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Abstract 
The manuscript proposes to use the elastic-viscous material model to simulate the 

process of changing the mechanical state of the material during operation time. The 

proposed model established a link between the mechanical properties of the material 

and the structure's operation. Material mechanical parameters are represented by two 

parameters: elastic modulus and viscous drag coefficient. The structure's performance 

evaluation parameter is represented by two kinetic parameters during vibration, 

namely natural frequency and forced vibration amplitude. The novel aspect of this 

study is the inclusion of a viscous drag coefficient in the mechanical properties of 

materials to compensate for the shortcomings of previous evaluation models that are 

not consistent with reality. This research allows for a more in-depth examination of 

the material's mechanical properties as well as its ability to change over the course of 

the structure's life. The study improved some kinetic characteristics related to the 

material's operation by increasing the number of parameters of the viscosity coefficient 

in the mechanical properties of the material.
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1. Introduction 

Traffic works are always important in all societal activities. The failure of the bridge not only causes traffic delays and significant 

economic loss, but it can also result in personal injury. As a result, monitoring the operational status of the structure is a 

continuous task of traffic management agencies in order to ensure absolute safety during operation. As a result, the problem of 

diagnosing structural damage has received a lot of attention in recent years [1-5]. According to research, the weakening process 

is typically represented by the presence of defects or deterioration of the structure. This is a process that is affected by unforeseen 

factors in the design process such as vehicle growth rate, weather, environmental factors such as sunlight, heat, high humidity, 

and natural disasters. In the problem of determining defects in the structure through basic elements such as piles, shafts, pipes, 

beams, slabs, and spans. In which the spectral model of the structure and the finite element method are the most widely used in 

most measures to evaluate the structure's change. 

Mechanically, a structure's weakening mechanism can be divided into structural stiffness deterioration [6-7] and material stiffness 

reduction due to internal material molecule bonding [8-10] [9] [10]. As a result, the general trend of research on this topic can be 

divided into two main research directions: structural and unstructured. 

Non-structural methods of analysis are typically used in the problem of structural change [11-13]. The results of structural change 

evaluation are typically calculated using actual measurement signals [14-16]. In which the parameters representing the individual 

state of each mechanical work will be used to assess the structure's condition during operation. This means that we can 

completely assess the structure's damage by determining the change of those parameters without using mathematical models.  

This unstructured method has the benefit of avoiding mistakes and subjective errors when modeling specific structures. These 
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problems can greatly affect the evaluation process such as calculation errors and processing time. The disadvantage of the 

unstructured method is that it is difficult to locate and assess the degree of structural damage. 

In contrast, structural studies concentrate on modeling methods for connecting theoretical and empirical models. This allows for 

the identification and prediction of the failure process by determining the relationship between the structure and the defect. The 

most significant advantage of these studies is that they provide an accurate result about the relationship between the structure's 

behavior and each type of defect. At the same time, this method can forecast the occurrence and rate of progression of defects 

in the future. 

The bridge structure is the group of structures prioritized for monitoring and evaluation among typical structures. The span and 

pier are the basic and main force-bearing elements of the bridge [17-19]. The span of the bridge is usually much longer than the 

other dimensions, for example, because the slab structure used in the deck slab is reinforced and reinforced by the beams below. 

As a result, the span structure is frequently modeled as a bearing beam connected at both ends in many mechanical problems. In 

applied research for actual bridge spans, two beam models are commonly used: Euler-Bernoulli beam theory [20-22] and 

Timoshenko beam theory [23-25]. When we ignore the influence of shear deformation and rotational inertia of the cross section, 

the Euler-Bernouli beam model is a special case of the Timoshenko beam [20, 24]. According to [28-30], research based on natural 

frequency and vibration pattern criteria to compare the fit between the Euler-Bernouli and Timoshenko beam models via the 

two-dimensional element in the elastic domain. With vibration patterns of practical importance such as bending and torsional 

vibrations, the results show that the Timoshenko beam theory is more similar to the two-dimensional element theory than the 

Euler-Bernouli theory. Furthermore, the Timoshenko beam theory is applicable to short beams with girder lengths greater than 

