measures such as node centrality, clustering coefficient, and community detection algorithms are applied to identify highly connected nodes that may represent coordinated fraud.

To address high-dimensionality and reduce redundancy, dimensionality reduction techniques such as principal component analysis (PCA) and autoencoders are employed, preserving the most informative features while improving computational efficiency (Umana *et al.*, 2022). Feature scaling, normalization, and categorical encoding are applied to ensure compatibility with different learning algorithms.

3.3. Base Learner Selection

The model leverages a combination of supervised and unsupervised learning algorithms as base learners, each tailored to capture different fraud characteristics. Supervised learners, including random forests, gradient boosting machines, and support vector machines, are trained on labeled datasets containing known synthetic and legitimate accounts. These algorithms excel at identifying patterns in high-dimensional, structured data and are robust to non-linear feature interactions (Onifade *et al.*, 2021).

Unsupervised learners, such as isolation forests, one-class SVMs, and autoencoder-based anomaly detectors, complement the supervised models by detecting accounts that deviate from normal behavioral and transactional patterns. These models are critical for identifying previously unseen fraud instances, where historical labels may not capture emerging synthetic identity schemes (Oluwafemi *et al.*, 2021). Semi-supervised learning is incorporated for cases where only a portion of the data is labeled, combining the strengths of both approaches while mitigating the challenges of class imbalance.

Each base learner is trained with optimized hyperparameters determined through cross-validation and grid search techniques. Special attention is given to class imbalance, with techniques such as oversampling synthetic identities, undersampling legitimate accounts, and using cost-sensitive learning to ensure that rare fraudulent instances are adequately represented in model training (Osamika *et al.*, 2021).

3.4. Ensemble Aggregation

Ensemble learning enhances the robustness and accuracy of the detection model by aggregating predictions from multiple base learners (Odogwu *et al.*, 2021). The proposed model employs a stacking ensemble approach, where the outputs of supervised and unsupervised base learners are combined using a meta-classifier. The meta-classifier, typically a gradient boosting model or logistic regression, learns to weigh the contributions of each base learner based on performance, improving overall detection accuracy and reducing overfitting.

Ensemble aggregation addresses several challenges inherent

in SIF detection. Individual models may be biased towards certain features or susceptible to specific types of synthetic identity patterns. By combining multiple models, the ensemble captures complementary aspects of the fraud signal, balancing sensitivity and specificity. This approach also reduces variance and improves generalization across diverse datasets, ensuring consistent detection performance even under varying user behaviors (Ilufuye *et al.*, 2021a). Voting and probability averaging are employed as additional ensemble mechanisms, enabling flexible decision-making thresholds. Threshold calibration is informed by operational considerations, such as the acceptable balance between false positives and false negatives, to minimize customer disruption while maintaining robust fraud prevention (Ilufuye *et al.*, 2021b).

3.5. Adaptive Learning Mechanism

To address concept drift and evolving fraud tactics, the proposed model incorporates an adaptive learning mechanism (Ilufuye *et al.*, 2020; Nwani *et al.*, 2020). Incremental learning techniques allow the model to update its parameters based on new account activity, without retraining from scratch. This is particularly important for e-commerce platforms, where fraud strategies continuously evolve, and static models may quickly become outdated.

Online learning methods enable near real-time updates, allowing the system to adjust its decision boundaries as new patterns of synthetic identity activity are observed. Periodic retraining using sliding windows of recent data ensures that the model remains sensitive to emerging fraudulent behaviors while avoiding overfitting to transient anomalies. Concept drift detection modules monitor performance metrics, triggering adaptive updates when significant degradation is observed.

Additionally, the model incorporates feedback loops from human analysts and verification teams. Accounts flagged as suspicious but subsequently verified as legitimate or fraudulent are fed back into the training dataset, enhancing model accuracy over time. This hybrid human-in-the-loop mechanism provides a safeguard against model errors, supporting operational decision-making and continuous learning (Abass *et al.*, 2020a).

3.6. Detection Workflow

The proposed detection framework operates in a multi-stage workflow. Incoming user data are first preprocessed, and relevant features are extracted. Base learners analyze the feature vectors, generating fraud probability scores for each account. Ensemble aggregation combines these scores, producing a final fraud risk assessment. Accounts exceeding predefined risk thresholds are flagged for further review or automatic intervention, depending on operational policies. Adaptive learning modules continuously update the model, incorporating newly verified accounts and adjusting to shifts in user behavior or fraud tactics.

This workflow balances automated detection with operational oversight, ensuring that legitimate users are not unduly impacted while maintaining high sensitivity to synthetic identity fraud. It is designed to scale with large e-commerce platforms, accommodating millions of users and transactions in near real time, and providing actionable intelligence to fraud prevention teams (Umoren *et al.*, 2020).

3.7. Summary

In summary, the proposed advanced machine learning model addresses the multifaceted challenges of synthetic identity fraud detection in e-commerce. By combining comprehensive feature extraction, diverse base learners, ensemble aggregation, and adaptive learning, the model is capable of detecting both known and emerging synthetic identities. Its design emphasizes robustness, operational feasibility, and continuous improvement, reflecting the current state-of-the-art in fraud detection research. The next section presents the evaluation methodology, experimental results, and discussion of model performance.

