
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 22 | P a g e

Social distance monitor using AI vision based on python

Sakthi Sridevi S 1*, Sinduja K 2, Vinothini G 3, Dr. S Subashree 4
1-3 Department of Computer Science & Engineering, E.G.S Pillay Engineering College, Nagpattinam, Tamil Nadu, India
4 Ph.D., Computer Science & Engineering Department, E.G.S Pillay Engineering College, Nagpattinam, Tamil Nadu, India

* Corresponding Author: Sakthi Sridevi S

Article Info

ISSN (online): 2582-7138

Volume: 04

Issue: 03

May-June 2023

Received: 24-03-2023;

Accepted: 18-04-2023

Page No: 22-30

Abstract
Social distancing is a recommended solution by the World Health Organization

(WHO) to minimize the spread of COVID-19 in public places. The majority of

governments and national health authorities have set the 2-meter physical distancing

as a mandatory safety measure in shopping centers, schools and other covered areas.

In this research, we develop a generic Deep Neural Network-Based model for

automated people detection, tracking, and inter-people distances estimation in the
crowd, using common CCTV security cameras. The proposed model includes a YOLO

v4-based framework and inverse perspective mapping for accurate people detection

and social distancing monitoring in challenging conditions, including people

occlusion, partial visibility, and lighting variations. We identify high-risk zones with

the highest possibility of virus spread and infections. This may help authorities to

redesign the layout of a public place or to take precaution actions to mitigate high-risk

zones. The efficiency of the proposed methodology is evaluated on the Oxford Town

Centre dataset, with superior performance in terms of accuracy and speed compared

to three state-of-the-art methods.

Keywords: Social distancing, AI -Artificial intelligence, Machine learning, Deep learning, YOLO v4, DNN, Coviid-19

1. Introduction
The novel generation of the corona virus disease

(COVID-19) was reported in late December 2019 in Wuhan, China. After only a few months, the virus was hit by the global

outbreak in 2020. On May 2020 The World Health Organization (WHO) announced the situation as the pandemic. The statistics

by WHO on 26 August 2020 confirms 23.8 million infected people in 200 countries. The mortality rate of the infectious virus

also shows a scary number of 815,000 people. With the growing trend of patients, there is still no effective cure or available

treatment for the virus. While scientists, healthcare organizations, and researchers are continuously working to produce

appropriate medications or vaccines for the deadly virus, no definite success has been reported at the time of this research, and

there are no certain treatments or recommendation to prevent or cure this new disease. Therefore, precautions are taken by the

whole world to limit the spread of infection. These harsh conditions have forced the global communities to look for alternative

ways to reduce the spread of the virus. Social distancing, precaution actions to prevent the proliferation of the disease, by

minimizing the proximity of human physical contacts in covered or crowded public places.

2. Related Work
In Recent paper [1] Centroid tracking algorithm is used for calculating pairwise distances between the objects. To automate the
process of monitoring the social distancing it is an efficient real-time deep learning based framework.

Deep learning technique, addressed in paper [2] It is important to monitor the social distance and wear masks at public places and

take actions accordingly. This tool was developed to alert humans to maintain a safe distance with each other by video feed.

Deep learning gained more attention in object detection which is used for human detection purposes.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 23 | P a g e

The video frame from the camera is used as input, and the

open-source object detection YOLOv3 object detection is

used to identify humans in video sequences.

Paper [3] proposed presented creating a system for person

detection for monitoring crowd social distance. In the first

part, we used deep learning approach for the object detection

where we trained a model that reached good performances for

the task. For the social distance and location calculation, we

have developed a method based on triangulation equations to

transform from the image pixel space to 3D world space and

calculating the distance between each pair of persons, and
then we did a proof of concept test using phone camera and

measurements.

In paper [4] this tail tracking and social distance robot, we can

calculate the distance between people and limit the

development of viral diseases, especially where social

distance is an important factor. Used in all queues of banks,

government agencies, shopping malls, theatres, etc.

