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Abstract

Ramsey's theorem states that there exists a least positive
integer R(r, s) for which every blue-red edge colouring of the
complete graph on R(r, s) vertices contains a blue clique
on r vertices or a red clique on s vertices. This work contains
a simplified proof of Anti-Ramsey theorem for cycles. If
there is an edge e between H and HO, incident to, say, some

incident to v of the same color as e in H, so the resulting graph
G™ has a connected component of order > 2( k+1/2 ), which
contradicts that every connected component is of order <k —
1. Since each component is Hamiltonian and of order > k+1/
2, to avoid a rainbow Ck, by the same type of argument as in
Claim 1, we must have that |c(H, HO )| = 1.

v € H of color from NEWCc(v), then we can make H and HO
connected by adding the edge e and deleting some edge
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Introduction

For a graph H, the classical anti-Ramsey number AR(n, H) is the maximum number of colors in a coloring of edges of Kn with
no rainbow copy of H. It was introduced by Erdos, Simonovits and S os [1975]. When His a cycle of length k, Ck, they provided
a rainbow Ck-free coloring of edges of Kn with n {k—2/2 + 1/k—1} + O(1) colors and conjectured that this is optimal. They
proved the conjecture for k = 3. Alon ™ proved the conjecture for k = 4 and derived an upper bound for general k. In [, Jiang
and West improved the general upper bound and mentioned that the conjecture has been proven for k < 7. Finally, Montellano-
Ballesteros and Neumann-Lara (2005) proved the conjecture completely. The main technique used in the previous study is a
careful, detailed analysis of a graph representing the coloring, in particular, proving that each component of such a graph is
Hamiltonian if each vertex has enough “new” colors. This paper uses the same idea as in earlier study, but shortens the proof.

Theorem 1. Fork >3 andn € N,
AR, Ck)<n {k—-2/2+1/k-1} -1

Definitions and proofs of main results

Let K = Kn for a fixed n. For an edge coloring c of K, and a vertex v € V (K), let the set of new colors at v, NEWc(V), be the set
of colors used on edges between v and V (K)\{v}, but not used on edges spanned by V (K) \ {v}. Let newc(v) = [INEWc(V)|.
Then the number of colors used by ¢ on K, |c|, equals newc(v) + |c(K — V)|, where for a subgraph H of K, |c(H)| denotes the
number of colors used by ¢ on the edges of H. Here we simply have written |c| instead of |c(K)|. For pairwise disjoint subsets X,
Y, Z of V (K), let K[X] be the subgraph induced by X, K[X, Y ] the bipartite subgraph induced by X and Y , K[X, Y, Z] the
tripartite subgraph induced by X, Y, and Z. Then the corresponding sets of colors used in those subgraphs are denoted by c(X),
c(X, Y), and c(X, Y, Z) respectively. For a subgraph H of a graph G and a vertex v of G, let degH(v) := [NG(v) N V (H)|. We
now state a version of the Dirac and Ore’s theorems for Hamiltonian cycle which is essential for our proofs.

Theorem 2 (Dirac, 1952; Ore, 1960). Let P = v1, v2, ..., vm, m > 3, be a path in a connected graph G. Suppose degP (v1) +
degP (vm) > m.

1. ThenV (P) contains a cycle of length min G.
2. IfPisalongest path in G, then G is Hamiltonian.

We define a few special edge colorings of a complete graph with no rainbow Ck. We say that an edge-coloring ¢ of K is weak
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k-anticyclic if there is a partition of V (K) into sets V1, ..., Vtwith 1 <|Vi|<k—1,i=1,...,t, such that (i) for any i, j with

1<i<j<t, |e(Vi, Vj) =1;(ii) foranyi, j, " with | <i<j<
<t le(Vi, Vj, V)| <2; and (iii) ¢ has no rainbow Ck. In
addition, if all but at most one of the parts of the partition are
exactly of size k — 1 and the edges spanned by each Vi have
own colors (i.e., colors used only once), then c is called k-
anticyclic.

We denote a fixed coloring from the set of k-anticyclic
colorings of Kn such that the color of any edge between Vi
and Vj is min{i, j}, by c = . Then we easily see the following.
Lemma 2.2. If ¢ is weak k-anticyclic, then

o/ <le*|<n{k-2/2+1Kk-1} - 1.

Next lemma is the main tool for the proof of the main
theorem. It appears in a different form in [Montellano-
Ballesteros and Neumann-Lara (2005), Lemma 9]. We
include it here for completeness.

Lemma 2.2. Letk >4. Let ¢ be an edge-coloring of K with no
rainbow Ck. If for all x, y € V (K) with x 6=y, newc(x) > 2
and newc(x) + newc(y) > k — 1, (3.1) then c is weak k-
anticyclic. Proof. Consider a representing graph G of c such
that it spans K and has exactly one edge of each color from
{NEWc(v)| v € V (K)}. The hypothesis (3.1) gives a bound
on degrees of vertices in G, namely the sum of degrees of two
distinct vertices in G is at least k — 1. In the following, H
denotes a connected component of G.