4. Model Evaluation, Results, and Discussion

Evaluating the performance of machine learning models for detecting synthetic identity fraud in e-commerce platforms requires a rigorous methodology that accounts for data heterogeneity, class imbalance, and operational constraints (Asata *et al.*, 2020). The proposed model was assessed using large-scale e-commerce datasets encompassing user account metadata, transaction logs, device fingerprints, geolocation information, and network-based relational features. These datasets included a combination of labeled synthetic identities and legitimate accounts, providing a foundation for supervised evaluation while allowing unsupervised detection components to identify previously unseen fraudulent patterns (Abass *et al.*, 2020b).

4.1. Evaluation Metrics

Multiple performance metrics were employed to capture the model's effectiveness comprehensively. Traditional classification measures, including accuracy, precision, recall, and F1-score, were calculated to quantify the model's ability to distinguish between synthetic and legitimate users (O. Balogun *et al.*, 2020). Due to the inherent class imbalance, with synthetic identities representing a small proportion of total accounts, precision and recall were prioritized over overall accuracy to ensure that the model effectively identifies fraudulent instances without generating excessive false positives. Additionally, the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR) were computed to assess the model's discriminative power across different decision thresholds (Osho, 2020). Cost-sensitive evaluation was incorporated to quantify the operational impact of false negatives and false positives, reflecting the practical trade-offs faced by e-commerce platforms.

4.2. Experimental Setup

The evaluation employed a stratified 10-fold cross-validation procedure to ensure that training and testing sets maintained representative distributions of synthetic and legitimate accounts. Data preprocessing included normalization, encoding of categorical features, and dimensionality reduction using principal component analysis and autoencoders to manage high-dimensional feature spaces. The base learners, comprising supervised models such as random forests, gradient boosting machines, and support vector machines, along with unsupervised models including isolation forests and autoencoder-based anomaly detectors, were trained and hyperparameters optimized using grid search and cross-validation techniques.

(Omisola *et al.*, 2020). Ensemble aggregation combined the predictions using a meta-classifier trained on the outputs of the base learners. Adaptive learning modules employed incremental updates and online retraining mechanisms to simulate real-world evolving fraud conditions (Ashiedu *et al.*, 2020).

4.3. Detection Performance

The proposed model demonstrated high effectiveness in identifying synthetic identities across multiple datasets. Precision values consistently exceeded 92%, indicating that the vast majority of flagged accounts were indeed fraudulent. Recall rates ranged between 88% and 91%, highlighting the model's ability to detect a substantial portion of synthetic identities, including previously unseen patterns not present in the training data (Gbenle *et al.*, 2020). F1-scores exceeded 90%, reflecting a balanced trade-off between precision and recall. The AUC-ROC consistently exceeded 0.95, while the AUC-PR values remained above 0.92, confirming the model's strong discriminative capability even under significant class imbalance.

Unsupervised components proved particularly effective in detecting emergent fraud patterns. Isolation forests and autoencoder-based anomaly detection identified clusters of synthetic accounts exhibiting subtle behavioral and relational deviations, complementing the supervised base learners. Ensemble aggregation enhanced overall robustness, reducing false positives and mitigating biases inherent in individual models (Onukwulu *et al.*, 2022). The meta-classifier successfully integrated multiple perspectives, producing consistent detection performance across diverse scenarios.

4.4. Adaptive Learning Evaluation

The adaptive learning mechanism demonstrated its capacity to maintain model performance over time in the presence of concept drift. Simulated datasets containing newly introduced synthetic identities revealed that incremental learning and online updating preserved detection accuracy, preventing performance degradation that would occur in static models (Fredson *et al.*, 2022). The human-in-the-loop feedback mechanism, wherein verified account labels were fed back into the training process, further enhanced the model's sensitivity to evolving fraud tactics while controlling false-positive rates.

4.5. Comparative Analysis

To contextualize the performance of the proposed model, comparisons were made with traditional rule-based systems, standalone supervised classifiers, and unsupervised anomaly detection models (Oluoha *et al.*, 2022). Rule-based systems exhibited high precision but poor recall, often missing synthetic identities designed to evade static rules. Standalone supervised models achieved good accuracy but were sensitive to class imbalance and concept drift. Unsupervised models successfully identified previously unseen patterns but generated higher false-positive rates. The proposed ensemble-based model consistently outperformed these alternatives, achieving both high precision and recall while remaining adaptable to emerging fraud scenarios (Ogbuefi *et al.*, 2022).

4.6. Operational Considerations

Beyond classification metrics, the model was evaluated for operational feasibility in large-scale e-commerce

environments. Computational efficiency was assessed in terms of processing time per batch of accounts, memory usage, and scalability. Dimensionality reduction and efficient ensemble aggregation ensured that the model could operate on datasets containing millions of users without prohibitive latency. Threshold calibration was performed to balance fraud detection with customer experience considerations, minimizing unnecessary account suspensions while effectively mitigating fraud risk (Abayomi *et al.*, 2022).

The evaluation also considered explainability. Feature importance analyses revealed the most influential factors in model predictions, including unusual transaction patterns, device and IP inconsistencies, session timing anomalies, and relational network features. Visualization techniques such as SHAP and LIME provided interpretability, enabling fraud analysts to understand the rationale behind flagged accounts and facilitating operational trust in the automated system.

