International Journal of Multidisciplinary Research and Growth Evaluation

International Journal of Multidisciplinary Research and Growth Evaluation
ISSN: 2582-7138
Received: 08-04-2021; Accepted: 26-04-2021
www.allmultidisciplinaryjournal.com

Volume 2; Issue 3; May-June 2021; Page No. 108-109

A short proof of anti-Ramsey number for cycles

Noorya Yousifi
Lecturer, Department of Mathematics, Education Faculty, Jawzjan University, Afghanistan
Corresponding Author: Noorya Yousifi
DOI: https://doi.org/10.54660/.JJMRGE.2021.2.3.108-109

Abstract

Ramsey's theorem states that there exists a least positive integer $R(r, s)$ for which every blue-red edge colouring of the complete graph on $\mathrm{R}(\mathrm{r}, \mathrm{s})$ vertices contains a blue clique on r vertices or a red clique on s vertices. This work contains a simplified proof of Anti-Ramsey theorem for cycles. If there is an edge e between H and H 0 , incident to, say, some $\mathrm{v} \in \mathrm{H}$ of color from NEWc(v), then we can make H and H 0 connected by adding the edge e and deleting some edge

incident to vof the same color as e in H , so the resulting graph G^{\sim} has a connected component of order $\geq 2(\mathrm{k}+1 / 2)$, which contradicts that every connected component is of order $\leq \mathrm{k}-$ 1. Since each component is Hamiltonian and of order $\geq k+1 /$ 2 , to avoid a rainbow Ck , by the same type of argument as in Claim 1, we must have that $|\mathrm{c}(\mathrm{H}, \mathrm{H} 0)|=1$.

Keywords: Ramsey's theorem, anti-ramsey, edge colouring

Introduction

For a graph H , the classical anti-Ramsey number $\mathrm{AR}(\mathrm{n}, \mathrm{H})$ is the maximum number of colors in a coloring of edges of Kn with no rainbow copy of H. It was introduced by Erdos, Simonovits and S'os [1975]. When H is a cycle of length k, Ck, they provided a rainbow Ck-free coloring of edges of Kn with $\mathrm{n}\{\mathrm{k}-2 / 2+1 / \mathrm{k}-1\}+\mathrm{O}(1)$ colors and conjectured that this is optimal. They proved the conjecture for $\mathrm{k}=3$. Alon ${ }^{[1]}$ proved the conjecture for $\mathrm{k}=4$ and derived an upper bound for general k . In ${ }^{[4]}$, Jiang and West improved the general upper bound and mentioned that the conjecture has been proven for $\mathrm{k} \leq 7$. Finally, MontellanoBallesteros and Neumann-Lara (2005) proved the conjecture completely. The main technique used in the previous study is a careful, detailed analysis of a graph representing the coloring, in particular, proving that each component of such a graph is Hamiltonian if each vertex has enough "new" colors. This paper uses the same idea as in earlier study, but shortens the proof.

Theorem 1. For $\mathrm{k} \geq 3$ and $\mathrm{n} \in \mathrm{N}$,

$$
\mathrm{AR}(\mathrm{n}, \mathrm{Ck}) \leq \mathrm{n}\{\mathrm{k}-2 / 2+1 / \mathrm{k}-1\}-1
$$

Definitions and proofs of main results

Let $K=K n$ for a fixed n. For an edge coloring c of K, and a vertex $v \in V(K)$, let the set of new colors at v, NEWc(v), be the set of colors used on edges between v and $\mathrm{V}(\mathrm{K}) \backslash\{\mathrm{v}\}$, but not used on edges spanned by $\mathrm{V}(\mathrm{K}) \backslash\{\mathrm{v}\}$. Let newc $(\mathrm{v})=|\mathrm{NEWc}(\mathrm{v})|$. Then the number of colors used by c on $\mathrm{K},|\mathrm{c}|$, equals newc $(\mathrm{v})+|\mathrm{c}(\mathrm{K}-\mathrm{v})|$, where for a subgraph H of $\mathrm{K},|\mathrm{c}(\mathrm{H})|$ denotes the number of colors used by c on the edges of H. Here we simply have written $|c|$ instead of $|c(K)|$. For pairwise disjoint subsets X, Y, Z of $\mathrm{V}(\mathrm{K})$, let $\mathrm{K}[\mathrm{X}]$ be the subgraph induced by $\mathrm{X}, \mathrm{K}[\mathrm{X}, \mathrm{Y}]$ the bipartite subgraph induced by X and $\mathrm{Y}, \mathrm{K}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$ the tripartite subgraph induced by X, Y, and Z. Then the corresponding sets of colors used in those subgraphs are denoted by $c(X)$, $c(X, Y)$, and $c(X, Y, Z)$ respectively. For a subgraph H of a graph G and a vertex v of G, let $\operatorname{deg} H(v):=|N G(v) \cap V(H)|$. We now state a version of the Dirac and Ore's theorems for Hamiltonian cycle which is essential for our proofs.
Theorem 2 (Dirac, 1952; Ore, 1960). Let $P=v 1, v 2, \ldots, v m, m \geq 3$, be a path in a connected graph G. Suppose degP (v1) + $\operatorname{deg} P(\mathrm{vm}) \geq \mathrm{m}$.