In paper [5]. This paper proposes a wearable social distancing

detector that uses a microcontroller with an ultrasonic sensor

to detect the distance between two persons and provides a

warning if the person fails to obey the rule. The system could

perform social distancing detection accurately and can assist

in the Arduino UNO.

Paper [6] This tool could assist the efforts of the governments

to regulate the virus. It are often implemented in closed areas

or institutions, monitor the extent of people's commitment,

and supply analysis and a faster approach to detect possibly

corona suspicion cases. The results showed the success of our
approach in detecting the distance with accurate measures of

the important world coordinates.

Paper [7] present a queue management tool that can be used to

allow people that wait for a service practice social distancing.

Paper [8] proposed a method of design optimisation for

managing the rearrangement of physical spaces with social

distancing constraints in the wake of the COVID-19

pandemic.

In paper [9] this paper first took advantage of interest inclusion

and intersection, combined geographical information

(location) and social information (interest). Then the concept

of geo-social distance together with a data dissemination

strategy (called GSD) have been presented to assist nodes to

choose appropriate forwarders in a conference scenario.

In paper [10] propose computer vision-based social distancing

monitoring by using background subtraction method. This

method has potency to measure and detect persons position
and measure the distance of each other. This method also

offers low computational process so the need of an additional

hardware such as GPU is unnecessary. In this works, we

compared background several subtraction method such as

Geometric Multigrid (GMG), k-Nearest Neighbor (KNN),

Mixture of Gaussian (MOG), and Mixture of Gaussian 2

(MOG2).

In paper [11] The proposed framework leverages the Mask R-

CNN deep neural network to detect people in a video frame.

To consistently identify whether social distancing is practiced

during the interaction between people, a centroid tracking

algorithm is utilised to track the subjects over the course of

the footage. With the aid of authentic algorithms for

approximating the distance of people from the camera and

between themselves.

We determine whether the social distancing guidelines are

being adhered to.

This paper [12] This paper proposes a different approach to

monitor social distancing, using cameras, and combining

different computer vision algorithms. The approach utilizes

the concept of inverse perspective mapping (IPM) together

with the camera’s intrinsic information to produce a bird’s

eye view with real-world coordinates of the frame being

processed from a video source. The process starts with image

enhancement, foreground detection using Gaussian Mixture

Model (GMM) background subtraction, tracking using
Kalman filter, computing real-world distance measurements

between individuals, and detecting those who have been in

less than 2 meters apart as they are considered to be in

contact.

In paper [13] There are many advantages for using the smart

cap. It is easy to use and very cheap. It helps prevent the

infection and spread of contagious diseases. It can be reused

for a long period of time. Cleaning of the cap is also possible.

The shield in the cap also helps replace the mask and gave

clear visibility to the facial expressions and lip movement to

increase the effectiveness of the conversations and

understand emotions clearer.

3. Methodology
The proposed system focuses On how to identify the person

on image/video stream whether the social distancing is

maintained or not with the help of computer vision and deep

learning algorithm by using the OpenCV, Tensor flow
library.

We propose and implement a AI based Social distance

monitoring system to help to avoid human interaction in

public places. Rising AI technology for a secure, transparent

and decentralized coordination platform. To deploy pre-

trained YOLOv3 for human detection and computing their

bounding box centroid information. In addition, a transfer

learning method is applied to enhance the performance of the

model. The additional training is performed with overhead

data set, and the newly trained layer is appended to the pre-

trained model.

In order to track the social distance between individuals, the

Euclidean distance is used to approximate the distance

between each pair of the centroid of the bounding box

detected. In addition, a social distance violation threshold is

specified using a pixel to distance estimation. Utilizing a

centroid tracking algorithm to keep track of the person who
violates the social distance threshold.

A. Advantages

Having social distancing detection in the workplace is a great

way of reassuring staff that the workplace has been made safe

for their benefit. The solution is also safer than the thermal

cameras – those without a fever can also be contagious.

