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Abstract 
Volatility plays an important role in financial markets and has 

held the attention of academics and practitioners. Using 

Generalized autoregressive conditional heteroscedasticity 

(GARCH) is one of the effective perspective for forecasting 

volatility. This study focused on comparing GARCH (P, Q) 

model with GJR-GARCH (P, Q) model and EGARCH (P, Q) 

model to make prediction more reliable and accurate. The 

results suggested that both GARCH (P, Q) model and GJR-

GARCH (P, Q) model are good choices for forecasting 

volatility in financial market, especially for describing 

heteroscedastic time series. GARCH models are consistent 

with various forms of efficient market theory. These theories 

state that asset returns observed in the past cannot improve 

the forecasts of asset returns in the future. 
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1. Introduction 
Volatility refers to the standard deviation of the continuously compounded returns of a financial instrument with a specific time 

horizon. It is used to quantify the risk of the instrument over that time period. Historical volatility is the volatility of a financial 

instrument based on historical returns. This phrase is used particularly when it is wished to distinguish between the actual 

volatility of an instrument in the past, and the current volatility implied by the market. For a financial instrument whose price 

follows a Gaussian random walk, or Wiener process, the volatility increases as time increases? Conceptually, this is because 

there is an increasing probability that the instrument’s price will be farther away from the initial price as time increases. However, 

rather than increase linearly, the volatility increases with the square-root of time as time increases, because some fluctuations 
are expected to cancel each other out, so the most likely deviation after twice the time will not be twice the distance from zero. 

The annualized volatility σ is the standard deviation σ of the instrument's logarithmic returns in a year. The generalized volatility 

σT for time horizon T in years is expressed as: =TTσσ (Nasar, 1992) [8]. Note that the formula used to annualize returns is not 

deterministic, but is an extrapolation valid for a random walk process whose steps have finite variance. 

More broadly, volatility refers to the degree of (typically short-term) unpredictable change over time of a certain variable. It may 

be measured via the standard deviation of a sample, as mentioned above. However, price changes actually do not follow Gaussian 

distributions. Better distributions used to describe them actually have “fat tails” although their variance remains finite. Therefore, 

other metrics may be used to describe the degree of spread of the variable. As such, volatility reflects the degree of risk faced by 

someone with exposure to that variable. Volatility does not imply direction. This is due to the fact that all changes are squared. 

An instrument that is more volatile is likely to increase or decrease in value more than one that is less volatile. 

Volatility has become a key input to many investment decisions and portfolio creations. Investors and portfolio managers have 

certain levels of risk which they can bear. A good forecast of the volatility of asset prices over the investment holding period is 

a good starting point for assessing investment risk. Volatility is the most important variable in the pricing of derivative securities, 

whose trading volume has quadrupled in recent years. Nowadays, one can buy derivatives that are written on volatility itself, in 

which case the definition and measurement of volatility will be clearly specified in the derivative contracts. In these new 

contracts, volatility now becomes the underlying “asset.” So a volatility forecast is needed to price such derivative contracts. 

Policy makers often rely on market estimates of volatility as a barometer for the vulnerability of financial markets and the 
economy. 

GARCH is a mechanism that includes past variance in the explanation of future variances. More specifically, GARCH is a time-

series technique that you use to model the serial dependence of volatility. Compared with other time-series models, GARCH 

models can provide a better description for heteroscedastic time series (Christoffersen and Jacobs, 2005) [6].  
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This paper applies GARCH methods to stock market and 

builds a GARCH model for the volatility of Dow Jones Index 

daily closing value log-return series. 

 

The form of GARCH Models  
The form of GARCH (P, Q) Models  

Conditional Mean Equation  

 

yt = C +  εt + ΣR i=1θi yt-i + ΣM j=11θj εt-j + ΣNx k=1βkx(t,k) 

 

This is a general ARMAX(R, M,xN) model. It applies to all 
variance models with autoregressive coefficients {φ i}, 

moving average coefficients {θj}, innovations {εt}, and 

stationary return series {yt}.  

X is an explanatory regression matrix in which each column 

is a time series. X(t, k) denotes the tth row and κth column of 

this matrix.  