1. Then $\mathrm{V}(\mathrm{P})$ contains a cycle of length m in G .
2. If P is a longest path in G , then G is Hamiltonian.

We define a few special edge colorings of a complete graph with no rainbow Ck . We say that an edge-coloring c of K is weak
k -anticyclic if there is a partition of $\mathrm{V}(\mathrm{K})$ into sets $\mathrm{V} 1, \ldots$, $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{t},|\mathrm{c}(\mathrm{Vi}, \mathrm{Vj})|=1$; (ii) for any i, j, ` with \(1 \leq \mathrm{i}<\mathrm{j}<\) \({ }^{`} \leq \mathrm{t},\left|\mathrm{c}\left(\mathrm{Vi}, \mathrm{Vj}, \mathrm{V}^{`}\right)\right| \leq 2\); and (iii) c has no rainbow Ck. In addition, if all but at most one of the parts of the partition are exactly of size $\mathrm{k}-1$ and the edges spanned by each Vi have own colors (i.e., colors used only once), then c is called k anticyclic.
We denote a fixed coloring from the set of k-anticyclic colorings of Kn such that the color of any edge between Vi and Vj is $\min \{\mathrm{i}, \mathrm{j}\}$, by $\mathrm{c} *$. Then we easily see the following. Lemma 2.2. If c is weak k -anticyclic, then

$$
|\mathrm{c}| \leq|\mathrm{c} *| \leq \mathrm{n}\{\mathrm{k}-2 / 2+1 / \mathrm{k}-1\}-1 .
$$

Next lemma is the main tool for the proof of the main theorem. It appears in a different form in [MontellanoBallesteros and Neumann-Lara (2005), Lemma 9]. We include it here for completeness.
Lemma 2.2. Let $\mathrm{k} \geq 4$. Let c be an edge-coloring of K with no rainbow $C k$. If for all $x, y \in V(K)$ with $x=y$, newc $(x) \geq 2$ and newc $(\mathrm{x})+\operatorname{newc}(\mathrm{y}) \geq \mathrm{k}-1$, (3.1) then c is weak k anticyclic. Proof. Consider a representing graph G of c such that it spans K and has exactly one edge of each color from $\{N E W c(v) \mid v \in V(K)\}$. The hypothesis (3.1) gives a bound on degrees of vertices in G, namely the sum of degrees of two distinct vertices in G is at least $k-1$. In the following, H denotes a connected component of G.
Claim 1 If there is a cycle of length $\mathrm{k}-1$ in H , then $|\mathrm{V}(\mathrm{H})|=$ k-1. \qquad (1.1)

