
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    165 | P a g e  

 

 

 
Image compression in system through parallel & Sequetial Execution  

 

Babar Hussain 1, Tauqeer Ahmed 2, Salvatore Distefano 3 
1-3 Department of Engineering and Computer Science, University of Messina, Piazza Pugliatti, 1, 98122 Messina ME, Italy 
 

* Corresponding Author: Babar Hussain 

 

 

 

Article Info 

 

ISSN (online): 2582-7138 

Volume: 03  

Issue: 04 

July-August 2022 

Received: 09-06-2022;  

Accepted: 24-06-2022 

Page No: 165-170

Abstract 
The Parallel processing has become a significant tool for implementing high speed 

computing. For implementing this in image processing, several research and 

contributions have been done till now using several tools likes GPU (Graphical 

Processing Unit), CUDA (Computed Unified Device Architecture). The multicore 

computing is pervasive throughout most industries, and the image and machine vision 

industries are no exception. This could improve throughput and reduce response times 

for camera systems dealing with growing amounts of data. Images are processed using 
two or more computer cores in multicore image processing. In other words, the 

processing of a task from an imaging system is shared among numerous cores. Moving 

to a multicore system has the overall benefit of reducing response time and increasing 

throughput in an imaging system. Multicore allows users to make use of the latest PC 

processor designs, allowing algorithms and software to run quicker and perform more 

tasks.

 
Keywords:  High performance computing, image processing, parallel computing, Python Programming, Image compression 

 

 

 

Introduction 
Image compression is a sort of data compression that is used to lower the cost of storing or transmitting digital photos. When 

compared to generic data compression approaches used for other digital data, algorithms can take advantage of visual perception 

and the statistical features of picture data to deliver greater outcomes. Image compression is a key stage in the field of image 

processing before we begin processing larger images or films. An encoder performs image compression and outputs a 

compressed version of the image. The mathematical transforms play a crucial part in compression operations. Particularly for 

the understanding, the parallelization is especially important as there has been significant growth in the amount of electronic 

multimedia shared by individuals over the internet, fueled improved internet access speeds and image/multimedia sharing 

websites such as social networking sites. 

The parallel computing is having very important significance in several image processing techniques like edge detection, 

histogram equalization, noise removal, image registration, image segmentation, feature extraction, different optimization 

techniques and many more. The Parallel processing ‘employed to give simultaneous data-processing operations is used to 

represent a large class. In addition, a parallel processing system is capable of concurrent data processing to achieve faster 

execution times. 

The increasing computational capacity and programmability of multi-core architectures offer promising opportunities for 

parallelizing image compression and processing methods. 

Image is the two-dimensional distributions of tiny image points called as pixels. It can be considered as a function of two real 

variables, such as f (x, y) with f as the amplitude like brightness of the image at position (x, y). Image Processing is the process 
of enhancing and manipulation with an image to extraction of meaningful information. The Parallel computing or processing is 

the process of simultaneous uses of various compute resources to solve a computational job/task/work. The Main principle of 

parallel computing is to divide a task in such a way that the task executes in minimum time with maximum efficiency. To  

implement parallel computing there can be several kinds of parallel machine like a cluster of computers which is having multiple  



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    166 | P a g e  

 

PCs combined with an elevated speed network, a shared 

memory multiprocessor by connecting multiple processors to 

a single memory system. 

 

Python Programming for Image Processing 
Python interpreters are available for many operating systems 

that allow the execution of Python code on a wide variety of 

systems. an image is a rectangular grid of pixels with definite 

width and height. Each pixel has its own value. So, quality of 

image depends on this pixel values and pixel is the unit of 

information present in an image. Image Processing is the 
enhancement of images using mathematical operations for 

which the input is an image, such as a photograph or video 

frame and the output of image processing may be either an 

image or set of characteristics or parameters related to the 

image.  