With the detection software you will have the ability to see

which areas gain the most traction and are the offices

‘hotspots. From this data you will then be able to put the most

relevant safety measures in place.

The technology isn’t just for the office, for example, at a

factory where employees are very close to each other, the

software can be integrated into their security camera systems.

Allowing them to monitor the working environment and

highlight people whose distancing is below the minimum

acceptable distance.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 24 | P a g e

Fig 1: Architecture Diagram

4. Implementation

A. Tensorflow
Tensorflow is a symbolic math library based on dataflow and

differentiable programming. It is used for both research and

production at Google. Its flexible architecture allows for the

easy deployment of computation across a variety of platforms

(CPUs, GPUs, TPUs), and from desktops to clusters of

servers to mobile and edge devices.

Tensor Flow computations are expressed as stateful dataflow

graphs. The name Tensor Flow derives from the operations
that such neural networks perform on multidimensional data

arrays, which are referred to as tensors.

TensorFlow provides stable Python (for version 3.7 across all

platforms) and C APIs; and without API backwards

compatibility guarantee: C++, Go, Java, JavaScript and Swift

(archived and development has ceased). Third-party

packages are available for C#, Haskell, Julia, MATLAB, R,

Scala, Rust, OCaml, and Crystal.

"New language support should be built on top of the C API.

B. Yolo v3
YOLO V3 is an improvement over previous YOLO detection

networks. Compared to prior versions, it features multi-scale

detection, stronger feature extractor network, and some

changes in the lossfunction. As a result, this network can now

detect many more targets from big to small. And, of course,

inference possible on GPU devices. Well, as a beginner to

object detection, you might not have a clear image of what do
they mean here. But you will gradually understand them later

in my post. For now, just remember that YOLO V3 is one of

the best models in terms of real-time object detection as of

2019.

Fig 2: Network Architecture

First of all, let’s talk about how this network look like at a

high-level diagram (Although, the network architecture is the

least time-consuming part of implementation). The whole

system can be divided into two major components: Feature

Extractor and Detector; both are multi-scale. When a new

image comes in, it goes through the feature extractor first so

that we can obtain feature embeddings at three (or more)

different scales. Then, these features are feed into three (or

more) branches of the detector to get bounding boxes and

class information.

C. Darknet-53
The feature extractor YOLO V3 uses is called Darknet-53.

You might be familiar with the previous Darknet version

from YOLO V1, where there’re only 19 layers. But that was
like a few years ago, and the image classification network has

progressed a lot from merely deep stacks of layers. ResNet

brought the idea of skip connections to help the activations to

propagate through deeper layers without gradient

diminishing. Darknet-53 borrows this idea and successfully

extends the network from 19 to 53 layers, as we can see from

the following diagram.

Table 1: Darknet-53

D. Diagram from YOLOv3: An Incremental Improvement

This is very easy to understand. Consider layers in each

rectangle as a residual block. The whole network is a chain

of multiple blocks with some strides 2 Conv layers in

between to reduce dimension. Inside the block, there’s just a

bottleneck structure (1x1 followed by 3x3) plus a skip

connection. If the goal is to do multi-class classification as

ImageNet does, an average pooling and a 1000 ways fully
connected layers plus softmax activation will be added.

However, in the case of object detection, we won’t include

this classification head. Instead, we are going to append a

“detection” head to this feature extractor. And since YOLO

V3 is designed to be a multi-scaled detector, we also need

features from multiple scales. Therefore, features from last

three residual blocks are all used in the later detection. In the

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 25 | P a g e

diagram below, I’m assuming the input is 416x416, so three

scale vectors would be 52x52, 26x26, and 13x13. Please note

that if the input size is different, the output size will differ

too.

Fig 3: YOLOV3

E. Multi-scale Detector
Once we ave three features vectors, we can now feed them

into the detector. But how should we structure this detector?

