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Abstract 
Machine learning (ML) is a subdivision of artificial intelligence in which the machine 

learns from machine-readable data and information. It uses data, learns the pattern and 

predicts the new outcomes. Its popularity is growing because it helps to understand 

the trend and provides a solution that can be either a model or a product. Applications 

of ML algorithms have increased drastically in G.I.S. and remote sensing in recent 

years. It has a broad range of applications, from developing energy-based models to 

assessing soil liquefaction to creating a relation between air quality and mortality. 
Here, in this paper, we discuss the most popular supervised ML models (classification 

and regression) in G.I.S. and remote sensing. The motivation for writing this paper is 

that ML models produce higher accuracy than traditional parametric classifiers, 

especially for complex data with many predictor variables. This paper provides a 

general overview of some popular supervised non-parametric ML models that can be 

used in most of the G.I.S. and remote sensing based projects. We discuss classification 

(Naïve Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), Decision 

Trees (DT)) and regression models (Random Forest (RF), Support Vector Machine 

(SVM), Linear and Non-Linear) here. Therefore, the article can be a guide to those 

interested in using ML models in their G.I.S. and remote sensing based projects.
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1. Introduction 
Machine learning (ML) is a subdivision of artificial intelligence in which the machine learns from machine-readable data and 

information [2]. It uses data, learns the pattern and predicts the new outcomes [3]. Its popularity is growing because it helps to 

understand the trend and provides a solution that can be either a model or a product. There are four types of machine learning 

approaches: supervised, unsupervised, semi-supervised and reinforcement learning [4]. In supervised learning, the labelled 

training data is provided; in unsupervised learning, unlabeled training data is provided [4]. The semi-supervised learning approach 

is a hybrid of both supervised and unsupervised learning where mostly labelled information is provided for the training [5]. 

However, the model is free to figure out the trend in the data on its own. In reinforcement learning, the agent learns from trial 

and error to make decisions and cope with the interactive environment [4]. A ML project consists of several steps and each steps 

should be planned carefully (Figure 1). 

Applications of machine learning algorithms have increased drastically in G.I.S. and remote sensing in recent years [6]. It has a 

broad range of applications, from developing energy-based models to assessing soil liquefaction to creating a relation between 

air quality and mortality [7]. Other examples include qualitative and quantitative evaluation of satellite imagery sensor data for 

regional and urban scale air quality [8], support vector machine approach for longitudinal dispersion coefficients in natural 
streams [9], crisis management [10], disaster, linear programming for irrigation scheduling [11], global climate change and weather 

forecast [12], the status of land cover classification accuracy assessment [13], air pollutants and sources associated with health 

effects [2], settlement detection [14] features such as roads/highways and ditch segments extraction [8], identify crops' diseases and 

their yield estimation, building vegetation indices, natural disaster response, and disease outbreak response [15]. 

 

https://doi.org/10.54660/anfo.2022.3.4.20
https://doi.org/10.54660/anfo.2022.3.4.20


International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    547 | P a g e  

 

In addition, researchers/users are benefitted from the publicly 

available remote sensing datasets using which they can 

develop, test and run their ML models for their research [16]. 

Most of the remote sensing datasets are global and unbiased 

[17]. This further simplifies the workflow in building accurate 

ML models in this domain [18]. Furthermore, remote sensing-

based research is not halted due to natural disasters or 

unexpected accidents [16].

 

 
 

Fig 1: Machine learning workflow 

 

Here, in this paper, we discuss the most popular supervised 

ML models (classification and regression) in G.I.S. and 

remote sensing. The motivation for writing this paper is that 

machine learning models produce higher accuracy than 

traditional parametric classifiers, especially for complex data 

with many predictor variables [19]. Therefore, the article can 

be a guide to those interested in using ML models in their 

G.I.S. and remote sensing based projects [20]. This paper 

provides a general overview of 4 supervised non-parametric 

ML models that can be used in most of the G.I.S. and remote 

sensing based projects. We discuss classification (Naïve 

Bayes (NB), Support Vector Machine (SVM), Random 

Forest (RF), Decision Trees (DT)) and regression models 

(Random Forest (RF), Support Vector Machine (SVM), 

Linear, Count and Poisson) here. Binomial and multiclass 

classification models are more common in G.I.S. and remote 

sensing-based projects [8]. If the classification has two classes, 

the classifier is known as binomial; if there are more than two 

classes, the category is multiclass. 

 

 
 

Fig 2: Data engineering in G.I.S. world 

 

1.1 Supervised machine learning models in G.I.S. and 

remote sensing 

1.1.1 Naïve Bayes Algorithms 
These supervised models are the easiest to build, less 

complex and can be applied to massive datasets [21]. It is fast. 