Python has multiple libraries for multiple purposes like web 

development, scientific and numeric computing, image 

processing. To work on images, Python has a library i.e., 

Python Imaging Library (PIL) for image processing 

operations. The Python Imaging Library provides many 

functions for image processing, the Python Imaging Library, 

or PIL for short, is one of the core libraries for image 

manipulation in Python programming language and is freely 

available on internet to download. Many of the image 

processing tasks can be carried out using the PIL library such 

as image inversion, binary conversion, cropping, writing text 

on images, changing intensity, brightness, image filtering, 

such as blurring, contouring, smoothing and many more. Its 
initial release was in the year 1995. And many versions of 

PIL are available according to our operating system. Some of 

the file formats that it supports are ppm, png, jpeg, tiff, bmp, 

gif. PIL has been written in C and Python programming 

language. PIL can be used for the image enhancement and the 

development of the Python based image processing 

application so that it becomes easy for the beginners to learn 

and understand the complex tasks of the image processing 

using Python based image processing. Python Image Library 

(PIL), using which we can prominently develop the Python 

based image processing software and can be useful for 

number of applications like remote sensing, agriculture, 

space center, satellites, medical and health sciences, etc. 

Thus, it can be concluded that Python and Image processing 

proves to be the better combination for learning, developing, 

and understanding the capabilities provided in it. 

 

Decomposition Process 
In this project our goal is to compare the parallel with 

sequential image compression, so the central thing we have 

done in this project decomposition means taking the data 

from one field, breaks up the data into smaller pieces, and 

assigns the pieces to different columns in the staging table. If 

we will see the result of this project as a digital image 

processing, so each image sample is quantized to a fixed 

number of bits and then the image is stored digitally as an 

array of bytes in a file representing the image pixels. Image 

compression technique is concerned the image array into 

another array of smaller size or representing the image file by 

another description of a smaller size. A decomposition 

technique is presented for compressing the color image. The 

compressed image is segmented into different regions based 

on global color properties. The segmented regions are 

decomposed and represented as unions of rectangles. The 
image which originally consist of a thousand of pixels, now 

consist of few hundred rectangles that can be stored using 

fewer bytes as compared to the original image.  

 

a) Image Segmentation  
 An image segmentation is the process of allocating a specific 

label to every pixel available in an image so that the pixel 

with the same label can share the characteristics with each 

other for example the color or texture of an image. These 

segmentation covers the entire image. It can be represented 

as regions and objects.  

 

b) Merging Technique 
The artificial partitions generated by the quadtree 

decomposition need to be merged such that a group of 

connected rectangles should be represented as a union/region 

of the minimum number of possible rectangles. A region can 

be classified as s group of connected pixels exhibiting similar 

properties. The similarity between pixels can be in terms of 

intensity, color, etc. In region merging technique every pixel 

as an individual region. Normally, regions are selected as the 

seed region to check if adjacent regions are similar based of 

predefined rules. If they are similar, we merged them into a 

single region and move ahead to build the segmented regions 

of the whole image.  

 

 
 

Fig 1: Merging techniques in Image Processing 
 

 

 
 

 
 

Fig 2: Segmentation algorithm for Image 
reconstruction 

 

The algorithm used in the segmentation process has a 

parameter that can be used to control the accuracy of the 

image reconstruction.  

 

Aggregation Process 
In the project for image compression for parallel and 

sequential, the aggregation process takes data from multiple 

fields, aggregates the data, and assigns the aggregated data to 

a single column in the staging table, the aggregation of image 

processing is as it averages all the pixel values that contribute 
to the output pixel. In image processing a pixel aggregate 

method is working to define the output image values, based 

on a data sample, Aggregation process is to execute a 

sequence of steps in which pixels are gradually merged to 

produce larger and larger regions. In this section we focus on 

one step of such a procedure, in which a division of the image 

into a set of regions. 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    167 | P a g e  

 

Mapping of Image process 
Mapping is the new term of transformation used for 

allocating a point or region of one place to, another into an 

image. To compact the decorrelate the data, using differential 

coding, frequency/ sequency transforms, color transforms 

and principal components transforms. Mapping in image 

processing is an array of coordinates representing areas that 

you hyperlink to image’s entire territory is hyperlinked to 

many destinations rather than simply the single destination 

within the image. 

 

Quantization in Mapping for Image compression 
The Quantization is involved in image processing, is a lossy 

compression technique achieved by compressing a range of 

values to a single quantum value. When the number of 

discrete symbols in each stream is reduced, the stream 

becomes more compressible. Quantization is required in 

mapping process often results in floating point data, can be 

uniform. In Digital image quantization is the process of 

determining which parts of an image can be discarded or 

consolidated with minimal subjective loss. Image 

quantization is inherently lossy however the image quality is 

reduced due to the loss of some information. 