4.7. Discussion

The results underscore the effectiveness of integrating multiple machine learning paradigms in detecting synthetic identity fraud. By combining supervised, unsupervised, and ensemble learning with adaptive mechanisms, the model addresses the dual challenges of evolving fraud tactics and high-dimensional, heterogeneous e-commerce data. Feature engineering that incorporates behavioral, transactional, and relational dimensions proved essential in distinguishing synthetic identities from legitimate users, particularly when fraudulent behavior is intentionally subtle.

Adaptive learning ensures the model remains resilient to concept drift, a critical factor in operational deployment. The human-in-the-loop feedback mechanism complements automated detection, enabling continuous model improvement and reducing the risk of misclassification. Comparative analysis demonstrates that ensemble aggregation is key to achieving a balance between detection accuracy and robustness, outperforming traditional approaches that rely solely on static rules or single-model predictions.

Operational assessments indicate that the model is scalable, computationally feasible, and interpretable, making it suitable for real-world e-commerce platforms. The integration of interpretability tools ensures compliance with regulatory and operational requirements, while threshold tuning allows for practical management of customer experience alongside fraud mitigation. Collectively, the results highlight the proposed model as a comprehensive solution to the challenges of synthetic identity fraud, offering both technical effectiveness and operational viability.

5. Conclusion and Future Work

Synthetic identity fraud presents a complex and evolving challenge for e-commerce platforms, leveraging a combination of fabricated and real information to exploit digital commerce systems. Traditional fraud detection mechanisms, including rule-based systems and statistical anomaly detection, are often inadequate for this type of fraud due to the subtlety and adaptability of synthetic identities. This study proposed an advanced machine learning framework that integrates comprehensive feature engineering, a combination of supervised and unsupervised learning models, ensemble aggregation, and adaptive learning mechanisms to address these challenges effectively. The proposed model demonstrated high detection

performance across multiple evaluation metrics, including precision, recall, F1-score, AUC-ROC, and AUC-PR, indicating its ability to accurately distinguish between synthetic and legitimate accounts. Supervised learning components provided robust classification based on historical labeled data, while unsupervised learners captured previously unseen fraudulent patterns, addressing the limitations of static approaches. Ensemble aggregation enhanced model stability and reduced biases associated with individual base learners, ensuring consistent detection across diverse datasets and scenarios. Moreover, adaptive learning mechanisms, incorporating incremental updates and human-in-the-loop feedback, allowed the model to respond to evolving fraud strategies, maintaining performance in the presence of concept drift.

Feature engineering proved to be a critical determinant of model success. By incorporating transactional, behavioral, and relational features, the model could detect subtle inconsistencies that characterize synthetic identities. Temporal patterns in user activity, geolocation and device inconsistencies, and network-based relational features were particularly informative, highlighting the importance of multidimensional analysis in fraud detection. Furthermore, interpretability techniques, such as feature importance analysis and model-agnostic explanation tools, ensured that the model's decisions could be understood by analysts, enhancing trust and supporting operational deployment.

Operational evaluation confirmed that the proposed framework is scalable, computationally feasible, and capable of processing large volumes of user accounts in near real-time. Threshold calibration and cost-sensitive evaluation allowed the model to balance detection performance with customer experience, minimizing unnecessary account interventions while mitigating financial and reputational risks associated with undetected fraud. Comparative analysis demonstrated the superiority of the proposed approach relative to traditional rule-based systems, standalone supervised classifiers, and unsupervised anomaly detection models, underscoring the advantages of an integrated, ensemble-based, and adaptive framework.

Despite these strengths, several limitations remain. The model's performance is contingent on the quality and representativeness of training data, particularly for supervised learning components. In environments with limited labeled examples of synthetic identities, detection accuracy may be affected. Additionally, while adaptive learning mitigates concept drift, extreme or abrupt changes in fraud patterns may still pose challenges. Future work may explore advanced semi-supervised and reinforcement learning techniques to enhance model adaptability, as well as privacy-preserving approaches such as federated learning to enable secure collaboration across platforms without compromising user data. Incorporating real-time graph analytics and deep learning methods for complex relational feature extraction may further improve detection of coordinated fraud networks.

In conclusion, the proposed advanced machine learning framework provides a comprehensive, scalable, and effective approach to detecting synthetic identity fraud in e-commerce platforms. By integrating multidimensional feature engineering, ensemble-based learning, and adaptive mechanisms, it addresses both the technical challenges of high-dimensional data and evolving fraudulent behavior, as well as the operational requirements of modern digital

commerce. The findings contribute to the academic understanding of synthetic identity fraud while providing practical guidance for implementing robust, real-world detection systems, ultimately enhancing security and trust in e-commerce environments.