Suppose not, i.e., there is a cycle, ($\mathrm{v} 1, \ldots, \mathrm{vk}-1, \mathrm{v} 1$), and V (H) $\backslash\{v 1, \ldots, v k-1\} 6=\varnothing$. Since H is connected, some $u \in$ $\mathrm{V}(\mathrm{H}) \backslash\{\mathrm{v} 1, \ldots, \mathrm{vk}-1\}$ is adjacent to some vertex in $\{\mathrm{v} 1, \ldots$. , vk-1\}, say v 1 . If $\mathrm{c}(\mathrm{u}, \mathrm{v} 1) \in \operatorname{NEWc}(\mathrm{v} 1)$, then $\mathrm{c}(\mathrm{u}, \mathrm{v} 2)=$ $\mathrm{c}(\mathrm{v} 2, \mathrm{v} 3)$; otherwise ($\mathrm{v} 1, \mathrm{u}, \mathrm{v} 2, \mathrm{v} 3, \ldots, \mathrm{vk}-1, \mathrm{v} 1$) in K is a rainbow Ck . Similarly $c(u, v 3)=c(v 3, v 4), \ldots, c(u, v k-1)=$ $\mathrm{c}(\mathrm{vk}-1, \mathrm{v} 1)$, and eventually $\mathrm{c}(\mathrm{u}, \mathrm{v} 1)=\mathrm{c}(\mathrm{v} 1, \mathrm{v} 2)$, which contradicts that uv1 and v1v2 are edges of H. Hence c(u, v1) $\in \operatorname{NEWc}(\mathrm{u})$. By the similar argument as above, we have $c(u$, $\{\mathrm{v} 1, \ldots, \mathrm{vk}-1\})=\mathrm{c}(\mathrm{u}, \mathrm{v} 1) \in \operatorname{NEWc}(\mathrm{u})$. Since we assumed newc $(\mathrm{u}) \geq 2$, there is $\mathrm{w} \in \mathrm{V}(\mathrm{H}) \backslash\{\mathrm{v} 1, \ldots, \mathrm{vk}-1, \mathrm{u}\}$ with $\mathrm{c}(\mathrm{u}$, $w) \in \operatorname{NEWc}(u)$ and $c(u, w) 6=c(u, v 1)$. Considering cycles of length k in K , ($\mathrm{vk}-2, \mathrm{u}, \mathrm{w}, \mathrm{v} 1, \mathrm{v} 2, \ldots$. $\mathrm{vk}-2$) and ($\mathrm{v} 1, \mathrm{w}$, $u, v 3, \ldots, v k-1, v 1)$, we have $c(w, v 1)=c(v 1, v 2)=c(v k-1$, v 1), which contradicts that v 1 v 2 and $\mathrm{vk}-1 \mathrm{v} 1$ are edges of H . Claim $2 \mathrm{k}+1 / 2 \leq|\mathrm{V}(\mathrm{H})| \leq \mathrm{k}-1$ ((Hence H is Hamiltonian from by (1.1) and Theorem 1
The lower bound follows from (3.1). If in Hevery path has at most $\mathrm{k}-1$ vertices or there is a cycle of length $\mathrm{k}-1$, then from Theorem 1 and Claim 1, we have that the upper bound holds. Hence we may assume that in H there is a path on at least k vertices, but no $\mathrm{Ck}-1$. In particular, we can find a path, $\mathrm{v} 1, \ldots$, vk satisfying $\mathrm{c}(\mathrm{vk}-1, \mathrm{vk}) \in \operatorname{NEWc}(\mathrm{vk}-1)$ since (i) considering P1 $:=\mathrm{v} 1, \ldots$, $\mathrm{vk}-1$, to avoid $\mathrm{Ck}-1$, we have $\operatorname{degP} 1(\mathrm{v} 1)+\operatorname{degP} 1(\mathrm{vk}-1)<\mathrm{k}-1$; (ii) from (1.1), without loss of generality we can find a $v k \in V(H) \backslash V(P 1)$ such that $\mathrm{vk}-1 \mathrm{vk}$ is an edge of H and $\mathrm{c}(\mathrm{vk}-1, \mathrm{vk}) \in \operatorname{NEWc}(\mathrm{vk}-1)$. Let $\mathrm{P} 2:=\mathrm{v} 2, \ldots$, vk. Then $\operatorname{degP} 2(\mathrm{v} 2) \geq$ newc (v2), (3.2) since otherwise there is $x \in V(H) \backslash V(P 2)$ such that $c(x, v 2) \in$ NEWc(v2) and c(x, v2) 6=c(v2, v3), in which case we obtain a rainbow Ck in K , namely ($\mathrm{x}, \mathrm{v} 2, \ldots, \mathrm{vk}, \mathrm{x}$). Also we have degP2 (vk) < newc(vk) since otherwise together with (3.2), V (P2) induces a cycle of length $\mathrm{k}-1$ in H by Theorem 1. Therefore we can find a $\mathrm{vk}+1 \in \mathrm{~V}(\mathrm{H}) \backslash \mathrm{V}(\mathrm{P} 2)$ such that $\mathrm{vkvk}+1$ is an edge of H and $\mathrm{c}(\mathrm{vk}, \mathrm{vk}+1) \in \operatorname{NEWc}(\mathrm{vk})$. Note