 

Mathematically Image Compression Methodology 
In the field of Image processing, the compression of images 

is an important step before we start the processing of larger 

images or videos. The compression of images is carried out 

by an encoder and output a compressed form of an image. In 
the processes of compression, the mathematical transforms 

play a vital role. A flow chart of the process of the 

compression of the image can be represented as below flow 

chart. 

 

 
 

Fig 3: Flow chart of the process of image compression 
 

Methods of Image Compression 
1) Applying the image transform (Mathematically) 

It a function that maps from one domain (vector space) to 

another domain (other vector space). Assume, T is a 

transform, f(t):X->X’ is a function then, T(f(t)) is called the 

transform of the function. 

 

2) Quantization of the levels 

It is a function of the location of the pixels. i.e., I (x, y) where 

(x, y) are the coordinates of the pixel in the image. So, we 

generally transform an image from the spatial domain to the 

frequency domain 

 

3) Encoding the sequences 

Generally, the newer level is determined by taking a fixed 

filter size of “m” and dividing each of the “m” terms of the 
filter and rounding it its closest integer and again multiplying 

with “m” 

 

Description of Project Execution 
Image processing is time-consuming. Real-time applications 

are frequently time constrained. As a result, serial image 

processing does not meet real-time requirements. Parallel 

computing approaches, particularly multicore and 

multiprocessing technologies, should be leveraged to 

overcome this problem. 

A type of high-performance computing is parallel processing. 

Data is broken into small chunks and allocated to different 

execution units in parallel processing. As a result, data 

distribution is difficult in parallel processing. Data 

partitioning should be fine-grained to improve computer 

system efficiency by minimizing execution time and memory 

bottleneck. 

The global interpreter lock (GIL) in Python causes single-

CPU utilization by allowing only one thread to carry the 

Python interpreter at any given moment. The global 
interpreter lock was created to address a memory 

management problem, but as a result, Python can only use 

one CPU. 

 

 
 

Fig 4: Representation of traditional serial python global interpreter 

lock 
 

Multiprocessing can significantly speed up processing. 

Bypassing the global interpreter lock when running Python 

code allows us to take advantage of multiprocessing, which 

allows the function to run quicker. We can select some areas 
of code to circumvent the global interpreter lock and transmit 

the code to many processors for simultaneous execution 

using Python's built-in multiprocessing module. 

Multiprocessing has three prerequisites 

a) The code must not be reliant on previous outcomes. 

b) Data does not need to be executed in a particular order. 

c) The program does not return anything that would need to 

be accessed later in the code. 

d)  

 
Fig 5: Representation of bypassing python global interpreter lock 

using multiprocessing 

 

Classification and Method of Coding 
The following section describes the code for image 

compression which has been performed serially and 

parallelly. 

 

import os    #perform operating system tasks, 

for creating and removing a directory (folder)  



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    168 | P a g e  

 

import time    #function returns the number of 

seconds passed 

import multiprocessing    #build parallel 

programs to implement multiprocessing-

Process,Queue,Lock 

from PIL import Image    #PIL is the Python 

Imaging Library which provides the python interpreter with 

image editing capabilities 

import matplotlib.pyplot as plt    #visualizations 

import numpy as np    #It provides a 

multidimensional array object, for various math operations. 

 

imagesPath = os.path.join(os.getcwd(), "Images") 

 #concatenated path components #returns current 

working directory of a process 

 

 try: #block of code to be tested  

 os.mkdir(os.path.join(os.getcwd(), "Serial Compressed")) 

   #used to create a directory 

 os.mkdir(os.path.join(os.getcwd(), "Parallel Compressed")) 

   #used to create a directory 

 except OSError as error:   #except block lets you handle the 

error 

 pass     #pass is a null statement 

 

serialTime = {}   #serialization tool containing many 

serialization and deserialization shortcuts with timing 

parallelTime = {}  #Parallel processing is a mode of 

operation where the task is executed simultaneously in 

multiple processors in the same computer 

 

def compressImage(file, type, verbose = False): 