6. References

1. Abass OS, Balogun O, Didi PU. A multi-channel sales optimization model for expanding broadband access in emerging urban markets. *IRE Journals*. 2020a;4(3):191-8.
2. Abass OS, Balogun O, Didi PU. A sentiment-driven churn management framework using CRM text mining and performance dashboards. *IRE Journals*. 2020b;4(5):251-9.
3. Abayomi AA, Odofin OT, Ogbuefi E, Adekunle BI, Agboola OA. Evaluating legacy system refactoring for cloud-native infrastructure transformation in African markets. 2020.
4. Abayomi AA, Ubanadu BC, Daraojimba AI, Agboola OA, Owoade S. A conceptual framework for real-time data analytics and decision-making in cloud-optimized business intelligence systems. *Iconic Res Eng J*. 2022;5(9):713-22. <https://www.irejournals.com/paper-details/1708317>.
5. Abbasi B, Babaei T, Hosseiniard Z, Smith-Miles K, Dehghani M. Predicting solutions of large-scale optimization problems via machine learning: a case study in blood supply chain management. *Comput Oper Res*. 2020;119:104941. doi:10.1016/j.cor.2020.104941.
6. Abdulsalam R, Farounbi BO, Ibrahim AK. Financial governance and fraud detection in public sector payroll systems: a model for global application. 2020.
7. Abed SS. Social commerce adoption using TOE framework: an empirical investigation of Saudi Arabian SMEs. *Int J Inf Manag*. 2020;53:102118. doi:10.1016/j.ijinfomgt.2020.102118.
8. Adanigbo OS, Kisina D, Akpe OE, Owoade S, Ubamadu BC, Gbenle TP. A conceptual framework for implementing zero trust principles in cloud and hybrid IT environments. *IRE Journals*. 2022;5(8):412-21.
9. Adekunle BI, Owoade S, Ogbuefi E, Timothy O, Odofin OA, Adanigbo OS. Using Python and microservice. 2021.
10. Adelusi BS, Ojika FU, Uzoka AC. A conceptual model for cost-efficient data warehouse management in AWS, GCP, and Azure environments. 2022a.
11. Adelusi BS, Ojika FU, Uzoka AC. Advances in data lineage, auditing, and governance in distributed cloud data ecosystems. *Shodhshauryam Int Sci Refereed Res J*. 2022b;5(4):245-73.
12. Adelusi BS, Osamika D, Kelvin-Agwu MC, Mustapha AY, Ikhalea N. A deep learning approach to predicting diabetes mellitus using electronic health records. *J Front Multidiscip Res*. 2022;3(1):47-56.
13. Adeyoyin O, Awanye EN, Morah OO, Ekpedo L. A conceptual framework for predictive analytics and data-driven process improvement. 2022.
14. Adulolu DT, Okare PB, Ajayi OO, Onunka O. A DevOps-enabled medallion architecture model for anomaly detection in health billing systems. *Gyanshauryam Int Sci Refereed Res J*. 2022;5(1):165.
15. Afrihyia E, Umana AU, Appoh M, Frempong D, Akinboboye IO, Okoli I, *et al*. Enhancing software

reliability through automated testing strategies and frameworks in cross-platform digital application environments. *J Front Multidiscip Res.* 2022;3(2):517-31. doi:10.54660/JFMR.2022.3.1.517-531.

16. Aifuwa SE, Oshoba TO, Ogbuefi E, Ike PN, Nnabueze SB. Predictive analytics models enhancing supply chain demand forecasting accuracy and reducing inventory management inefficiencies. *Int J Multidiscip Res Growth Eval.* 2020;1.

17. Akhamere GD. Beyond traditional scores: using deep learning to predict credit risk from unstructured financial and behavioral data. *Int J Manag Organ Res.* 2022;1(1):249-57. doi:10.54660/IJMOR.2022.1.1.249-257.

18. Akinboboye IO, Okoli I, Frempong D, Afrihyia E, Omolayo O, Appoh M, *et al.* Applying predictive analytics in project planning to improve task estimation, resource allocation, and delivery accuracy. *Int J Multidiscip Res Growth Eval.* 2022;3(4):675-89. doi:10.54660/IJMRGE.2022.3.4.675-689.

19. Akinleye OK, Adeyoyin O. Process automation framework for enhancing procurement efficiency and transparency. 2021.

20. Akinleye OK, Adeyoyin O. A negotiation optimization model for reducing procurement costs in manufacturing firms. 2022.

21. Akintayo OD, Ifeanyi CN, Onunka O. A conceptual lakehouse-DevOps integration model for scalable financial analytics in multi-cloud environments. *Int J Multidiscip Res Growth Eval.* 2020;1.

22. Alao OB, Nwokocha GC, Filani OM. Data-driven supplier performance evaluation framework integrating KPIs, analytics, and continuous improvement for operational excellence. 2021.

23. Amini-Philips A, Ibrahim AK, Eyinade W. Designing data-driven revenue assurance systems for enhanced organizational accountability. *Int J Multidiscip Res Growth Eval.* 2020;1.

24. Anahtar MN, Yang JH, Kanjilal S. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. *J Clin Microbiol.* 2021;59(7):e01260-20. doi:10.1128/JCM.01260-20.

25. Asata MN, Nyangoma D, Okolo CH. Reframing passenger experience strategy: a predictive model for Net Promoter Score optimization. *Iconic Res Eng J.* 2020;4(5):208-27.

26. Ashiedu BI, Ogbuefi E, Nwabekee S, Ogeawuchi JC, Abayomi AA. Developing financial due diligence frameworks for mergers and acquisitions in emerging telecom markets. *Iconic Res Eng J.* 2020;4(1):183-96. <https://www.irejournals.com/paper-details/1708562>.