Unfortunately, the author didn’t bother to explain this part

this his paper. But we could still take a look at the source code
he published on Github. Through this config file, multiple

1x1 and 3x3 Conv layers are used before a final 1x1 Conv

layer to form the final output. For medium and small scale, it

also concatenates features from the previous scale. By doing

so, small scale detection can also benefit from the result of

large scale detection.

Fig 4: Multi-scale Detector

Assuming the input image is (416, 416, 3), the final output of

the detectors will be in shape of [(52, 52, 3, (4 + 1 +

num_classes)), (26, 26, 3, (4 + 1 + num_classes)), (13, 13, 3,

(4 + 1 + num_classes))]. The three items in the list represent

detections for three scales. But what do the cells in this

52x52x3x(4+1+num_classes) matrix mean? Good questions.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 26 | P a g e

This brings us to the most important notion in pre-2019 object

detection algorithm: anchor box (prior box).

F. Anchor Box
The goal of object detection is to get a bounding box and its

class. Bounding box usually represents in a normalized xmin,

ymin, xmax, ymax format. For example, 0.5 xmin and 0.5

ymin mean the top left corner of the box is in the middle of

the image. Intuitively, if we want to get a numeric value like

0.5, we are facing a regression problem. We may as well just

have the network predict for values and use Mean Square
Error to compare with the ground truth. However, due to the

large variance of scale and aspect ratio of boxes, researchers

found that it’s really hard for the network to converge if we

just use this “brute force” way to get a bounding box. Hence,

in Faster-RCNN paper, the idea of an anchor box is proposed.

Anchor box is a prior box that could have different pre-

defined aspect ratios. These aspect ratios are determined

before training by running K-means on the entire dataset. But

where does the box anchor to? We need to introduce a new

notion called the grid. In the “ancient” year of 2013,

algorithms detect objects by using a window to slide through

the entire image and running image classification on each

window. However, this is so inefficient that researchers

proposed to use Conv net to calculate the whole image all in

once (technically, only when your run convolution kernels in

parallel.) Since the convolution outputs a square matrix of

feature values (like 13x13, 26x26, and 52x52 in YOLO), we

define this matrix as a “grid” and assign anchor boxes to each
cell of the grid. In other words, anchor boxes anchor to the

grid cells, and they share the same centroid. And once we

defined those anchors, we can determine how much does the

ground truth box overlap with the anchor box and pick the

one with the best IOU and couple them together. I guess you

can also claim that the ground truth box anchors to this anchor

box. In our later training, instead of predicting coordinates

from the wildwest, we can now predict offsets to these

bounding boxes. This works because our ground truth box

should look like the anchor box we pick, and only subtle

adjustment is needed, whhich gives us a great head start in

training.

Fig 5: Anchor Box

In YOLO v3, we have three anchor boxes per grid cell. And

we have three scales of grids. Therefore, we will have

52x52x3, 26x26x3 and 13x13x3 anchor boxes for each scale.

For each anchor box, we need to predict 3 things:

1. The location offset against the anchor box: tx, ty, tw, th.
This has 4 values

2. The objectness score to indicate if this box contains an

object. this has 1 value.

3. The class probabilities to tell us which class this box

belongs to. This has num_classes values.

In total, we are predicting 4 + 1 + num_classes values for one

anchor box, and that’s why our network outputs a matrix in

shape of 52x52x3x(4+1+num_classes) as I mentioned before.

tx, ty, tw, th isn’t the real coordinates of the bounding box.

It’s just the relative offsets compared with a particular anchor

box. I’ll explain these three predictions more in the Loss

Function section after.

G. Anchor
Anchor box not only makes the detector implementation

much harder and much error-prone, but also introduced an

extra step before training if you want the best result. So,

personally, I hate it very much and feel like this anchor box

idea is more a hack than a real solution. In 2018 and 2019,

researchers start to question the need for anchor box. Papers

like CornerNet, Object as Points, and FCOS all discussed the

possibility of training an object detector from scratch without

the help of an anchor box.