Vt with $1 \leq|\mathrm{Vi}| \leq k-1, i=1, \ldots, \mathrm{t}$, such that (i) for any i, j with that $\mathrm{vk}+16=\mathrm{v} 2$ since otherwise $(\mathrm{v} 2, \ldots, \mathrm{vk}, \mathrm{v} 2)$ is a rainbow $\mathrm{Ck}-1$ in H. Let P3:= v3, . . , vk, vk+1. Then $\operatorname{degP} 3(\mathrm{v} 3) \geq$ newc(v3), (3.3) since otherwise there is $y \in V(H) \backslash V(P 3)$ such that $c(y, v 3) \in \operatorname{NEWc}(v 3)$ and $c(y, v 3) 6=c(v 3, v 4)$, so ($\mathrm{y}, \mathrm{v} 3, \ldots, \mathrm{vk}+1, \mathrm{y}$) is a rainbow Ck in K . Now we note that $\mathrm{c}(\mathrm{v} 2, \mathrm{vk}+1)=\mathrm{c}(\mathrm{v} 2, \mathrm{v} 3)$ to avoid a rainbow Ck induced by $\{\mathrm{v} 2, \ldots, \mathrm{vk}+1\}$ in K. Let $\mathrm{S}=\{\mathrm{i}+1 \mid \mathrm{v} 2 \mathrm{vi} \in \mathrm{E}(\mathrm{H}), \mathrm{i}=3, \ldots$ $, k-1\}$ and $T=\{j \mid v 3 v j \in E(H), j=4, \ldots, k\} . S o S, T \subseteq\{4$, $\ldots, \mathrm{k}\}$ and $|\mathrm{S}|+|\mathrm{T}| \geq$ newc $(\mathrm{v} 2)+$ newc $(\mathrm{v} 3) \geq \mathrm{k}-1$. Thus $\mid \mathrm{S}$ $\cap \mathrm{T} \mid \geq 2$. Let $\mathrm{i}+1 \in \mathrm{~S} \cap \mathrm{~T}$ where $\mathrm{i} 6=3$. Then (v 2 , vi, vi-1, $\ldots, \mathrm{v} 3, \mathrm{vi}+1, \mathrm{vi}+2, \ldots, \mathrm{vk}+1, \mathrm{v} 2$) is a rainbow Ck

Claim 3 For any two components H and H 0 of $\mathrm{G},|\mathrm{c}(\mathrm{H}, \mathrm{H} 0)|$ = 1
If there is an edge e between H and H 0 , incident to, say, some $\mathrm{v} \in \mathrm{H}$ of color from NEWc(v), then we can make H and H 0 connected by adding the edge e and deleting some edge incident to vof the same color as e in H , so the resulting graph G^{\sim} has a connected component of order $\geq 2(\mathrm{k}+1 / 2)$, which contradicts that every connected component is of order $\leq \mathrm{k}-$ 1. Hence the colors of edges between H and H 0 are not from $\mathrm{c}(\mathrm{H})$ nor from $\mathrm{c}(\mathrm{H} 0)$. Since each component is Hamiltonian and of order $\geq k+1 / 2$, to avoid a rainbow Ck , by the same type of argument as in Claim 1, we must have that $\mid \mathrm{c}(\mathrm{H}, \mathrm{H} 0$) $\mid=1$

References

1. Alon N. On a conjecture of Erd"os, Simonovits, and S'os concerning anti-Ramsey theorems, J. Graph Theory. 1983; 1:91-94.
2. Dirac GA. Some theorems on abstract graphs, Proc. Lond. Math. Soc. 1952; 2:69-81.
3. Erd"os P, Simonovits M, S'os VT. Anti-Ramsey theorems, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erd"os on his 60th birthday), Vol. II, pp. 633-643. Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
4. Jiang T, West D. On the Erd"os-Simonovits-S'os Conjecture on the anti-Ramsey number of a cycle, Combin. Probab. Comput. 2003; 12:585-598.
5. Montellano-Ballesteros JJ, Neumann-Lara V. An antiRamsey theorem on cycles, Graphs Combin. 2005; 21(3):343-354.
6. Ore O. A Note on Hamiltonian Circuits, American Mathematical Monthly. 1960; 67:55.
7. Schiermeyer I. Rainbow 5- and 6-cycles: A proof of the conjecture of Erd"os, Simonovits and S'os, Preprint, TU Bergakademie Freiberg, 2001.