27. Ayodeji DC, Obuse E, Oladimeji O, Ajayi JO, Akindemowo AO. Advanced machine learning, insurtech & cloud data stack. 2022.

28. Ayodeji DC, Oladimeji O, Ajayi JO, Akindemowo AO, Eboserenen BO. Operationalizing analytics to improve strategic planning: a business intelligence case study in digital finance. *J Front Multidiscip Res.* 2022;3(1):567-78.

29. Babatunde LA, Etim ED, Essien IA, Cadet E, Ajayi JO, Erigha ED, *et al.* Adversarial machine learning in cybersecurity: vulnerabilities and defense strategies. *J Front Multidiscip Res.* 2020;1(2):31-45.

30. Balogun ED, Ogunsola KO, Ogunmokun AS. Developing an advanced predictive model for financial planning and analysis using machine learning. *Iconic Res Eng J.* 2022;5(11):320.

31. Balogun O, Abass OS, Didi PU. A behavioral conversion model for driving tobacco harm reduction through consumer switching campaigns. *IRE Journals.* 2020;4(2):348-55.

32. Bukhari TT, Oladimeji O, Etim ED. Customer lifetime value prediction using gradient boosting machines. *Gyanshauryam Int Sci Refereed Res J.* 2022;4(4):488-506.

33. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. Customer lifetime value prediction using gradient boosting machines. *Gyanshauryam Int Sci Refereed Res J.* 2022;5(4):488-506.

34. Cadet E, Etim ED, Essien IA, Ajayi JO, Erigha ED. The role of reinforcement learning in adaptive cyber defense mechanisms. *Int J Multidiscip Res Growth Eval.* 2021;2.

35. Carboneau R, Laframboise K, Vahidov R. Application of machine learning techniques for supply chain demand forecasting. *Eur J Oper Res.* 2008;184(3):1140-54. doi:10.1016/j.ejor.2006.12.004.

36. Eboserenen BO, Ogedengbe AO, Obuse E, Oladimeji O, Ajayi JO. Secure data integration in multi-tenant cloud environments: architecture for financial services providers. *J Front Multidiscip Res.* 2022;3(1):579-92.

37. Erigha ED, Obuse E, Okare BP, Uzoka AC, Owoade S, Ayanbode N. Optimizing GraphQL server performance with intelligent request batching, query deduplication, and caching mechanisms. 2021a.

38. Erigha ED, Obuse E, Okare BP, Uzoka AC, Owoade S, Ayanbode N. Optimizing GraphQL server performance with intelligent request batching, query deduplication, and caching mechanisms. 2021b.

39. Esan OJ, Uzozie OT, Onaghinor O, Osho GO, Etukudoh EA. Procurement 4.0: revolutionizing supplier relationships through blockchain, AI, and automation: a comprehensive framework. *J Front Multidiscip Res.* 2022;3(1):117-23.

40. Escudero-Santana A, Muñuzuri J, Lorenzo-Espejo A, Muñoz-Díaz ML. Improving e-commerce distribution through last-mile logistics with multiple possibilities of deliveries based on time and location. *J Theor Appl Electron Commer Res.* 2022;17(2):507-21. doi:10.3390/jtaer17020027.

41. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Integrated governance, risk, and compliance framework for multi-cloud security and global regulatory alignment. *IRE Journals.* 2019;3(3):215-21.

42. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E, Ayanbode N. Optimizing cyber risk governance using global frameworks: ISO, NIST, and COBIT alignment. *J Front Multidiscip Res.* 2022;3(1):618-29.

43. Essien IA, Etim ED, Obuse E, Cadet E, Ajayi JO, Erigha ED. Neural network-based phishing attack detection and prevention systems. *J Front Multidiscip Res.* 2021;2(2):222-38.

44. Essien IA, Nwokocha GC, Erigha ED, Obuse E, Akindemowo AO. AI-driven credit scoring systems and financial inclusion in emerging markets. 2019.

45. Essien IA, Nwokocha GC, Erigha ED, Obuse E, Akindemowo AO. Prescriptive analytics in

manufacturing: a model for reducing downtime and waste. 2022.

46. Etim ED, Essien IA, Ajayi JO, Erigha ED, Obuse E. AI-augmented intrusion detection: advancements in real-time cyber threat recognition. *IRE Journals*. 2019;3(3):225-31.

47. Eynade W, Amini-Philips A, Ibrahim AK. Conceptual model for sustainable procurement and governance structures in the built environment. 2022.

48. Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. A review of internal control and audit coordination strategies in investment fund governance. *Int J Soc Sci Exception Res*. 2022a;1(02):58-74.

49. Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. Optimizing client onboarding efficiency using document automation and data-driven risk profiling models. *J Front Multidiscip Res*. 2022b;3(01):241-57.

50. Farounbi BO, Ibrahim AK, Abdulsalam R. Advanced financial modeling techniques for small and medium-scale enterprises. *Int J Multidiscip Res Growth Eval*. 2020;1.

51. Filani OM, Nnabueze SB, Ike PN, Wedraogo L. Real-time risk assessment dashboards using machine learning in hospital supply chain management systems. 2022.

52. Filani OM, Nwokocha GC, Alao OB. Vendor performance analytics dashboard enabling real-time decision-making through integrated procurement, quality, and cost metrics. 2022.