A. Loss Function
With the final detection output, we can calculate the loss

against the ground truth labels now. The loss function

consists of four parts (or five, if you split noobj and obj):

centroid (xy) loss, width and height (wh) loss, objectness (obj

and noobj) loss and classification loss. When putting

together, the formula is like this:

The first part is the loss for bounding box centroid. tx and ty

is the relative centroid location from the ground truth. tx’ and

ty’ is the centroid prediction from the detector directly. The

smaller this loss is, the closer the centroids of prediction and

ground truth are. Since this is a regression problem, we use

mean square error here. Besides, if there’s no object from the

ground truth for certain cells, we don’t need to include the

loss of that cell into the final loss. Therefore we also multiple

by obj_mask here. obj_mask is either 1 or 0, which indicates

if there’s an object or not. In fact, we could just use obj as

obj_mask, obj is the object ness score that I will cover later.

One thing to note is that we need to do some calculation on
ground truth to get this tx and ty. So, let’s see how to get this

value first. As the author says in the paper:

Here bx and by are the absolute values that we usually use as

centroid location. For example, bx = 0.5, by = 0.5 means that
the centroid of this box is the center of the entire image.

However, since we are going to compute centroid off the

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 27 | P a g e

anchor, our network is actually predicting centroid relative

the top-left corner of the grid cell. Why grid cell? Because

each anchor box is bounded to a grid cell, they share the same

centroid. So the difference to grid cell can represent the

difference to anchor box. In the formula above, sigmoid(tx)

and sigmoid(ty) are the centroid location relative to the grid

cell. For instance, sigmoid(tx) = 0.5 and sigmoid(ty) = 0.5

means the centroid is the center of the current grid cell (but

not the entire image). Cx and Cy represents the absolute

location of the top-left corner of the current grid cell. So if

the grid cell is the one in the SECOND row and SECOND
column of a grid 13x13, then Cx = 1 and Cy = 1. And if we

add this grid cell location with relative centroid location, we

will have the absolute centroid location bx = 0.5 + 1 and by

= 0.5 + 1. Certainly, the author won’t bother to tell you that

you also need to normalize this by dividing by the grid size,

so the true bx would be 1.5/13 = 0.115. Ok, now that we

understand the above formula, we just need to invert it so that

we can get tx from bx in order to translate our original ground

truth into the target label. Lastly, Lambda_Coord is the

weight that Joe introduced in YOLO v1 paper. This is to put

more emphasis on localization instead of classification. The

value he suggested is 5.

The next one is the width and height loss. Again, the author

says:

Here bw and bh are still the absolute width and height to the

whole image. pw and ph are the width and height of the prior

box (aka. anchor box, why there’re so many names). We take

e^(tw) here because tw could be a negative number, but width

won’t be negative in real world. So this exp() will make it

positive. And we multiply by prior box width pw and ph

because the prediction exp(tw) is based off the anchor box.

So this multiplication gives us real width. Same thing for

height. Similarly, we can inverse the formula above to

translate bw and bh to tx and th when we calculate the loss.

The third and fourth items are object ness and non-object ness

score loss. Object ness indicates how likely is there an object

in the current cell. Unlike YOLO v2, we will use binary

cross-entropy instead of mean square error here. In the

ground truth, object ness is always 1 for the cell that contains

an object, and 0 for the cell that doesn’t contain any object.