15 times the beam height, whereas the Euler-Bernouli theory [22, 21], which is applicable to long beams, is less commonly used 

in research. The authors [27, 26, 6, 18] compared the theoretical results of the natural frequencies of two models of Euler-Bernouli 

and Timoshenko beams with cracks and demonstrated that the influence of cracks on the natural frequencies of the two models 

is not different if the ratio of the two models is not different. The girder length and height are both greater than ten. However, 

many authors believe that, while the Timoshenko beam model has significantly improved over the Euler-Bernouli model, there 

are still many unsatisfactory problems, and thus the Euler-Bernouli beam model will continue to be used. popular and widely 

used, as well as for the problem of beam bending vibration Furthermore, the Euler-Bernouli beam model is used in the majority 

of studies on the interaction of traffic loads and bridge structures. In fact, abnormal fluctuations in the environment have an 

impact on material factors such as construction technology, the environment, and loads. We discovered that the mechanical 

properties of the material will change before cracks appear in the structure. As a result, using material mechanical models to 

calculate damage and predict the occurrence of defects in structures is an urgent and necessary need. As a result, the construction 

of a method to determine the relationship between the theoretical model and the experimental model in the material mechanical 

change model is still limited in practice. Special properties of materials, or specific materials, make providing solutions to the 

technical problems involved difficult. Material property research is gradually becoming more sophisticated. This will pave the 

way for most modern engineering disciplines around the world, particularly in construction measurement and monitoring. 

To address the shortcomings of previous studies, the manuscript used an elastic-viscous model to represent the material's 

mechanical behavior. The study creates a working model of the bridge span structure using Timoshenko's beam model in 

conjunction with the elastic-viscous material model. The manuscript's proposed model has many advantages over previous 

models because it shows the relationship between two mechanical parameters of the material, including elastic modulus and 

viscous drag coefficient. Concurrently combined with two kinematic parameters shown during the structure's vibration, including 

natural frequency and forced vibration amplitude. This study is unique in that it not only proposes including the viscosity 

coefficient C0 in the mechanical properties of materials to compensate for the deviations of previous evaluation models, but it 

also allows monitoring the change of mechanical properties of materials over time. The research allows for a more in-depth 

examination of the material's mechanical properties as well as its ability to change over the course of the structure's life. Although 

the study only presents one case of a single bending beam with two ends bearing a harmonic variable force of constant amplitude, 

the study's applicability is vast; it can be applied to many different material models in practice. 

 

2. Theoretical basis 

2.1. Elastic-viscous material modeling 

When calculating the strength of materials, buildings are frequently modeled as simple diagrams with the stress and deformation 

of the material removed. Hooke's law, in particular, is only used for materials that are considered linearly elastic because it 

ignores creep and stress relaxation phenomena, but the calculation process is still very complicated and results in errors. The 

obtained results are incorrect. The creep phenomenon is regarded as the aging process of materials, implying that their 

deformation will increase under constant load. Furthermore, the stress is now understood that when the stress is reduced, the 

strain remains constant. These are two distinct characteristics of elastic-viscous bodies. When the strain on these objects 

increases, stresses appear with the following characteristics: depending on the deformation and the rate of development of the 

deformation. Elastic-viscous materials are commonly used in a wide range of construction structures. This material model can 

easily control unforeseen vibrations and noise propagation. Establishing stress-strain relationships for viscoelastic materials is 

critical for defect detection. This model can also be applied to objects that, even with minor deformations, do not obey Hooke's 

law [31]. The curve Eq.(1), which represents internal frictional forces, represents the physical law between stress and strain. As 

shown in Fig. 1, the properties of elastic bodies (representing a linear spring) and viscous bodies (representing a shock absorber) 

receive a lot of attention in engineering. 
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(A) Parallel  (B) Series 

 

Fig 1: Internal friction force model at a material element 

 

And, as shown in Figs. 1a-b, the stress and strain at a material element of viscoelastic materials are calculated as follows: 

 

1 2     (1) 

1 2     (2) 

 

With 
1 E  and 

1 E  , linear friction component, there is no damping, σ2 and ε2 are the friction component that causes 

energy loss, representing internal force and deformation with non-linear components. The advantages of elastic-viscous models 

are that they demonstrate the common practical behavior characteristics of materials. Following that, we will look at the time 

and frequency domain behavior of the elastic - viscous model. 

 

2.2. Creating the beam model's flexural vibration equation with elastic-viscous materials 

Consider a beam element that is bent as a result of an external force f  

 

 
 

Fig 2: Bending vibration model of beams 

 

When the body is subjected to bending deformation, the moment and force balance equation 

 

( ) ( ) ( , ) 0
2

dx
M dM V dV dx f x t dx M       (3) 

2

2
( ) ( , ) ( ) ( , )

w
V dV f x t dx V A x dx x t

t



    


  (4) 

We represent: ;
V M

dV dx dM dx
x x

 
 
 

 (5) 

 

When we substitute formula (5) into Eq. (3) and Eq. (4) and remove the higher order infinitesimal 

 

( , )
( , ) 0

M x t
V x t

x


 


  (6) 

2

2

( , )
( , ) ( ) ( , )