#compression is minimizing the size in bytes of a graphics file 

formats = ('.jpg', '.jpeg', '.png') 

if os.path.splitext(file)[1].lower() in formats: #method in 

Python is used to split the path name into a pair root and ext 

filepath = os.path.join(imagesPath, file)  

 picture = Image.open(filepath)  

compressedPath = os.path.join(os.getcwd(),type)  

picture.save(os.path.join(compressedPath, file), "JPEG", 

optimize = True, quality = 10) #to save picture as jgp 

return #run the rest of the main program 

 

def serialProcess():    #Serial processing is 

purely sequential 

 print("==== Serial Image Compression ===\n") 

 starttime = time.time()  #method of the time module 

returns the current system time 

 for index,file in enumerate(os.listdir(imagesPath)): #loop 

over an iterable object and keep track of how many iterations 

have occurred 

 print("\t"+str(index+1)+". Serial Compressing "+file)  

 compressImage(file,"Serial Compressed") #call the function 

of Image compression 

 if(index % 50 == 0 and index!= 0): 

 serialTime[index] = time.time() - starttime 

 global serialTimeTotal   #global keyword allows you to 

modify the variable outside of the current scope 

 serialTimeTotal = time.time() - starttime 

 print("\n\tSerial Image Compression Completed.") 

  

def parallelProcess(): #Multiprocessing enables the 

computer to utilize multiple cores of a CPU to run 

tasks/processes in parallel 

 print("\n=== Started Parallel Image Compression ===\n") 

 starttime = time.time() 

 global processes #global variable and make changes to the 

variable in a local context. 

 processes = [] 

 for index,file in enumerate(os.listdir(imagesPath)): #loop 

over an iterable object and keep track of how many iterations 

have occurred 

 print("\t"+str(index+1)+". Parallel Compressing "+file)  

 if(index%50 == 0 and index!= 0): 

 parallelTime[index] = time.time() - starttime 

 p = multiprocessing.Process(target=compressImage, 

args=(file,"Parallel Compressed",)) 

 processes.append(p)   #adds a single item to the existing 

list 

 p.start()  

 global parallelTimeTotal #global keyword allows you to 

modify the variable outside of the current scope 

 parallelTimeTotal = time.time() - starttime 

 print("\n\tParallel Image Compression Completed.")  

 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    169 | P a g e  

 

def plotGraph(): #to define the Plotgraph to visualize the 

serial and paralled process 

 x = list(serialTime.keys()) 

 y1 = list(serialTime.values()) 

 y2 = list(parallelTime.values()) 

 X_axis = np.arange(len(x)) 

 plt.bar(X_axis - 0.2, y1, 0.4, label = 'Serial Processing') 

 plt.bar(X_axis + 0.2, y2, 0.4, label = 'Parallel Processing') 

 plt.xticks(X_axis, x) 

 plt.xlabel("Images") 

 plt.ylabel("Time Taken(s)") 

 plt.title("Serial vs Parallel processing for Image 

Compression") 

 plt.legend() 

 plt.show() 

  

if __name__ == '__main__': 

 serialProcess() 

 parallelProcess() 

 print("\n\n === Compression Statistics ===") 

 print("\nNo. of images : 110") 

 print("\nTotal size of images before compression : 276.5 

MB") 

 print("Total size of images after compression : 11.4 MB") 

 print('\nSerial Compression took {} 

seconds'.format(serialTimeTotal)) 

 print('Parallel Compression took {} 

seconds'.format(parallelTimeTotal))  

 

 plotGraph() 

 

 print("Terminating all processes, This might take a while 

...") 

 

 for process in processes: #Process. Queue. Lock 

 process.join() #blocks the execution of the main process until 

the process whose join method is called terminates 

 

Function Descriptions 
Compress Image (file, type): This function is used for 

compressing a given image using the python Pillow library. 

The function takes in 2 parameters, the first being the 

filename which is further used to fetch the file path. The 

second parameter is the type of processing being performed 

i.e., serial, or parallel, the type of parameter is used to save 

the resultant compressed file in the correct directory 

Serial Process (): This function uses a simple for loop and 

serially calls the compress Image () function to compress a 

given image from the selected directory. The function also 

captures the execution time for serial compression of the 

images. The traditional for-loop iteration goes through the list 

one by one and performs the function on each item 

individually. 