Claim 1 If there is a cycle of length k — 1 in H, then |V (H)| =
Gl B (1.2

Suppose not, i.e., there is a cycle, (v1, ..., vk—1, vl),and V
(H)\{v1, ..., vk—1} 6= @. Since H is connected, some u €
V (H)\ {vl,..., vk—1} is adjacent to some vertex in {v1, ..
., vk—1}, say vl. If c¢(u, vl) € NEWc(v1), then c(u, v2) =
c(v2, v3); otherwise (vl, u, v2, v3, ..., vk—1, vl)inKis a
rainbow Ck. Similarly c(u, v3) = ¢(v3, v4), . . ., c(u, vk—1) =
c(vk—1, vl), and eventually c(u, vl) = c(vl, v2), which
contradicts that uvl and v1v2 are edges of H. Hence c(u, v1)
€ NEWCc(u). By the similar argument as above, we have c(u,
{vl, ..., vk=1})=c(u, vl) € NEWc(u). Since we assumed
newc(u) > 2, there is w € V (H)\ {v1, . . ., vk—1, u} with c(u,
w) € NEWc(u) and c(u, w) 6= c(u, v1). Considering cycles
of length k in K, (vk—2, u, w, vl, v2, .. ., vk—2) and (vl, w,
u, v3,. .., vk—1, vl), we have c(w, vl)=c(vl, v2) = c(vk—1,
v1), which contradicts that vlv2 and vk—1vI are edges of H.
Claim 2 k+1/2 < |V (H)| <k — 1 ((Hence H is Hamiltonian
from by (1.1) and Theorem 1

The lower bound follows from (3.1). If in H every path has at
most k — 1 vertices or there is a cycle of length k — 1, then
from Theorem 1 and Claim 1, we have that the upper bound
holds. Hence we may assume that in H there is a path on at
least k vertices, but no Ck—1. In particular, we can find a path,
vl, ..., vk satisfying c(vk—1, vk) € NEWc¢(vk—1) since (i)
considering P1 = vl, . . ., vk—1, to avoid Ck—1, we have
degP1 (v1) + degP1 (vk—1) <k — 1; (ii) from (1.1), without
loss of generality we can find a vk € V (H) \ VV (P1) such that
vk—1vk is an edge of H and c(vk—1, vk) € NEW¢(vk—1). Let
P2 :=v2, ..., vk. Then degP2 (v2) > newc(v2), (3.2) since
otherwise there is x € V (H) \ V (P2) such that c(x, v2) €
NEWCc(v2) and c(x, v2) 6= c(v2, v3), in which case we obtain
arainbow Ck in K, namely (x, v2, .. ., VK, X). Also we have
degP2 (vk) < newc(vk) since otherwise together with (3.2), V
(P2) induces a cycle of length k —1 in H by Theorem 1.
Therefore we can find a vk+1 € V (H) \ V (P2) such that
vkvk+1 is an edge of H and c(vk, vk+1) € NEWc(vk). Note

that vk+1 6= V2 since otherwise (v2, . . ., VK, v2) is a rainbow
Ck—1 in H. Let P3 :=v3, . .., vk, vk+1. Then degP3 (v3) >
newc(v3), (3.3) since otherwise there isy € V (H) \ V (P3)
such that c(y, v3) € NEWc(v3) and c(y, v3) 6= c(v3, v4), so
(y, v3, ..., vk+1,y)is arainbow Ck in K. Now we note that
c(v2, vk+1) = c(v2, v3) to avoid a rainbow Ck induced by
{v2,...,vk+1}inK LetS={i+1|v2vi € E(H),i=3,...
,k—1}and T={j|v3vj €E(H),j=4,...,k}.S0S, T c {4,
..., k} and |[S| + |T| = newc(v2) + newe(v3) > k — 1. Thus |S
NT|>2.Leti+ 1 €S N Twhere i 6=3. Then (v2, vi, vi—1,
co, V38, ViDL vit2, L, VK+D, V2) s a rainbow Ck

Claim 3 For any two components H and HO of G, |c(H, HO )|
=1

If there is an edge e between H and HO, incident to, say, some
v € H of color from NEWc(v), then we can make H and HO
connected by adding the edge e and deleting some edge
incident to v of the same color as e in H, so the resulting graph
G™ has a connected component of order > 2( k+1/2 ), which
contradicts that every connected component is of order <k —
1. Hence the colors of edges between H and HO are not from
¢(H) nor from c(HO ). Since each component is Hamiltonian
and of order > k+1/ 2 , to avoid a rainbow Ck, by the same
type of argument as in Claim 1, we must have that |c(H, HO
=1
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