V x t w
f x t A x x t

x t


 
  

 
  (7) 
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Continually substituting V(x,t) from Eq. (6) to Eq. (7), as shown in Eq.(8) 

 

2 2

2 2

( , )
( , ) ( ) ( , )

M x t w
f x t A x x t

x t


 
  

 
 (8) 

 

We have the relationship between the radius of curvature r of the beam and the deflection w of the beam as follows: 

 

2

2

1 w
x r

r x x




 
     

 
  (9) 

 

Then the strain at position y on the cross-section with radius r is determined: 

 

1
y

r
    (10) 

 

According to the elastic-viscous model, the shear stress σ appearing on a material element when the object has a long strain  
will have the form: 
 

0E C
t


 


 


 (11) 

Substituting Eq. (10) into Eq. (11) we have: 0

1 1
E y C y

t


 

 
    

  
  (12) 

 

In the long strain of the material, E is the elastic modulus and C0 is the coefficient of viscous drag. The internal force moment 

at cross-section x can then be calculated as follows: 

 

A
M ydA   (13) 

 

Substituting Eq. (11) and Eq. (12) into Eq. (13) 

 

2 2

0

2 2

02 2

1 1

A A

M E y dA C y dA
t

w w
M EJ C J

x t x

 

 
    
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   
    
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 
 (14) 

 

Substituting Eq. (14) into Eq. (7), we have the equation of torsional vibration of the shaft as follows: 
 

2 5 2

04 4 2
( , )

w w w
EJ C J A f x t

x x t t


  
  
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 (15) 

 

2.2.1 Response to bending vibration 

The separation of variables method is the general method for solving multivariable differential equations: 
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Wr(x) must be eigenforms that satisfy the boundary conditions in order for hr(t) to be computed in terms of Eq. (16), so the 

Wr(x) must be chosen to satisfy the boundary condition. We get the following by substituting the solution form Eq. (16) and the 

split form of the external force Eq. (17) into the bending vibration equation as shown in Eq. (14): 

 

     4 40 r r
r r r r r

c J W hEJ
W T W T W T t

A A A  
    (18) 

Transform Eq. (18) we get: 
 4 0 r

r r r r r

C hEJ
W T T W T

A E A 

  
     

   
 (19) 

 

Eq. (7) allows to set up two equations as shown in Eq. (20) and Eq. (21): 

 

 4 2 0r r r

A
W p W

EJ


   (20) 

2 20 r
r r r r r

C h
T p T p T

E A
    (21) 

The function Wr(t) must be chosen to satisfy the boundary condition while also satisfying both the boundary condition and the 

system of homogeneity equations written from differential equations as in Eq. (20). The Eq. (10) indicates that converting from 

the coordinate system w(x,t) to the coordinate system Tr(t), with r = 1,2…∞ will make the calculation process easier. This has 

significant practical implications because it reduces the problem of investigating systems with infinitely many degrees of 

freedom to a set of problems examining systems with one degree of freedom. We can see from the above transformation that the 

displacement w at each position x is a combination of time-varying motions t according to the functions Tr(t). We can conclude 

that in order to investigate the influence of mechanical parameters on w(x,t), we must first investigate their influence on the 

function Tr(t). Equation (21) shows that it is completely consistent with the damped 1-degree-of-freedom mechanical model:  

 
2

02 sinr r rT nT p T h t  
  (22) 

With 
2 2 20

0

( )
2 ; ; sinr

r r

C h t
p n p p h t

E A



    (23) 

Stable solution of Eq. (22):  AsinrT t     (24) 

In there: 

2

0

2
2 2 2

1 4

h p
A

n

p p p

 


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        

 (25) 

 

With: p – natural frequency; ω – forced frequency. According to Eq. (24), the amplitude value A depends on the dynamic 

coefficient for the same load amplitude  (amplification factor or shock coefficient). 

 

With: 

2

2
2 2 2

1

1 4

p

n

p p p



 



      
       

        

 (27) 

 

2.2 Applying elastic-viscous material model for bridge span 

Some spans are longer than others and are reinforced by lower beams with two ends supported by piers. Because the circulating 

load primarily exerts force perpendicular to the span, the span becomes the primary flexural force, allowing a span model to be 

converted into a double-ended supporting beam, as shown in Fig. 3. 