However, Naïve Bayes classification cannot be used for 

continuous numerical values [22]. It ignores noise, hence 

might lead to inaccurate predictions [23]. There are three types 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    548 | P a g e  

 

of Naïve Bayes: Gaussian, Multinomial, Bernoulli. Gaussian 

assumes the distribution to be normal [24]. Multinomial for 

discrete counts and Bernoulli for binary outcomes [25].These 

classifiers are efficient for multiclass predictions [26]. These 

models can be best utilized in making best management 

practices models (B.M.P.s), habitat suitability models, 

weather prediction.  

 

1.1.2. Random Forest Classifier 
It's a supervised classification model that can be applied to 

classification and regression models [27]. It is a collection of 
decision trees and predicts the results based on the multiple 

models/sub-models [28]. Therefore it is also known as the 

ensemble classifier [29]. R.F. works on the bagging principle 

while making models, which means it makes different models 

based on the subset of training sample data, and the outcome 

is based on the majority/average of the sub-models [30]. 

Multiple studies suggest that the number of trees generally 

does not significantly impact the resulting R.F. classification 

accuracy, as long as the number is sufficiently large enough. 

This is because when the number of trees in the classifier is 

small, the prediction accuracy increases as additional trees 

are added. Still, the accuracy tends to plateau with a large 

number of trees [28]. Some common examples of the projects 

that can be solved using R.F. algorithm include: land use land 

cover classification [32], feature extraction such as ditch 

segments, roads, settlements, or objects of interest, object 

detection such as tree species, vehicle, species identification 

such as tigers, elephants, bird species, insects, habitat 
classification and modelling related projects such as flood-

prone/drought [33], core habitat, classify soil types, diseases, 

weeds, climate and weather-related models and their 

forecasting [34]. 

 

1.1.3. Support vector machine 
It's an ML model that can be applied to classification and 

regression problems [35]. It fits the data based on a distinct line 

known as a hyperplane [36]. As the model is easy to build and 

robust to outliers, it is widely used in the G.I.S. and remote 

sensing domains [37]. Building a support vector ML model 

requires the use to specify the kernel type [38]. Some popular 

kernels in remote sensing are polynomial kernels and the 

radial basis function (RBF) kernel [39]. Classification of 

satellite based imagery, detection of features like roads, 

wetlands, grasslands, can be solved using SVM models. 

 

1.1.4. Linear regression 
These models are the most popular research models in G.I.S. 

and remote sensing [40]. Linear regression helps to identify 

and evaluate the relationship between two or more 

factors/covariates when we leverage the power of space in 

our analysis using the distance features, for example, the 

influence of distance to water in habitat selection [41]. This 

ML model helps to address the questions like: 

 Is there a linear relationship between diameter at breast 

height and crown diameter of trees? 

 What demographic factors contribute to the use of high 

rates of public transport? 

 What factors contribute to the high spread of COVID in 

geographical regions? 

 What is the relation between environmental factors and 

the cyanobacteria population?  

 What variables affect gender-specific leadership? 
 What is the relation between climate change and 

migration? 

 

There are 3 types of linear regression commonly used in GIS 

and remote sensing based projects. They are Continuous 

(Gaussian), Logistic and Poisson distribution. The 

distribution should be normal [42] for the Gaussian distribution 

linear regression. It is also called continuous because the 

dependent variable can take a wide range of values such as 

temperature, rainfall, and tree diameter [8]. If the dependent 

variable is not normally distributed, we can change it to 

binary values using reclassify function [43]. Binary is also 
known as logistic regression models, which builds models 

with only two outputs:- pass/fail, presence/absence [44]. We 

use count/Poisson regression models if the dependent 

variables are the counts/number of occurrences of an event 
[45]. 

The dependent variable cannot be negative or decimal values 
[45]. These models are generally used for species distribution 

models and understanding event patterns.  

 

1.1.5. Non-linear regression 
The regression in which the predictor and response variable 

has a non-linear relationship is known as non-linear 

regression [46]. Since most relationships in G.I.S. and remote 

sensing are non-linear, it is widely used in this sector [47]. Due 

to its flexibility, a wide variety of models can be built using 

these models [48]. For example, study the crops and soil 

processes, study the real estate price and immigration 

relation, study the relation between diameter and canopy 
cover. 

 

1.2 Methods to improve the accuracy of the ML models 

1.2.1. Feature engineering 
Feature engineering is most prevalent in predictive models 
[49]. It is the process of filtering the most logical and 

influential variables/covariates in the models from the less 

important/influential variables, in ML terms, it is known as 

feature reduction [50]. It requires domain knowledge and 

understanding of the requirements of the projects [49]. 

Researchers run exploratory data analyses to observe the 

relationship between different variables/covariates and 

extract only the best variables to make an ML model [51]. 

