
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 488 | P a g e

Convolutional Neural Network (CNN): A comprehensive overview

Anjeel Upreti
Department of Information Management, Nepal Commerce Campus, Nepal

* Corresponding Author: Anjeel Upreti

Article Info

ISSN (online): 2582-7138

Volume: 03

Issue: 04

July-August 2022

Received: 15-07-2022;

Accepted: 05-08-2022

Page No: 488-493

DOI:
https://doi.org/10.54660/anfo.

2022.3.4.18

Abstract
Convolutional neural network (CNN), a class of artificial neural network (ANN) is

attracting interests of researchers in all research domain. CNN was invented for

computer vision. They have also shown to be useful for semantic parsing, sentence

modeling and other natural language processing related tasks. Here in this paper we

discuss the basics of CNN models and their scope to provide a reference/baseline to

the researchers interested in using CNN models in their research.

Keywords: Convolutional Neural Network, domain, natural language processing, computer vision, semantic parsing

1. Introduction
Introduced by Lecun in 1989 [1], Convolutional Neural Network (CNN) is inspired by visual cortex. A CNN has input layers,

multiple hidden layers and one output layer. Training starts by sending data to input layer. Then, the data are passed through a

series of hidden layers. Hidden layer includes multiple filters, pooling layers. Appending these layers in between hidden layers

produces better features [2]. Overview of CNN is provided in Figure 1. CNN was invented for computer vision [3]. They have

also shown to be useful for semantic parsing, sentence modeling and other natural language processing (NLP) related tasks.

Using a simple CNN model of one layer with pretrained word vectors has shown good performance boost improving state-of-

art on 4 out of 7 benchmark datasets [4]. Movie Review (MR), Stanford Sentiment Treebank (SST-1), SST-2 (same as SST-1 but

with neutral reviews removed and binary labels), Subjectivity dataset (Subj), TREC question dataset (TREC), Customer reviews

(CR) and Opinion polarity detection subtask of Multi-dimensional Personality Questionnaire (MPQA) dataset are the 7 datasets
[5] experimented with. The four dataset that shows performance boost are MR, SST-2, CR and MPQA. He experimented with

four different types of CNN model. These are the 4 CNN model [6] developed and experimented on. CNN-rand, CNN-static,

CNN-non-static, CNN-multichannel where, CNN-rand is a model where the words are initialized randomly. The weights are

updated during the training. In CNN-static, the weights from word2vec are used. Unknown words are updated during the training
time. In CNN-non-static, all the weights of all the words are updated during the training. And in CNN- multichannel, two same

word vectors are used, one is finetuned and other is kept static. Use of dropout has proved to be a good regularizer improving

performance by 2%-4%. They suggest that the pretrained vectors are good universal feature extractors and can be utilized across

multiple dataset. He also made further observation on optimizers showing that Adadelta [7] produced similar results compared to

Adagrad [8] with fewer epochs.

CNN also has been employed to extract relationships between two entities in a sentence [9]. Treating a sentence as sequential

data and integrating word position information into CNN model has outperformed the state-of-art method in classifying the

relation in a sentence. Their system includes three main components, Word Representation, Feature Extraction and Output. The

words are converted to word vectors using word embedding technique. Lexical level features, Sentence level features (Word

https://doi.org/10.54660/anfo.2022.3.4.18
https://doi.org/10.54660/anfo.2022.3.4.18

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 489 | P a g e

features, Position features) are combined together to form

final feature vectors. These vectors are then fed to softmax

classifier. CNN also has been used for sentence modeling.

The purpose of sentence modeling is to represent, classify,

the semantic content of a sentence [10]. The network achieved

high performance on question classification without using

any hand engineered features. CNN extracted lexical and

sentence level features. This shows that, without

implementing parse tree, a network can be made applicable

that can capture short and long-range relations in a sentence

for any language.
By directly learning embedding or by applying CNN to high

dimensional one hot vectors without using any external tools,

sentiment classification and topic classification achieved

state-of-art performances [11]. The network was trained

without using bag-of-n-gram techniques or word vector

techniques. There is also a paper describing the usage of CNN

with different word embedding model such as sentence

embedding model, mean word embedding model, or word

embedding with bag of words [12]. By using CNN at sentence

level they outperformed the natural language processing task

by about 15%.

We can average word vector together from different datasets

to generate or form a good representation of a sentence [13].

Also for text understanding CNN has been used [14]. They

have demonstrated that, we can apply any level of inputs

ranging from character level to abstract text concepts to

CNN. This achieved a good performance without having any

knowledge on words, phrases or sentences. Automatic

detection of keywords, topic allocation are difficult language
processing task. On a research by [14], they developed a model

with long short term memory (LSTM) cells that can filter the

unimportant words and detect salient keywords in the

sentence. They have also outperformed the general sentence

embedding method. Since LSTM can hold core knowledge

for longer period of time, we can leverage it on sentence

level.