Parallel Process (): This function uses the multiprocessing 

python library to send each task to a different processor. We 

use the multiprocessing module to create a new process for 
each list item and trigger each process in one call. We keep 

track of all processes by making a list and adding each 

process to it. After creating all the processes, the separate 

output of each core is combined and displayed together. The 

function also captures the execution time for parallel 

compression of the images. 

Plot Graph (): This function makes use of the data stored in 

the 2 dictionaries initialized at the top. The dictionary 

consists of a key pair value where the key holds the number 

of images processed (n) and the value holds the time it took 

to run no. of processes. Using this data, the function plots a 

simple bar graph to compare the results of serial and parallel 

execution using the matplotlib python library. 

 

Results of Image compression application 
A sample set of 110 images were used in the program. Before 

compression, the combined size of the images amounted to 

276.5 MB, after compression the combined image size 
drastically reduced to 11.4 MB. The above program gave the 

following output. 

 

 
 

Fig 6: Program Output 
 

The multi processed code doesn’t execute in the same order 

as serial execution. There’s no guarantee that the first process 

to be created will be the first to start or complete. As a result, 

multi processed code usually executes in a different order 

each time it is run, even if each result is always the same. The 

following table shows the time taken for image compression 

run serially and parallelly for every 50 consecutive images. 

 
Table 1: Time taken for Serial vs Parallel processing for n given 

images 
 

No. Of 

Images 

Time taken for Serial 

Processing 

(s) 

Time taken for 

Parallel Processing 

(s) 

50 5.31 0.66 

100 14.03 1.18 

 

As we can see, serial processing takes a considerably longer 

time to finish execution when compared to parallel 

processing. The total time taken to compress 110 images 
serially was 26.10 seconds, whereas the total time taken for 

parallel compression was just 9.63 seconds. Another 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    170 | P a g e  

 

observation made was that as the number of images 

increased, parallel processing performed significantly better. 

 

 
 

Fig 7: Serial vs Parallel processing for image compression 
 

The few limitations observed were that the program didn’t 

show any significant difference between serial and parallel 

processing for dual-core machines but showed a significant 

change for computers with a higher core count. 

In the form of a comparative bar chart. Overall, for parallel 

execution, there was a time decrease of 23.91seconds. Thanks 

to multiprocessing, we cut down the runtime by 85.95% when 

compared to the serial runtime. From this, we can conclude 

parallel processing significantly improves the run time of our 

program. 

 

Conclusion  
Parallel processing is rapider Image compression is 

significant because of the large image transfer happening on 

daily basis and it is better for the advancements in 

photography. Parallel is speedier Compression is useful 

because it helps reduce the consumption of expensive 

resources such as hard disk space or transmission bandwidth. 

The problem is to compress image files whilst maintaining 

the quality of the image. The advantage of our project is that 

compare the other image processing method with Parallel 

image processing, so we have good result that due to Parallel 

image compression, we have high frequencies are for the 

compression of images, this project uses techniques of 

parallelization to compress multiple images simultaneously 

with compared to sequential method. 

 

References 
1. Downton. Parallel architectures for image processing, 

1998; 10:3. 

2. Chi-kin Lee. Parallel image processing applications, 

1995; 21:1. 

3. Rosenfeld A. Parallel Image Processing Using Cellular 

Arrays, 1983; 16:14-20. 

4. Anthony P Reeves, Parallel computer architectures for 

image processing. 1984; 25:1. 

5. B Chitradevi. An Overview on Image Processing 

Techniques. 2014; 2:11. 

6. Andrés Fernando Jiménez López, Teaching Image 

Processing in Engineering Using Python, 2016; 11:3. 

7. S Gill. Parallel Programming, The Computer Journal, 

1958; 1:1. 

8. Allen. A Parallel Programming Environment, Los 

Alamitos. 1985; 2:4. 

9. Bogdanchikov A. Python to learn programming, 

Published under license by IOP Publishing Ltd Journal 

of Physics: Conference Series, 423, 2013. 

10. LSG. Kovasznay, Image Processing. 1955; 43:5.  