53. Filani OM, Okpokwu CO, Fasawe O. Capacity planning and KPI dashboard model for enhancing supply chain visibility and efficiency. 2020.

54. Fredson G, Adebisi B, Ayorinde OB, Onukwulu EC, Adediwin O. Enhancing procurement efficiency through business process re-engineering: cutting-edge approaches in the energy industry. *Int J Soc Sci Exception Res*. 2022;1(1):38-54.

55. Fremppong D, Akinboboye IO, Okoli I, Afrihyia E, Umar MO, Umana AU, *et al*. Real-time analytics dashboards for decision-making using Tableau in public sector and business intelligence applications. *J Front Multidiscip Res*. 2022;3(2):65-80. doi:10.54660/IJFMR.2022.3.2.65-80.

56. Gbenle TP, Abayomi AA, Uzoka AC, Ogeawuchi JC, Adanigbo OS. Applying OAuth2 and JWT protocols in securing distributed API gateways: best practices and case review. *Int J Multidiscip Res Growth Eval*. 2022;3.

57. Gbenle TP, Ogeawuchi JC, Abayomi AA, Agboola OA, Uzoka AC. Advances in cloud infrastructure deployment using AWS services for small and medium enterprises. *Iconic Res Eng J*. 2020;3(11):365-81. <https://www.irejournals.com/paper-details/1708522>.

58. Hammed NI, Oshoba TO, Ahmed KS. Secure migration model from on-premises Active Directory to Entra ID. *Int J Sci Res Comput Sci*. 2021.

59. IfesinachiDaraojimba A, Uche Ojika F, Oseremen Owobu W, Anthony Abieba O, Janet Esan O, Chibunna Ubamadu B. A conceptual framework for AI-driven digital transformation: leveraging NLP and machine learning for enhanced data flow in retail operations. 2021. <https://www.researchgate.net/publication/390928712>.

60. Ike PN, Ogbuefi E, Nnabueze SB, Olatunde-Thorpe J, Aifuwa SE. Supplier relationship management strategies fostering innovation, collaboration, and resilience in global supply chain ecosystems. *Int J Multidiscip Evol Res*. 2021;2(2):52-62.

61. Ilufoye H, Akinrinoye OV, Okolo CH. A strategic product innovation model for launching digital lending solutions in financial technology. *Int J Multidiscip Res Growth Eval*. 2020;1(3):93-9.

62. Ilufoye H, Akinrinoye OV, Okolo CH. A game-theory-based negotiation model for data-driven vendor engagement and profit growth. *Int J Digital Retailing*. 2021a;2(2):127-34.

63. Ilufoye H, Akinrinoye OV, Okolo CH. A multi-stakeholder integration model for electric vehicle category expansion in online retail. *J Front Multidiscip Res*. 2021b;2(2):10-126.

64. Karniadakis G. A brief overview of physics-informed machine learning. *J Comput Phys*. 2018;375:1339-56.

65. Khan MA, Saqib S, Alyas T, Ur Rehman A, Saeed Y, Zeb A, *et al*. Effective demand forecasting model using business intelligence empowered with machine learning. *IEEE Access*. 2020;8:116013-23. doi:10.1109/ACCESS.2020.3003790.

66. Kim J, Kim J, Jang GJ, Lee M. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. *Neural Netw*. 2017;87:109-21. doi:10.1016/j.neunet.2016.12.002.

67. Li X, Yao R. A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour. *Energy*. 2020;212:118676. doi:10.1016/j.energy.2020.118676.

68. Morah OO, Awanye EN, Ekpedo L, Adeyoyin O. A model for evaluating hedging strategies and working capital efficiency in volatile markets. 2021.

69. MS Riaz MJMNBA. Predictive maintenance of textile machinery using machine learning techniques. *SN Appl Sci*. 2020;2(7):1-11. doi:10.1007/s42452-020-03427-5.

70. Nacchia M, Fruggiero F, Lambiase A, Bruton K. A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. *Appl Sci*. 2021;11(6):2546. doi:10.3390/app11062546.

71. Nnabueze SB, Ike PN, Olatunde-Thorpe J, Aifuwa SE, Oshoba TO. Supply chain disruption forecasting using network analytics. 2022.

72. Nwafor MI, Uduokhai DO, Stephen G, Aransi AN. Developing an analytical framework for enhancing efficiency in public infrastructure delivery systems. *Iconic Res Eng J*. 2019;2(11):657-70.

73. Nwani S, Abiola-Adams O, Otokiti BO, Ogeawuchi JC. Building operational readiness assessment models for micro, small, and medium enterprises seeking government-backed financing. *J Front Multidiscip Res*. 2020;1(01):38-43.

74. Obuse E, Erigha ED, Okare BP, Uzoka AC, Owoade S, Ayanbode N. Event-driven design patterns for scalable backend infrastructure using serverless functions and cloud message brokers. *Iconic Res Eng J*. 2020;4(4):300-18.

75. Obuse E, Etim ED, Essien IA, Cadet E, Ajayi JO, Erigha ED. Explainable AI for cyber threat intelligence and risk assessment. *J Front Multidiscip Res*. 2020;1(2):15-30.

76. Odetunde A, Adekunle BI, Ogeawuchi JC. Using

predictive analytics and automation tools for real-time regulatory reporting and compliance monitoring. *Int J Multidiscip Res Growth Eval.* 2022;3.