By measuring this obj_loss, we can gradually teach the

network to detect a region of interest. In the meantime, we

don’t want the network to cheat by proposing objects

everywhere. Hence, we need noobj_loss to penalize those

false positive proposals. We get false positives by masking

prediction with 1-obj_mask. The `ignore_mask` is used to

make sure we only penalize when the current box doesn’t

have much overlap with the ground truth box. If there is, we

tend to be softer because it’s actually quite close to the

answer. As we can see from the paper, “If the bounding box

prior is not the best but does overlap a ground truth object by
more than some threshold we ignore the prediction.” Since

there are way too many noobj than obj in our ground truth,

we also need this Lambda_Noobj = 0.5 to make sure the

network won’t be dominated by cells that don’t have objects.

class_loss = Sum(Binary_Cross_Entropy(class, class’) *

obj_mask)

The last loss is classification loss. If there’re 80 classes in

total, the class and class’ will be the one-hot encoding vector

that has 80 values. In YOLO v3, it’s changed to do multi-

label classification instead of multi-class classification.

Why? Because some dataset may contains labels that are

hierarchical or related, eg, woman and person. so each output

cell could have more than 1 class to be true. Correspondingly,

we also apply binary cross-entropy for each class one by one

and sum them up because they are not mutually exclusive.

And like we did to other losses, we also multiply by this

obj_mask so that we only count those cells that have a ground
truth object.

To fully understand how this loss works, I suggest you

manually walk through them with a real network prediction

and ground truth. Calculating the loss by your calculator (or

tf math) can really help you to catch all the nitty-gritty details.

And I did that by myself, which helped me find lots of bugs

5. Work Done

A. Approach
1. Detect humans in the frame with yolov3.

2. Calculates the distance between every human who is

detected in the frame.

3. Shows how many people are at High, Low and Not at

risk.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 28 | P a g e

Fig 6: Flow diagram of social distancing detector model

B. Camera Perspective Transformation or Camera

Calibration
As the input video may be taken from an arbitrary perspective

view, the first step is to transform perspective of view to a

bird’s-eye (top-down) view. As the input frames are

monocular (taken from a single camera), the simplest
transformation method involves selecting four points in the

perspective view which define ROI where we want to

monitor social distancing and mapping them to the corners of

a rectangle in the bird’s-eye view. also these points should

form parallel lines in real world if seen from above (bird’s

eye view). This assumes that every person is standing on the

same flat ground plane. This top view or bird eye view has

the property that points are distributed uniformly horizontally

and vertically (scale for horizontal and vertical direction will

be different). From this mapping, we can derive a

transformation that can be applied to the entire perspective

image.

Fig 7

Above image shows how we can select Region of Interest

(ROI) and this is one time step. We draw 8 points on first

frame using mouse click event. First four points will define

ROI where we want to monitor social distancing. Next 3

points will define 180 cm(unit length) distance in horizontal

and vertical direction and those should form parallel lines

with ROI. In above image we can se point 5 and point 6

defines 180 cm in real life in horizontal direction and point 5
and point 7 defines 180 cm in real life in vertical direction.

As we can see ROI formed by first 4 points has different

length in horizontal and vertical direction, so number of

pixels in 180 cm for horizontal and vertical direction will be

different in rectangle (bird’s eye view) formed after

transformation.

So from point 5, 6, 7 we are calculating scale factor in

horizontal and vertical direction of the bird’s eye view, e.g.

how many pixels correspond to 180 cm in real life.

C. Detection
The second step to detect pedestrians and draw a bounding

box around each pedestrian. To clean up the output bounding

boxes, we apply minimal post-processing such as non-max

suppression (NMS) and various rule-based heuristics, so as

to minimize the risk of over fitting.

D. Distance Calculation
Now we have bounding box for each person in the frame. We

need to estimate person location in frame. i.e we can take

bottom center point of bounding box as person location in

frame. Then we estimate (x,y) location in bird’s eye view by

applying transformation to the bottom center point of each

person’s bounding box, resulting in their position in the bird’s

eye view. Last step is to compute the bird’s eye view distance

between every pair of people and scale the distances by the

scaling factor in horizontal and vertical direction estimated

from calibration.