Source: Google

Fig 1: General Architecture of CNN

The components in Feature-extraction layers in Figure 1

are as
 Convolution (see section 2.4.4)

 ReLU (see section 2.4.2)
 Pool (see section 2.4.5)

Applications of CNN
The main advantage of using CNN is that, CNN can itself

learn features from the input removing the task of manual

feature engineering. It is also more efficient in terms of

memory and complexity than traditional fully connected

neural network. Some of the applications of CNN are:

 Image Recognition

 Image Classification

 Speech Recognition

 Text Classification

The use of CNN models have grown even higher recently,

including in cloud based applications. As the technology is

inclining towards cloud computing [16, 17], we assume that

CNN will become more popular and its usage will grow more

and more.

2. Neural network parameters

2.1. Shape
This is the size of the input data set. This shape can be of any

dimension. For an image, shape (x,y) is representation of

height and width of the image. For word embedding, shape

(x,y) is representation is word and its vector size.

2.2. Activation function
Activation functions are used to increase the non-linearity of

the network. This layer doesn’t affect other layers. The main

focus of activation layer is to determine whether the provided

input should be activated or not [18].

2.3. Sigmoid
This activation is nonlinear in nature. The curve of this

fuction is s-curve. The output of the fuction is always going

to be in range of 0 and 1. When gradients are small, this

activation functions cannot make significant changes. The

sigmoid function is represented as below in Figure 2:

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 490 | P a g e

Source: Google

Fig 2: Characteristics of Sigmoid Activation Function

2.4. Rectified linear unit
This activation function is nonlinear in nature. This activation

function has output 0 if the input is less than 0 and has output

equal to input if the input is greater than 0. For large neural

networks, Rectified Linear Unit (ReLU) can operate much

faster than any other activation function. The ReLU function

is represented as below in Figure 3.

Source: Google

Fig 3: Characteristics of Rectified Linear Unit Activation Function

2.5. Hyperbolic tangent
tanH is a non-linear activation function. The range of tanh

function is from -1 to

1. The shape of tanh is s - shaped. The main advantage of

this activation function is that negative inputs will be

mapped strongly negative. The Tanh function is

represented as below in Figure 4.

Source: Google

Fig 4: Characteristics of Hyperbolic Tangent Activation Function

2.6. Stride and padding
Stride is a metric for regulating the movement of
convolutional filters for dot product operation in

convolutional layer. It is the step for the convolution

operation in convolutional layer. During feature mapping of

convolution layer, operations on filters is performed by

skipping steps either horizontally or vertically. This process

is referred as stride. Padding is process of adding additional

layer on the convolution layer. Data loss occurs when

padding is not used [19]. For example, see Appendix A.1 for

the operation of stride in convolutional layer.

Source: Google

Fig 5: Stride operation when stride is 1

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 491 | P a g e

Source: Google

Fig 6: Stride operation when stride is 2

2.7. Convolutional layer and filter
Convolutional layer is the output of dot product between

weights and inputs of previous layer. Neurons that covers the

entire input and look for one feature are called filters. Many

filters can be used on this convolutional layer [20]. The filter

weights are shared across the receptive fields. These filter can

help in determining features for the inputs [21]. These filters

are 2 dimensional. Convolutional layers are spatially
invariant. This means that they look for the same features

across the entire input vectors. Input of this layer can be of

multiple channels. For an example: an image has 3 channels

RGB (Red, Green, Blue). These channels are fed to the layer

for feature mapping operation.

2.8. Pooling layer
Pooling layer is the process of down sampling the

convolutional layer. It depends upon the type of pooling layer

for the selection of elements from convolutional layer during

down sampling. For example: Max Pooling chooses the

maximum number from a group of elements [22]. For

example: see Appendix A.2 for the operation on max pooling.

Source: Google

Fig 7: Max pooling sample with 2 x 2 filter

2.9. Dropout
Dropout is the process of ignoring the activation during the

process of training. Specified percent of network’s activation

are ignored. However, it is not imple- mented during test
phase. Usage of dropouts prevents overfitting by reducing the

correlation between neurons [23].

2.10. Softmax
Softmax is used in classification problem. This function

squashes the output of all unit between 0 and 1. The output of

this function is equal to categorical probability distribution.

i.e. this function can describe the probability for the class

from output.

2.11. Batch normalization
Batch normalization is the process of initializing weights of

the neural network. This reduces the initialization of bad

weights for the networks. They are used just before activation

layer [24].

2.12. Gradient descent
Gradient descent is the process of finding the minimum of a

function. It uses learning rate to take steps from a initialized

point. Depending upon the gradient at that new step, it is

determined whether to take proportional forward steps or go

backward [25].

