

International Journal of Multidisciplinary Research and Growth Evaluation.

On finding integer solutions to Non-homogeneous ternary bi-quadratic equation $\mathbf{x}^{\mathbf{2}}+$ $3 y^{2}=31 z^{4}$

S Vidhyalakshmi ${ }^{1 *}$, MA Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
* Corresponding Author: S Vidhyalakshmi

Article Info

ISSN (online): 2582-7138
Volume: 03
Issue: 04
July-August 2022
Received: 05-07-2022;
Accepted: 21-07-2022
Page No: 319-322

Abstract

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the non-homogeneous ternary bi-quadratic equation $\mathbf{x}^{\mathbf{2}}+\mathbf{3} \mathbf{y}^{\mathbf{2}}=\mathbf{3 1} \mathbf{z}^{4}$. Different sets of integer solutions are illustrated.

Keywords: non-homogeneous bi-quadratic, ternary bi-quadratic, integer solutions

1. Introduction

The Diophantine equations are rich in variety and offer an unlimited field for research ${ }^{[1-4]}$. In particular refer ${ }^{[5-30]}$ for a few problems on Biquadratic equation with 3 unknowns. This paper concerns with yet another interesting Biquadratic Diophantine equation with three variables given by $x^{2}+3 y^{2}=31 z^{4}$ for determining its infinitely many non-zero distinct integral solutions

2. Method of Analysis

The non-homogeneous ternary bi-quadratic equation under consideration is

$$
\begin{equation*}
x^{2}+3 y^{2}=31 z^{4} \tag{1}
\end{equation*}
$$

To start with, it is seen that (1) is satisfied by the following integer triples:

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(2 \mathrm{k}^{2}, 3 \mathrm{k}^{2}, \mathrm{k}\right),\left(8 \mathrm{k}^{2}, 12 \mathrm{k}^{2}, 2 \mathrm{k}\right),\left(14 \mathrm{k}^{2}, 10 \mathrm{k}^{2}, 2 \mathrm{k}\right),\left(22 \mathrm{k}^{2}, 2 \mathrm{k}^{2}, 2 \mathrm{k}\right)
$$

However, there are other sets of integer solutions to (1) and we illustrate different ways of Solving (1) below:

Way 1
Let

$$
\begin{equation*}
\mathrm{z}=\mathrm{a}^{2}+3 \mathrm{~b}^{2} \tag{2}
\end{equation*}
$$

Write 31 on the R.H.S. of (1) as

$$
\begin{equation*}
31=(2+i 3 \sqrt{3})(2-i 3 \sqrt{3}) \tag{3}
\end{equation*}
$$

Substituting (2) \& (3) in (1) and employing the method of factorization, consider

$$
\begin{equation*}
x+i \sqrt{3} y=(2+i 3 \sqrt{3})(a+i \sqrt{3} b)^{4} \tag{4}
\end{equation*}
$$

On equating the real and imaginary parts in (4), the values of x, y are given by

$$
\left.\begin{array}{l}
x=2\left(a^{4}-18 a^{2} b^{2}+9 b^{4}\right)-9\left(4 a^{3} b-12 a b^{3}\right) \\
y=3\left(a^{4}-18 a^{2} b^{2}+9 b^{4}\right)+2\left(4 a^{3} b-12 b^{3}\right) \tag{5}
\end{array}\right)
$$

Thus, (2) and (5) represent the integer solutions to (1).

Note 1

The integer 31 on the R.H.S. of (1) is also represented as

$$
31=\frac{(11+\mathrm{i} \sqrt{3})(11-\mathrm{i} \sqrt{3})}{4}
$$

Repetition of the above process leads to a different set of integer solutions to (1).

Way 2

Rewrite (1) as

$$
\begin{equation*}
x^{2}+3 y^{2}=31 z^{4} * 1 \tag{6}
\end{equation*}
$$

Consider 1 on the R.H.S. of (6) as

$$
\begin{equation*}
1=\frac{(1+\mathrm{i} \sqrt{3})(1-\mathrm{i} \sqrt{3})}{4} \tag{7}
\end{equation*}
$$

Following the analysis similar to Way1, the values of x, y are given by

$$
\left.\begin{array}{l}
x=63 a^{2} b^{2}-30 a^{3} b+90 a b^{3}-\frac{7 a^{4}+63 b^{4}}{2} \\
y=-45 a^{2} b^{2}-14 a^{3} b+42 a b^{3}+\frac{5 a^{4}+45 b^{4}}{2} \tag{8}
\end{array}\right)
$$

As our interest is on finding integer solutions, observe that (2) and (8) represent the integer Solutions to (1) provided A and B are of the same parity.