 

 
 

Fig 3: Model of a simply supported beam is bearing the force perpendicular to the beam 
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Then there are parameters like the eigenform function and the natural frequency of the beam with the two-headed connection, 

which have the form 
 

2 2

2
1,2,....,r

r
p j n

EJ

Al

p

r
==  (28) 

( ) sin( )r

x
W x r

l
  (29) 

 

Assume that the time-varying force function f(t) in Eq. (7) has the basic form of a harmonic function as shown in Eq.(30) 
 

0( ) sin( )f t q t  (30) 

 

Substituting Eq. (29) into Eq. (16) 
 

04
r

q
h

r
  (31) 

 

According to Eq. (24), the amplitude of the forced solution 
 

0

2 2
2 2

0

4 1

1

r

r

r

q
A

r Ap
C

p E






    
     

    

 (32) 

 

When =pr, the amplitude value Ar reaches the maximum value Ar, max is called the resonance amplitude of the rth harmonic. 

 

From Eq.(31), 

6

0 0
,max 3 7 3 7

0 0

4 41 1
r

r

q q lE A
A

r Ap C r C EJ



 
   (33) 

 

Examine the effects of harmonic order r, elastic modulus E, viscous drag coefficient C0, and vibration amplitude Ar on natural 

frequency pr and vibration amplitude Ar  

 

3. Results and discussion 

3.1. Examine the characteristics of natural frequency variation 

According to Eq. (33), the natural frequency value proportional to the square of the harmonic order, i.e. proportional to r2, is 

shown as Eq. (28). This means that in the case of a single girder connection, if the first natural frequency is 3Hz, the next 

frequencies will be 12 Hz, 27 Hz, 48 Hz, and 75 Hz, increasing by a multiple of r2 times. Taking only the fifth natural frequency 

into account, it is already 25 times higher than the first natural frequency. Fig. 4 depicts the change in natural frequencies as a 

result of the viscoelastic model. 

 

 
 

Fig 4: The natural frequency change ratio based on the natural form of the bending vibration 
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The model used to investigate this result, and the results from Table 1 and Table 2 show that, while the phenomenon of changing 

natural frequency values in the beam model cannot be explained, the law of change change completely according to the model 

shape of viscous material 

 
Table 1: The natural frequencies of the beam model with free-free boundary conditions 

 

Length of crack (mm) Position of crack (m) Natural frequency f1 (Hz) (Hz) f2 (Hz) (Hz) f3 (Hz) (Hz) f4 (Hz) (Hz) 

0 Intact 

[32] 55.52 152.97 299.69 494.97 

[33] 56.75 156.39 306.19 506.15 

[17] 55.52 222.08 499.68 888.32 

Present 55.50 222.10 500.12 888.45 

1 0.375 

[32] 55.04 150.08 296.69 493.51 

[33] 56.38 156.30 305.47 506.02 

[17] 55.36 221.44 498.24 885.76 

Present 55.41 221.45 499.50 885.88 

3 0.375 

[32] 53.79 148.96 292.69 485.07 

[33] 54.31 156.08 296.34 504.54 

[17] 53.76 215.04 483.84 860.16 

Present 53.77 215.12 485.12 866.24 

 
Table 2: The natural frequencies of the beam model with fixed-free boundary conditions 

 

Length of crack (mm) Position of crack (m) Natural frequency f1 (Hz) (Hz) f2 (Hz) (Hz) f3 (Hz) (Hz) 

0 Intact 

[32] 7.70 48.25 135.05 

[34] 7.68 47.17 134.81 

[17] 7.70 30.81 69.31 

Present 7.71 30.92 69.50 

1.8 0.4 

[32] 7.69 47.90 133.13 

[34] 7.60 46.87 130.21 

[17] 7.50 30.00 67.52 

Present 7.49 30.10 67.54 

2.4 0.4 

[32] 7.58 46.59 131.05 

[34] 7.46 46.16 129.28 

[17] 7.45 29.82 65.05 

Present 7.44 30.01 65.15 

 

According to Timoshenko's beam theory, the natural frequency value is only affected by the elastic modulus E, as shown by Eq. 

(28), but not by the viscous drag coefficient C0. Fig. 5 depicts the degree of variation for pr as a function of variability E. 

 

 
 

Fig 5: Relationship of natural frequency variation according to elastic modulus 

 

This means that the elastic modulus of the structure will decrease over time due to brainening, fatigue, or stretching of the 

material during operation. Fig. 5 shows that when the overall elastic modulus is reduced by nearly 20% compared to the original 

value, the change in the natural frequency value of the structure is reduced by only about 10%. With actual structure lives 

typically measured in years, it takes a very long time for the structure to change 10% of its elastic modulus value. 