 

1.2.2. Boosting 
Boosting is a method used in machine learning to reduce 

errors in predictive data analysis [52]. Data scientists train 
machine learning software, called machine learning models, 

on labelled data to make guesses about unlabeled data [53]. A 

single machine learning model might make prediction errors 

depending on the accuracy of the training dataset [54]. For 

example, if a cat-identifying model has been trained only on 

images of white cats, it may occasionally misidentify a black 

cat. Boosting tries to overcome this issue by training multiple 

models sequentially to improve the accuracy of the overall 

system. Boosting improves machine models' predictive 

accuracy and performance by converting multiple weak 

learners into a single robust learning model. Machine 

learning models can be vulnerable learners or strong learners: 

 

1.2.3. Hyper parameter optimization 
Hyperparameter tuning depends on several factors: sample 

size, classifier/regression models used, and model type [55-57]. 

It's an additional step to improve the accuracy and 
performance of the model [58]. For example, selection of the 
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best polynomial features in linear regression models, number 

of trees in a random forest, number of layers and neurons in 

a neural network, maximum depth in decision trees, and 

learning rate for gradient descent [58]. Some common hyper 

parameter tuning techniques are grid search, randomized 

search, Bayesian optimization, sequential model-based 

optimization, and genetic algorithms [55]. 

 

1.3. Overfitting and Underfitting in ML models 
Overfitting occurs when the model learns the noise and 

unwanted details in the learning data, which negatively 
impacts predicting the new data [59]. Underfitting refers to a 

model that neither models the training data nor generalizes to 

new data [60-63]. In comparing classifiers, we emphasize that 

more than just overall accuracy should be considered; the 

user's and producer's accuracies for individual classes should 

also be considered [64]. This is particularly true if the mapping 

focuses on rare classes (i.e. classes of limited extent in the 

image data). Rare classes tend to have little effect on the 

overall accuracy but may nevertheless be vital in determining 

the usefulness of the classification [65]. However, if it is not 

feasible to test a variety of classifiers, SVM and R.F. 

generally appear to be reliable classification methods [65]. 

Some common approaches to reduce overfitting and 

underfitting of ML models are to use cross entropy, cross 

validation, early stopping and regularization approach. 

 

1.3.1 Cross-Entropy and Cross-Validation 
Entropy is a measurable physical quality most usually linked 
with disorder, unpredictability, or uncertainty [66]. The 

smallest average encoding size per transmission with which 

a source can efficiently convey a message to a destination 

without losing any data is defined as entropy [67]. The 

difference between two probability distributions for a given 

random variable or set of occurrences is measured by cross-

entropy. [68-72]. As a loss function, cross-entropy is 

extensively employed in ML [73]. Each example has a known 

class label with a probability of 1.0, whereas all other labels 

have a probability of 0.0 in classification [74]. In this case, the 

model determines the probability that a given example 

corresponds to each class label [75]. Cross-entropy can then be 

used to calculate the difference between two probability 

distributions [69]. 

 

1.3.2. Cross-Validation 
Cross-validation is a technique in which we train our model 
using the subset of the dataset and then evaluate it using the 

complementary subset of the dataset [76]. It is useful when 

there is a limited amount of data available [77]. An example of 

cross-validation is K-fold cross-validation [78]. The data is 

divided into K parts, where 1 part is used as a validation 

dataset and the other remaining as a training dataset [79]. And 

this process is repeated K times to reduce the biases and 

produce an effective model [80]. 

 

1.3.3. Early Stopping and Regularization 
Early stopping and regularization are other techniques used 

to reduce the overfitting of the data [81]. The early stopping 

technique stops the training on ML models once the ML 

model's performance starts dropping and then increasing [82]. 

The regularization technique can be applied in multiple ways. 

Their examples are L1, L2, and Dropout regularization [83]. 

  
 

1.4. Model performance calculation 

1.4.1. Confusion matrix (Popular for classification 

models) 
A confusion matrix, also known as an error matrix, is used 

for classification models [84]. These matrices help in 

evaluating, monitoring and managing models [85]. From these 

matrices, we can develop metrices like accuracy, precision, 

recall, specificity, and F1 score [85]. When we create a 

confusion matrix, positive observation is known as Positives 

(P) [86], negative observation is known as Negative (N) ([86]), 

an outcome where the model correctly predicts the positive 
class is called True Positives (T.P.). In this outcome, the 

model correctly predicts the negative classes are, known as 

True Negatives (T.N.). The model incorrectly predicts the 

positive class when negative, also called a type 1 error are 

False Positive (F.P.)[87]. An outcome where the model 

incorrectly predicts the negative class when it is positive also 

called a type 2 error, is known as a False Negative (F.N.)[87]. 