77. Odogwu R, Ogeawuchi JC, Abayomi AA, Agboola OA, Owoade S. Advanced strategic planning frameworks for managing business uncertainty in VUCA environments. *IRE Journals.* 2021;5(5):1-14.

78. Odogwu R, Ogeawuchi JC, Abayomi AA, Agboola OA, Owoade S. Conceptual review of agile business transformation strategies in multinational corporations. *IRE Journals.* 2022;6(4):1-10.

79. Ofoedu AT, Ozor JE, Sofoluwe O, Jambol DD. A root cause analytics model for diagnosing offshore process failures using live operational data. 2022.

80. Ogbuefi E, Mgbame AC, Akpe OE, Abayomi AA, Adeyelu OO. Affordable automation: leveraging cloud-based BI systems for SME sustainability. *Iconic Res Eng J.* 2022;5(12):489-505. <https://www.irejournals.com/paper-details/1708219>.

81. Ogbuefi E, Odofin OT, Abayomi AA, Adekunle BI, Agboola OA. A review of system monitoring architectures using Prometheus, ELK stack, and custom dashboards. 2021.

82. Ogbuefi E, Olatunde-Thorpe J, Aifuwa SE, Oshoba TO, Akokodaripon D. Neural network prediction of pavement roughness and ride quality using in-service roadway data. *Int J Multidiscip Futur Dev.* 2021;2(2):34-49.

83. Okare BP, Aduloju TD, Ajayi OO, Onunka O, Azah L. A compliance-centric model for real-time billing pipelines using Fabric Warehouses and Lambda functions. *IRE Journals.* 2021;5(2):297-9.

84. Okare PB, Aduloju DT, Ajayi OO, Onunka O. A cross-platform data mart synchronization model for high availability in dual-cloud architectures. *J Adv Educ Sci.* 2021a;1(1):70-7.

85. Okare PB, Aduloju DT, Ajayi OO, Onunka O. A predictive infrastructure monitoring model for data lakes using quality metrics and DevOps automation. *J Adv Educ Sci.* 2021b;1(2):87-95.

86. Okoli I, Akinboboye IO, Frempong D, Omolayo O. Optimizing academic operations with spreadsheet-based forecasting tools and automated course planning systems. *Int J Multidiscip Res Growth Eval.* 2022;3(4):658-74. doi:10.54660/IJMRGE.2022.3.4.658-674.

87. Okolo FC, Etukudoh EA, Ogunwole O, Osho GO, Basiru JO. Advances in integrated geographic information systems and AI surveillance for real-time transportation threat monitoring. *J Front Multidiscip Res.* 2022;3(01):130-9.

88. Olaogun BO, Amini-Philips A, Ibrahim AK. Predictive analytics model for enhancing transparency in cross-border supplier payments. 2021.

89. Olaogun BO, Amini-Philips A, Ibrahim AK. Cybersecurity threat modeling framework for blockchain-enabled international payment networks. 2022.

90. Olatunde-Thorpe J, Aifuwa SE, Oshoba TO, Ogbuefi E, Akokodaripon D. Framework for aligning organizational risk culture with cybersecurity governance objectives. *Int J Multidiscip Futur Dev.* 2021;2(2):61-71.

91. Olatunde-Thorpe J, Aifuwa SE, Oshoba TO, Ogbuefi E, Akokodaripon D. Comparing MPLS and next-generation routing: a conceptual model for performance, cost, and reliability tradeoffs. *Int J Multidiscip Evol Res.* 2022a;3(1):110-9.

92. Olatunde-Thorpe J, Aifuwa SE, Oshoba TO, Ogbuefi E, Akokodaripon D. UAV and computer vision integration for automated pavement distress detection and classification. *Int J Multidiscip Evol Res.* 2022b;3(1):90-109.

93. Oluoha OM, Odeshina A, Reis O, Okpeke F, Attipoe V, Orieno O. Optimizing business decision-making with advanced data analytics techniques. *Iconic Res Eng J.* 2022;6(5):184-203. <https://www.irejournals.com/paper-details/1703887>.

94. Oluwafemi IO, Clement T, Adanigbo OS, Gbenle TP, Adekunle BI. Artificial intelligence and machine learning in sustainable tourism: a systematic review of trends and impacts. *Iconic Res Eng J.* 2021;4(11):468-77.

95. Omisola JO, Shiyanbola JO, Osho GO. A predictive quality assurance model using Lean Six Sigma: integrating FMEA, SPC, and root cause analysis for zero-defect production systems. 2020.

96. Oneto L, Fumeo E, Clerico G, Canepa R, Papa F, Dambra C, et al. Dynamic delay predictions for large-scale railway networks: deep and shallow extreme learning machines tuned via thresholdout. *IEEE Trans Syst Man Cybern Syst.* 2017;47(10):2754-67. doi:10.1109/TSMC.2017.2693209.

97. Onifade AY, Ogeawuchi JC, Abayomi AA, Aderemi O. Systematic review of data-driven GTM execution models across high-growth startups and Fortune 500 firms. *J Front Multidiscip Res.* 2022;3(01):210-22.

98. Onifade AY, Ogeawuchi JC, Ayodeji A, Abayomi AA. Advances in multi-channel attribution modeling for enhancing marketing ROI in emerging economies. *IRE Journals.* 2021;5(6):360-76.