2.13. Batch gradient descent
The main purpose of using batch gradient descent is to reduce

the amount of data when computing the gradients for each

learning step. It is the process when we sum up all on each

iteration when performing the updates to the parameters. It is

guaranteed to converge when batch gradient descent is used.

Fix learning rate can be used when using this gradient descent

without worrying about the learning rate decay. The batch

size is the number of samples that is fed through the network.

When batch size is higher, more memory space is needed. For

an example: Assumptions:

Total datasets size=1000 Batch size=100

Then,

Total number of iteration taken =1000 / 100 =10 to complete

1 epoch where, number of iteration is the number of passes

and one pass is combination of one forward pass and one

backward pass. Epoch is one forward pass and one backward

pass of all data in datasets.

2.14. Training parameters
Neurons in convolutional layers has a local receptive field.

This means that those neurons are not fully connected to the

entire input but just some section of the input. Feature map is

produced when we take input data together from abstraction

provided by neurons. No any parameters has to be calculated

in pooling layer and Dropout layer.

The below example describes about the parameter

calculation for neural network. Initials
 A convolutional layer of shape x, y, z(1, 28, 28)

 where fi as input feature map (of value 1, from x=1)

 fo as output feature map (of value 32)

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 492 | P a g e

 filter size as m × n (of value 5, 5) then,

Total number of weights=n × m × fi × fo (without bias) total

number of weights= (n × m × fi + 1) × fo (with bias)

Using above equation; we get:

Total number of weights= (5 × 5 × 1 + 1) × 32 = 832

2.15. Forget gate
This gate decides what information should be thrown away

or kept. Information from the previous hidden state and

information from the current input is passed through the
sigmoid function. Values come out between 0 and 1. The

closer to 0 means to forget and the closer to 1 means to keep.

2.16. Input gate
To update the cell state input gate is needed. Previous hidden

states and current input are passed into.

 A sigmoid function (SGF)

 A tanh function (THF)

Then multiply SGF and THF

The sigmoid output will decide which information is

important to keep from the tanH output.

2.17. Output gate
The output gate decides what the next hidden state should be.

Hidden state con- tains information on previous inputs. The

hidden input is also used for predictions. First the previous

hidden state and the current input are passed into a sigmoid
function. Then the newly modified cell state is passed to the

tanH function. Then, the tanH outout is multiplied with the

sigmoid output to decide what information the hidden state

should carry. The output is the hidden state. The new cell

state and the new hidden state is then carried over to the next

time step.

2.18. Cell state
Cell state from previous cell is (point wise) multiplied by

forget vector. This has a probability of dropping values in the

cell state if it gets multiplied by values near0. Then, point

wise addition is done on the output from the input gate and

current cell states that updates the cell state to new values that

the neural network finds relevant. This gives us new cell

state.

3. Conclusion
CNN is one of the most popular deep learning models. CNN

comes handy for the complicated tasks like natural language

processing, recommendation system, object detection,

classification. Its dense network performs the task efficiently.

We provided a comprehensive overview of this model

structure in this paper which could be used as a touchstone by

the researchers interested in using this model.

4. References
1. Y Kim. Convolutional Neural Networks for Sentence

Classification, arXiv e-prints, no. 1, p. arXiv: 1408.5882,

Aug. 2014; x:15-24.

2. M Duan, E Hill, M White. Generating disambiguating

paraphrases for structurally ambiguous sentences, in

Proceedings of the 10th Linguistic Annotation

Workshop held in conjunction with ACL 2016,

LAW@ACL 2016, August 11, 2016, Berlin, Germany,
2016. [Online]. Available:

http://aclweb.org/anthology/W/W16/W16-1718.pdf 1.

3. Vector representations of words | tensor flow core |

tensor flow, Tech. Rep, 2019, 3. [Online]. Available:

https://www.tensorflow.org/tutorials/representation/wor

d2vec 5.

4. JY Lee, F Dernoncourt. Sequential Short-Text

Classification with Recurrent and Convolutional Neural

Networks, arXiv e-prints, p. arXiv: 1603.03827. 2016;

6:17.

5. C Szegedy, W Liu, Y Jia, P Sermanet, SE Reed, D

Anguelov, et al. Going deeper with convolutions, in
IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, 2015, 1-

9. [Online]. Available:

https://doi.org/10.1109/CVPR.2015.7298594 6.

6. S Hochreiter, J Schmidhuber. Long short-term memory,

Neural Computation. 1997; 9:1735-1780. [Online].

Available: https://doi.org/10.1162/neco.1997.9.8.17357.

7. FA. Gers, J Schmidhuber, FA Cummins. Learning to

forget: Continual prediction with LSTM, Neural

Computation. 2000; 12:2451-2471. [Online]. Available:

https://doi.org/10.1162/089976600300015015.