 

2.4. Examine the variation in resonance amplitude 

 According to Eq. (33), Ar,max is inversely proportional to the 7th power of r. This means that the larger the amplitude of the 

harmonics with the order number, the smaller the value of the resonance amplitude, which means a very large attenuation. 
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Fig 6: Resonance amplitude attenuation of high frequency harmonics 

 

According to Fig. 6, the bending vibration of a simple two-headed beam using the Timoshenko model, the amplitude of the 

higher harmonics (r > 2) is typically very small in comparison to the amplitude of the first harmonic. As a result, we can only 

detect the first type of vibration using the vibration measurement data of the bridge girder, which is difficult to detect because 

the amplitude is almost negligible and easily misinterpreted. in combination with signal interference 

Ar, max is also inversely proportional to the viscosity coefficient C0, according to Eq. (33). In practice, the change in mechanical 

properties shows that C0 increases, resulting in a decrease in the amplitude Ar, max with time, as shown in Fig. 7. 

 

 
 

Fig 7: The attenuation of the resonance amplitude of the harmonics according to the viscous drag coefficient 

 

Ar,max is also inversely proportional to the square root of the elastic modulus E, according to Eq. (33). In fact, many studies show 

that the elastic modulus changes as mechanical properties change. Then the amplitude Ar,max will increase over time. Combining 

the previous comments, we can draw the following conclusions: if the time Ar,max increases, the elastic modulus E decreases, and 

if the time Ar,max decreases, the viscosity coefficient C0 increases. 

 

3. Experimental verification 

Fig. 8 depicts the experimental data surveyed, which is the vibration data of the span of the 31 Saigon bridge at various times of 

survey. 
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Fig 8: Vibration spectrum of the 31 Saigon Bridge span at different times 

 

The amplitude of harmonics in the high frequency region will be less than that of harmonics in the low frequency region. This 

is consistent with the statements in Eq. (32), so the amplitude value of the harmonics is inversely proportional to the order of the 

vibration patterns present in the structure. The resonance amplitudes of the regions decrease over time due to mechanical changes 

in the material, such as fatigue, creep, and brainization. As a result of this changing process, the viscous drag coefficients of 

these harmonics increase, as demonstrated by Eq. (33) 

 Over time, the peaks of some resonance regions occasionally increase, contradicting previous judgments; this can be 

explained by the load acting on the bridge span at the time of survey, as well as environmental influences such as 

temperature, wind, and humidity. It can be seen that the elastic modulus of the material structure decreases during this time. 

However, in the overall process of spectral amplitude change, the majority of these amplitudes have attenuation from low 
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to high frequency region. Because of the shifting of frequency harmonics in the spectrum, the higher frequency region will 

have a faster attenuation amplitude than the lower regions. As a result, the value of viscous drag coefficient C0 increased 

significantly more than the decrease in elastic modulus of the material during the survey period of the Saigon bridge 

vibration. 

 The change in Ar amplitudes in the spectrum is more pronounced than the change in natural frequency value. This is 

consistent with theory, in which the natural frequency is only influenced by elastic modulus E, whereas the amplitude Ar 

shown in Eq. (33) is always influenced by elastic modulus E and the value of viscosity coefficient C0. 

 

4. Conclusion 

The mechanical behavior of the material was represented by an elastic-viscous model in the manuscript. The study examines the 

relationship between two mechanical properties of materials: elastic modulus and viscous drag coefficient. Simultaneously 

combined with two kinematic parameters displayed during the structure's vibration, including natural frequency and forced 

vibration amplitude. The addition of the viscous drag coefficient C0 in the mechanical properties of materials to compensate for 

the deviations of the previous evaluation models is the study's novelty. The study allows a more comprehensive investigation of 

the material's mechanical properties as well as its ability to change during the life of the structure. The study improved some 

kinetic characteristics related to the material's operation by increasing the number of C0 parameters in the material's mechanical 

properties. Despite the fact that the study only presents one case of a single bending beam with two ends and a harmonic variable 

force of constant amplitude, it makes some important observations: 

 Using the coefficient of viscous resistance improves the ability to evaluate and recognize changes in material mechanical 

properties. Because the amplitude parameter is dependent on both mechanical parameters of the material, it has a high 

potential in the failure identification problem. When the actual vibrations are compared to the theory, they are found to be 

quite consistent. This fit demonstrates that the elastic-viscous model can be used to describe the mechanical behavior of 

materials in the structural failure identification problem. It is more efficient to combine both vibration parameters than to 

use only one to realize the variation of the material's mechanical properties. This opens up a new avenue for establishing 

the failure identification process. 

 Although using two parameters allows for better identification, quantitative analysis reveals that the number of individual 

vibration patterns seen in reality is extremely limited. This is a significant difficulty to recognize when studying measures 

and algorithms that diagnose on the basis of the vibrations' "own" characteristics on the basis of data obtained from the 

measurement.  
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