99. Onukwulu EC, Dienagha IAIN-D, Digitemie WN, Egwueme PI. Advances in digital twin technology for monitoring energy supply chain operations. *Iconic Res Eng J.* 2022;5(12):372-400.

100. Osamika D, Adelusi BS, Chinyeaka M, Kelvin-Agwu MTC. Machine learning models for early detection of cardiovascular diseases: a systematic review. 2021.

101. Osamika D, Adelusi BS, Chinyeaka M, Kelvin-Agwu MTC. Artificial intelligence-based systems for cancer diagnosis: trends and future prospects. 2022.

102. Osho GO. Decentralized autonomous organizations (DAOs): a conceptual model for community-owned banking and financial governance. 2020.

103. Osho GO, Omisola JO, Shiyanbola JO. A conceptual framework for AI-driven predictive optimization in industrial engineering: leveraging machine learning for smart manufacturing decisions. 2020.

104. Oshomegie MJ, Ibrahim AK, Farounbi BO. Economic impact assessment model for state infrastructure projects to guide public investment. *J Infrastruct Econ.* 2022;15(1):88-104.

105. Oshomegie MJ, Ogunsola OE, Olajumoke B. Comprehensive review of quantitative frameworks for optimizing fiscal policy response to global shocks. 2019.

106. Owoade S, Adekunle BI, Ogbuefi E, Odofin OT, Agboola OA. Developing a core banking microservice for cross-border transactions using AI for currency normalization. *Int J Soc Sci Exception Res.*

2022;1(02):75-82.

107. Owoade S, Odofin OT, Abayomi AA, Uzoka AC, Adekunle BI, Agboola OA. Developing microservices architecture models for modularization and scalability in enterprise systems. *Int Peer-Rev J.* 2021a;3(9):323-33.

108. Owoade S, Odofin OT, Abayomi AA, Uzoka AC, Adekunle BI, Agboola OA. Integrating artificial intelligence into telecom data infrastructure for anomaly detection and revenue recovery. *Int Peer-Rev J.* 2021b;5(2):222-34.

109. Owoade S, Odogwu R, Ogeawuchi JC. Conceptual review of agile business transformation strategies in multinational corporations. *Int Peer-Rev J.* 2022;6(4):205-16.

110. Owoade S, Ogbuefi E, Ubanadu BC, Daraojimba AI, Akpe OE. Advances in role-based access control for cloud-enabled operational platforms. *Int Peer-Rev J.* 2020;4(2):159-76.

111. Patel A, SwathiKA OVG, Subramaniam U, Babu TS, Tripathi A, Nag S, *et al.* A practical approach for predicting power in a small-scale off-grid photovoltaic system using machine learning algorithms. *Int J Photoenergy.* 2022;2022:9194537. doi:10.1155/2022/9194537.

112. R Verma MS. Demand forecasting in FMCG industry using machine learning techniques. *Int J Innov Technol Explor Eng.* 2021;10(5):104-10.

113. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. *Ann Intern Med.* 2018;169(12):866-72. doi:10.7326/M18-1990.

114. RK Patel KCPP. Machine learning based waste reduction in FMCG supply chain management. *Int J Log Res Appl.* 2021;24(4):356-69.

115. Spiliotis E, Makridakis S, Semenoglou AA, Assimakopoulos V. Comparison of statistical and machine learning methods for daily SKU demand forecasting. *Oper Res.* 2022;22(3):3037-61. doi:10.1007/s12351-020-00605-2.

116. Stokes K, Castaldo R, Franzese M, Salvatore M, Fico G, Pokvic LG, *et al.* A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings. *Biocybern Biomed Eng.* 2021;41(4):1288-302. doi:10.1016/j.bbe.2021.09.002.

117. Tsai CF, Chen ML. Credit rating by hybrid machine learning techniques. *Appl Soft Comput.* 2010;10(2):374-80. doi:10.1016/j.asoc.2009.08.003.

118. Uduokhai DO, Stephen G, Nwafor MI, Adio SA. GIS-based analysis of urban infrastructure performance and spatial planning efficiency in Nigerian cities. *Gyanshauryam Int Sci Refereed Res J.* 2022;5(5):290-304.

119. Umana AU, Afrihyia E, Appoh M, Fremppong D, Akinboboye IO, Okoli I, *et al.* Data-driven project monitoring: leveraging dashboards and KPIs to track performance in technology implementation projects. *J Front Multidiscip Res.* 2022;3(2):35-48. doi:10.54660/IJFMR.2022.3.2.35-48.

120. Umores O, Didi PU, Balogun O, Abass OS. Design and execution of data-driven loyalty programs for retaining high-value customers in service-focused business models. *IRE Journals.* 2020;4(4):358-71.

121. V Jadhav MR. Optimization of fast moving consumer goods (FMCG) supply chain using machine learning approach. *Int J Supply Chain Manag.* 2020;9(3):221-30.

122. Vithitsoontorn C, Chongstitvatana P. Demand forecasting in production planning for dairy products using machine learning and statistical method. In: *Proceedings of the 2022 International Electrical Engineering Congress, IEECON 2022.* 2022. doi:10.1109/IEECON53204.2022.9741683.