We should learn about the accuracy, precision, recall, 

specificity, F1 score to read and interpret the output of the 

confusion matrix.  

 

 Accuracy 
Accuracy can be calculated by using the following formula 

 

 
 

 Precision 
Precision can be calculated by using the following formula 

 

 
 

 Recall 
Recall, also known as the sensitivity, hit rate, or the true 

positive rate (T.P.R.) [88]. Answers the question, "What 

proportion of actual positives were identified correctly?" 

 

 
 

 Specificity 
Specificity, also known as the true negative rate (TNR), 

measures the proportion of actual negatives that are correctly 

identified as such [89]. It is the opposite of recall. 

 

 
 

 F1 score 
The F1 score measures a test's accuracy-it is the harmonic 

mean of precision and recall [90]. 

It can have a maximum score of 1 (perfect precision and 

recall) and a minimum of 0. Overall, it measures the 

preciseness and robustness of your model [91]. 
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Receiver operator characteristic curve 
Receiver operator characteristic (R.O.C.) analysis is a 

quantitative method for determining a binary classification 

based on a threshold (cut-off) value usually calculated from 

continuous data [92-94]. Plotting the true positive rate (T.P.R.) 

against the false positive rate (F.P.R.) at various threshold 

levels yields the R.O.C. curve[95].Sensitivity, recall, and the 

chance of detection are all terms used to describe the true-

positive rate [96, 97]. The likelihood of a false alarm is also 

known as the false-positive rate, and it can be computed as 

(1- specificity). It's also known as a plot of the power as a 
function of the decision rule's Type I Error (when the 

performance is calculated from just a sample of the 

population, it can be thought of as estimators of these 

quantities). As a result, the R.O.C. curve represents 

sensitivity or recall as a function of fall-out. 

 

1.4.2. For regression models 
Classifying the accuracy of the regression models is a little 

different than the classification models because, in regression 

models, we are not only concerned with the model predicting 

right or wrong but also how accurately the models have 

predicted the actual value [98]. For example, when we use 

regression models to forecast the temperature, if the model 

gives the value as 43 C and the actual value is 43.5 C, the 

model is better and vice versa [99]. We measure the accuracy 

of the regression models using explained variance and mean 

squared error  

 

 Explained variance 
Explained variance is the amount of variation in the original 

dataset that our model can explain [98, 100]. 

 

 Mean squared error 
It is the average of the squared differences between the 

predicted and actual output. R2 coefficient represents the 

proportion of variance in the outcome that our model can 

predict based on its features [101]. 

 

1.5. Factors to consider while selecting the ML models in 

GIS and remote sensing based projects 
 No rule of thumb 

 Experiment with multiple classifiers 

 Hyper tuning parameters for the accuracy 
 Use random forest classifiers for the weak datasets and 

Decision tress when simple and fast models are needed 

 The default value for the number of trees in R.F. can be 

500; for kernel size in SVM, it can be polynomial kernels 

and radial basis kernels 

 Visualize the relationships between the input and 

predictors to evaluate their relationship and find if there 

is any band that can help in predicting things better 

 Normalize the rare classes/imbalanced datasets 

 Computation time also depends on user-defined 

parameters, classifier chosen, sample size 

 If parameters cannot be tuned, R.F. should be used, 

setting the number of trees to 500 to provide  

 Balance the datasets/data normalization. The classes 

with few samples/rare classes can be affected 

 Computational complexities of different ML models 

which is the amount of resources to run a ML model.  

 
N=number of training examples, m=number of features, 

n’=number of support vectors, k=number of neighbors, k’= 

number of trees [102]. 

Table 1: Computational complexity of discussed ML models 
 

S.N. Model Train time complexity Test time complexity Space complexity 

1 Linear regression O(n*m^2 + m^3) O(m) O(m) 

2 Logistic regression O(n*m) O(m) O(m) 

3. Support Vector Machine O(n^2) O(n’*m) O(n*m) 

4. Decision tree O(n*log(n)*m O(m) O(depth of tree) 

5. Random forest O(k’ *n*log(n)*m O(m*k’) O(k’*depth of tree) 

6. Naïve Bayes O(n*m) O(m) O(c*m) 

 

2. Conclusion 
In recent years, ML models are increasingly being used in 

GIS and remote sensing based projects. ML models helps in 

solving GIS and remote sensing problems by identifying the 

underlying patterns, for example satellite based image 

classification [103], detection of features likes roads, wetlands, 

grasslands, image segmentation. We discuss few popular ML 

models and methods of their application in GIS and remote 

sensing based projects here. Researchers can use this paper 

as a reference while starting a ML based project. There are 

other ML models which can be learnt easily after learning 

above discussed models. 
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