Note 2

The integer 1 on the R.H.S. of (6) is also expressed as

$$
\begin{aligned}
& 1=\frac{\left(3 r^{2}-s^{2}+i 2 \sqrt{3} r s\right)\left(3 r^{2}-s^{2}-i 2 \sqrt{3} r s\right)}{\left(3 r^{2}+\mathrm{s}^{2}\right)^{2}}, \\
& 1=\frac{(13+i 3 \sqrt{3})(13-\mathrm{i} 3 \sqrt{3})}{196}
\end{aligned}
$$

Repeating the above process, different sets of solutions to (1) are obtained.

Way 3

Express (1) in the form of ratios as

$$
\begin{equation*}
\frac{x+2 z^{2}}{3 z^{2}+y}=\frac{3\left(3 z^{2}-y\right)}{x-2 z^{2}}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{9}
\end{equation*}
$$

Solving the above system of double equations (9), one has

$$
\begin{equation*}
x=2 \alpha^{2}+18 \alpha \beta-6 \beta^{2}, y=-3 \alpha^{2}+4 \alpha \beta+9 \beta^{2}, z^{2}=\alpha^{2}+3 \beta^{2} \tag{10}
\end{equation*}
$$

The third equation in (10) is satisfied by

$$
\begin{equation*}
\alpha=3 \mathrm{p}^{2}-\mathrm{q}^{2}, \beta=2 \mathrm{pq} \tag{11}
\end{equation*}
$$

And

$$
\begin{equation*}
\mathrm{z}=3 \mathrm{p}^{2}+\mathrm{q}^{2} \tag{12}
\end{equation*}
$$

Substituting (11) in the first two equations of (10), the values of x, y are given by

$$
\left.\begin{array}{l}
x=18 p^{4}+2 q^{4}-36 p^{2} q^{2}+108 p^{3} q-36 p q^{3} \\
y=-27 p^{4}-3 q^{4}+54 p^{2} q^{2}+24 p^{3} q-8 p q^{3} \tag{13}
\end{array}\right)
$$

Thus,(12) and (13) represent the integer solutions to (1).

Note 3

One may also write (1) in the form of ratios as

$$
\begin{aligned}
& \frac{x+2 z^{2}}{3 z^{2}-y}=\frac{3\left(3 z^{2}+y\right)}{x-2 z^{2}}=\frac{\alpha}{\beta}, \beta \neq 0, \\
& \frac{x+2 z^{2}}{3\left(3 z^{2}-y\right)}=\frac{\left(3 z^{2}+y\right)}{x-2 z^{2}}=\frac{\alpha}{\beta}, \beta \neq 0, \\
& \frac{x+2 z^{2}}{3\left(3 z^{2}+y\right)}=\frac{\left(3 z^{2}-y\right)}{x-2 z^{2}}=\frac{\alpha}{\beta}, \beta \neq 0
\end{aligned}
$$

The repetition of the above process gives three more integer solutions to (1).

3. Conclusion

An attempt has been made to obtain non-zero distinct integer solutions to the non-homogeneous bi-quadratic diophantine equation with three unknowns given by $x^{2}+3 y^{2}=31 z^{4}$. One may search for other sets of integer solutions to the considered equation as well as other choices of the fourth degree diophantine equations with multi-variables