8. K Greff, RK Srivastava, J Koutník, BR Steunebrink, J

Schmidhuber. LSTM: A search space odyssey, IEEE

Trans. Neural Netw. Learning Syst. 2017; 28:2222-2232.

[Online]. Available:

https://doi.org/10.1109/TNNLS.2016.2582924 7.

9. P Ramachandran, B Zoph, QV Le. Searching for

activation functions, CoRR, vol. abs/1710.05941, 2017.
[Online]. Available: http://arxiv.org/abs/1710.05941.

10. V Dumoulin, F Visin. A guide to convolution arithmetic

for deep learning, CoRR. abs/1603.07285, 2016.

[Online]. Available: http://arxiv.org/abs/1603.07285 11,

17.

11. Q Huang, SK Zhou, S You, U Neumann. Learning to

prune filters in convolutional neural networks, CoRR.

abs/1801.07365, 2018. [Online]. Available:

http://arxiv.org/abs/1801.07365 11.

12. B Athiwaratkun, K Kang. Feature representation in

convolutional neural networks, CoRR. abs/1507.02313,

2015. [Online]. Available:

http://arxiv.org/abs/1507.02313 11.

13. D Scherer, AC Müller, S Behnke. Evaluation of pooling

operations in convolutional architectures for object

recognition, in Artificial Neural Networks - ICANN

2010 - 20th International Conference, Thessaloniki,
Greece, September 15-18, 2010, Proceedings. 2010;

3:92-101. [Online]. Available:

https://doi.org/10.1007/978-3-642-15825-4_10 12, 17,

62.

14. N Kalchbrenner, E Grefenstette, P Blunsom. A

convolutional neural network for modelling sentences,

CoRR, vol. abs/1404.2188, 2014. [Online]. Available:

http://arxiv.org/abs/1404.2188 16.

15. N Srivastava, GE Hinton, A Krizhevsky, I Sutskever, R

Salakhutdi, Dropout: A simple way to prevent neural

networks from over fitting, Journal of Machine Learning

Research. 2014; 15:1929-1958. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2670313 12, 28.

16. Prasai R. Earth engine application to retrieve long-term

terrestrial and aquatic time series of satellite reflectance

data. International Journal of Multidisciplinary Research

and Growth Evaluation, 2022a, 165-171.
https://doi.org/10.54660/anfo.2022.3.3.11.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 493 | P a g e

17. Prasai R. An open-source web-based tool to perform

spatial multicriteria analysis. International Journal of

Multidisciplinary Research and Growth Evaluation,

2022b, 297-301.

https://doi.org/10.54660/anfo.2022.3.3.19

18. S Ioffe, C Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate

shift, in Proceedings of the 32nd International

Conference on Machine Learning, ICML 2015, Lille,

France, 2015, 448–456. [Online]. Available:

http://jmlr.org/proceedings/papers/v37/ioffe15.html.
19. S Ruder. An overview of gradient descent optimization

algorithms, CoRR, vol. abs/1609.04747, 2016. [Online].

Available: http://arxiv.org/abs/1609. 04747 12, 17.

20. Y LeCun, BE Boser, JS Denker, D Henderson, RE

Howard, WE Hubbard, et al. Back propagation applied

to handwritten zip code recognition, Neural

Computation. 1989; 1:541-551. [Online]. Available:

https://doi.org/10.1162/neco.1989.1.4.541 15.

21. MD Zeiler. ADADELTA: an adaptive learning rate

method,” CoRR, vol. abs/1212.5701, 2012. [Online].

Available: http://arxiv.org/abs/1212.5701 16.

22. JC Duchi, E Hazan, Y Singer. Adaptive subgradient

methods for online learning and stochastic optimization,

Journal of Machine Learning Research. 2011; 12:2121-

2159. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2021068 16.

23. D Zeng, K Liu, S Lai, G Zhou, J Zhao. Relation

classification via convolutional deep neural network, in
Coling 2014, 25th International Conference on

Computational Linguistics, Proceedings of the

Conference: Technical Papers, August 23-29, 2014,

Dublin, Ireland, 2014, 2335-2344. [Online]. Available:

http://aclweb.org/anthology/C/C14/C14-1220.pdf 16.

24. T Mikolov, K Chen, G Corrado, J Dean. Efficient

estimation of word representations in vector space,

CoRR, vol. abs/1301.3781, 2013. [Online]. Available:

http://arxiv.org/abs/1301.3781 16, 17.

25. X Zhang, Y LeCun. Text understanding from scratch,

CoRR, vol. abs/1502.01710, 2015. [Online]. Available:

http://arxiv.org/abs/1502.01710 16.