The eigenvalues {λ i} associated with the characteristic AR 

polynomial  

λR – φ1 λR-1 -  φ1 λR-2 - ….. φR must lie inside the unit circle 

to ensure stationarity. Similarly, the eigen values associated 

with the characteristic MA polynomial1 

λM – φ1 λM-1 +  φ1 λM-2 + ….. φM must lie inside the unit circle 

to ensure invertibility. 

 

The form of EGARCH (P, Q) Models 
The general EGARCH (P, Q) model ([7]) for the conditional 

variance of the innovations, with leverage terms and an 

explicit probability distribution assumption, is 
 

log σ2
t = k + ΣP i=1Gi log σ2

t-1 + ΣQ j=1Aj log σ2
t-1 

 

for the Student’s t distribution, with degrees of freedom > 2. 

 

ΣP i=1Gi  + ΣQ j=1Aj + ½ ΣQ j=1Lj <1 

k>0 

Gi ≥ 0 i = 1, 2, ….. P 

Aj ≥ 0 j = 1, 2, ….. Q 

Aj + Lj ≥ 0 j = 1, 2, ….. Q 

 

The form of GJR-GARCH (P, Q) Models 
The general GJR-GARCH (P, Q) model for the conditional 

variance of the innovations with leverage terms is 

 

σ2
t = k + ΣP

i=1Gi σ
2

t-1  + ΣQ
j=1Ajε

2
t-j + ΣQ

j=1LjSt-jε
2
t-j 

ΣP i=1Gi  + ΣQ j=1Aj + ½ ΣQ j=1Lj <1 

k>0 

Gi ≥ 0 i = 1, 2, ….. P 

Aj ≥ 0 j = 1, 2, ….. Q 

Aj + Lj ≥ 0 j = 1, 2, ….. Q 

 

Use of Maximum likelihood Estimation 
To estimate the parameters of GARCH models, this study 

used MATLAB7.0 garchfit function. The garchfit function 

calls the appropriate log-likelihood objective function to 

estimate the model parameters using maximum likelihood 

estimation (MLE). 

 

Use of model selection criteria AIC and BIC 
AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion) are proposed by Akaike (1974) and 

Schwarz (1978) respectively. 

 

Results 

Model Identification  
This study used AIC and BIC criterion and list the result as 

follows: 

Table 1: GARCH models AIC and BIC Comparison 
 

 GARCH(1,1) GARCH(1,2) GARCH(2,1) 

AIC 1.0e+004*( -1.313796) 1.0e+004*( -1.312641) 1.0e+004*( -1.312441) 

BIC -1.3109925 -1.310398 -1.309638 

 

Model estimation 
 
Table 2: GARCH (1, 1) model Diagnostic Checking (significance 

level α=0.05) 
 

lag H p-value Q-Statitic Critical value 

10 0 0.1482 14.5789 18.3070 

15 0 0.1842 19.6896 24.9958 

20 0 0.4073 20.8290 31.4104 

 
Table 3: GJR-GARCH (1, 1) model Diagnostic Checking (=0.05) 

 

lag H p-value Q-Statitic Critical value 

10 0 0.2621 12.3532 18.3070 

15 0 0.2917 17.4671 24.9958 

20 0 0.5438 18.6629 31.4104 

 

GARCH models are consistent with various forms of 

efficient market theory. These theories state that asset returns 

observed in the past cannot improve the forecasts of asset 

returns in the future. Since GARCH innovations {εt} are  

serially uncorrelated, GARCH modeling does not violate 

efficient market theory. 

 

Conclusion 
Both GARCH (P, Q) model and GJR-GARCH (P, Q) model 

are good choices for forecasting volatility in financial market, 

especially for describing heteroscedastic time series. It 

should not be neglected that GARCH (P, Q) model responds 

equally to positive and negative shocks. To overcome its 

weakness, we use GJR-GARCH (1, 1) model and catch some 

leverage effects successfully which makes our prediction 

more reliable and accurate. However, recent empirical studies 

of high-frequency financial time series indicate that the tail 

behavior of GARCH models remains too short even with 

standardized Student-t innovations. So, GARCH models are 

only part of a solution. To make financial decisions, it is 

always necessary to connect GARCH models with other 

methods such as fundamental analysis. For instance, 

fundamental analysis can examine all relevant factors 

affecting the stock price in order to determine an intrinsic 
value for that stock. 
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