4. References

1. LJ Mordell. Diophantine Equations, Academic press, New York, 1969.
2. RD Carmichael. The Theory of numbers and Diophantine Analysis, Dover publications, New York, 1959.
3. LE Dickson. History of theory of Numbers, Diophantine Analysis, Vol.2, Dover publications, New York, 2005.
4. SG Telang. Number Theory, Tata Mc Graw Hill publishing company, New Delhi, 1996.
5. MA Gopalan, G Janaki. Integral solutions of ternary quartic equation $x^{2}-y^{2}+x y=z^{4}$, Impact J Sci. Tech. 2008; 2(2):71-76.
6. MA Gopalan, V Pandichelvi. On ternary biquadratic diophantine equation $x^{2}+k y^{3}=z^{4}$, Pacific- Asian Journal of Mathematics. 2008; 2(1-2):57-62.
7. MA Gopalan, A Vijayasankar, Manju Somanath. Integral solutions of $x^{2}-y^{2}=z^{4}$, Impact J Sci. Tech. 2008; 2(4):149157.
8. MA Gopalan, G Janaki. Observation on $2\left(x^{2}-y^{2}\right)+4 x y=z^{4}$, Acta Ciencia Indica. 2009; XXXVM (2):445-448.
9. MA Gopalan, R Anbuselvi. Integral solutions of binary quartic equation $x^{3}+y^{3}=(x-y)^{4}$, Reflections des ERA-JMS. 2009; 4(3):271-280.
10. MA Gopalan, Manjusomanath, N Vanitha. Integral solutions of $x^{2}+x y+y^{2}=\left(k^{2}+3\right)^{n} z^{4}$, Pure and Applied Mathematical Sciences. 2009; LXIX(1-2):149-152.
11. MA Gopalan, G Sangeetha. Integral solutions of ternary biquadratic equation $\left(x^{2}-y^{2}\right)+2 x y=z^{4}$, Antartica J Math. 2010; 7(1):95-101.
12. MA Gopalan, A Vijayashankar. Integral solutions of ternary biquadratic equation $x^{2}+3 y^{2}=z^{4}$, Impact. J Sci. Tech. 2010; 4(3):47-51.
13. MA Gopalan, G Janaki. Observations on $3\left(x^{2}-y^{2}\right)+9 x y=z^{4}$, Antartica J Math. 2010; 7(2):239-245.
14. MA Gopalan, S Vidhyalakshmi, S Devibala. Ternary bi-quadratic Diophantine equation $2^{4 n+3}\left(x^{3}-y^{3}\right)=z^{4}$, Impact J Sci. Tech. 2010; 4(3):57-60.
15. MA Gopalan, G Sangeetha. Integral solutions of ternary non-homogeneous bi-quadratic equation $x^{4}+x^{2}+y^{2}-y=z^{2}+z$, Acta Ciencia Indica. 2011; XXXVIIM(4):799-803.
16. MA Gopalan, S Vidhyalakshmi, G Sumathi. Integral solutions of ternary bi-quadratic non-homogeneous equation $(\alpha+1)\left(x^{2}+y^{2}\right)+(2 \alpha+1) x y=z^{4}$, JARCE. 2012; 6(2):97-98.
17. MA Gopalan, G Sumathi, S Vidhyalakshmi. Integral solutions of ternary non-homogeneous bi-quadratic equation $(2 k+1)\left(x^{2}+y^{2}+x y\right)=z^{4}$, Indian Journal of Engineering. 2012; 1(1):37-39.
18. Manju Somanath, G Sangeetha, MA Gopalan. Integral solutions of a biquadratic equation $x y+\left(k^{2}+1\right) z^{2}=5 w^{4}, \mathrm{PAJM}$. 2012; 1:185-190.
19. MA Gopalan, G Sumathi, S Vidhyalakshmi. On the ternary bi-quadratic non-homogeneous equation $x^{2}+n y^{3}=z^{4}$, Cayley J Math. 2013; 2(2):169-174.
20. MA Gopalan, V Geetha, Integral solutions of ternary biquadratic equation $x^{2}+13 y^{2}=z^{4}$, IJLRST. 2013; 2(2):59-61.
21. MA Gopalan, S Vidhyalakshmi, A Kavitha. Integral points on the biquadratic equation $(x+y+z)^{3}=z^{2}\left(3 x y-x^{2}-\right.$ y^{2}), IJMSEA. 2013; 7(1):81-84.
22. Vijayasankar MA, Gopalan V Kiruthika. On the bi-quadratic Diophantine equation with three unknowns $7\left(x^{2}-y^{2}\right)+x+y=8 z^{4}$, International Journal of Advanced Scientific and Technical Research. 2013-2018; 8(1):52-57.
23. Shreemathi Adiga, N Anusheela, MA Gopalan. Non-Homogeneous Bi-Quadratic EquationWith Three Unknowns $x+3 x y+y=z .2018 ; 7$ (8) 3:26-29.
24. S Vidhyalakshmi, MA Gopalan, S, Aarthy Thangam, Ozer O. On ternary biquadratic diophantine equation $11\left(x^{2}-y^{2}\right)+3(x+y)=10 z^{4}$, NNTDM. 2019; 25(3):65-71.
25. A Vijayasankar, Sharadha Kumar, MA Gopalan. A Search For Integer Solutions To Ternary Bi-Quadratic Equation $(a+1)\left(x^{2}+y^{2}\right)-(2 a+1) x y=\left[p^{2}+(4 a+3) q^{2}\right] z^{4}, \operatorname{EPRA}(I J M R) .20195(12): 26-32$
26. A Vijayasankar, Sharadha Kumar, MA Gopalan. On Non-Homogeneous Ternary Bi-Quadratic Equation $x^{2}+7 x y+y^{2}=z^{4} 川$, Compliance Engineering Journal. 2020; 11(3):111-114.
27. S Vidhyalakshmi, MA Gopalan. On The Non-Homogeneous Ternary Bi-quadratic Equation $x z(x+z)=2 y^{4}, I J R P R$. 2022; 3(7):3465-3469.
28. S Vidhyalakshmi, MA Gopalan. On The Non-Homogeneous Ternary Bi-quadratic Equation $8 x z(x+z)=15 y^{4}$,IRJMETS. 2022; 4(7):3623-3625.
29. S Vidhyalakshmi, MA Gopalan. On The Non-Homogeneous Ternary Bi-quadratic Equation $2 x z(x-z)=y^{4}$,IJRPR. 2022; 3(8):187-192.
30. S Vidhyalakshmi, MA Gopalan. On Finding Integer Solutions to Non-Homogeneous Ternary Bi-quadratic Equation $5(x+y)-2 x y=140 z^{4}$,IJEI. 2022; 11(8):01-04.