E. Working
Running the program will give you frame (first frame) where

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 29 | P a g e

you need to draw ROI and distance scale. To get ROI and

distance scale points from first frame Code to transform

perspective to Bird’s eye view (Top view) and to calculate

horizontal and vertical 180 cm distance in Bird’s eye view

ROI and Scale points’ selection for first frame. The second

step to detect pedestrians and draw a bounding box around

each pedestrian. To detect humans in video and get bounding

box details.

Now we have bounding box for each person in the frame. We

need to estimate person location in frame. i.e we can take

bottom center point of bounding box as person location in
frame. Then we estimate (x,y) location in bird’s eye view by

applying transformation to the bottom center point of each

person’s bounding box, resulting in their position in the bird’s

eye view. To calculate bottom center point for all bounding

boxes and projecting those points in Bird’s eye view. Last

step is to compute the bird’s eye view distance between every

pair of people (Point) and scale the distances by the scaling

factor in horizontal and vertical direction estimated from

calibration.

Fig 8: Bird Eye view

F: Bird Eye view
Lastly we can draw Bird’s Eye View for region of interest

(ROI) and draw bounding boxes according to risk factor for

humans in a frame and draw lines between boxes according

to risk factor between two humans. Red, Yellow, Green

points represents risk to human in Bird’s eye view. Red: High

Risk, Yellow: Low Risk and Green: No Risk. Red, Yellow

lines between two humans in output tell they are violating
social distancing rules.

6. Conclusion
The emerging trends and the availability of intelligent

technologies make us to develop new models that help to

satisfy the needs of emerging world. so we have developed a

novel social distancing detector which can possibly

contribute to public healthcare. The model proposes an

efficient real-time deep learning based framework to

automate the process of monitoring the social distancing via

object detection and tracking approaches, where each

individual is identified in the real-time with the help of

bounding boxes. Identifying the clusters or groups of people

satisfying the closeness property computed with the help of

Bird’s eye view approach. The number of violations is

confirmed by computing the number of groups formed and

violation index term computed as the ratio of the number of

people to the number of groups. The extensive trials were

conducted with popular state-of-the-art object detection

models Faster RCNN, SSD, and YOLO v3, since this

approach is highly sensitive to the spatial location of the

camera, the same approach can be fine tuned to better adjust

with the corresponding field of view. This system works very

effectively and efficiently in identifying the social distancing

between the people and generating the alert that can be

handled and monitored.

7. Future Enhancement
The Present work is fully focused on the scheduling based

process.We have a proposed AI based model and presented a

Map Reduce to solve the social distance monitoring

process.Simulations have shown that our Map Reduce

process can significantly reduce the time of job execution and

resource allocation.

7. References
1. Manthri, Sriharsha, Lalitha sai Allani,Akhila

Gandla,Sowmiya jindam, Social distancing detector

using deep learning, International Journal of Recent

Technology and Engineering (IJRTE) ISSN: 2277-3878

(Online), Volume-10 Issue-5, January 2022.

2. Kokila B, Muthukumar N, Mounikha R. Social

Distancing Detection With Deep Learning Model,

IJARIIE -ISSN(O)-2395-4396 Vol-8Issue-3 2022

3. Ali El Habchi, Kaoutar Baibai, Younes Moumen, Ilham

Zerouk, Wassim Khiati, Nourdine Rahmoune, Jamal
Berric1 and Toumi Bouchentouf, Social Distance

Monitoring Using YOLOv4 On Aerial Drone Queue,

E3S Web of Conferences 351, 01035, 2022. ICIES’22

https://doi.org/10.1051/e3sconf/202235101035.

4. Aditi Vijay, Ashutosh Gupta, Ashwani Pal, B. Sriswathi,

Geetika Mathur, Satish Kumar Alaria, IoT Social

Distancing & Monitoring Robot For Queue International

Journal of Engineering Trends and Applications

(IJETA), 2021, 8(4).

5. Rinisha CP, Aruna B. Student, Assistant, Wearable

Social Distancing Dtection System, International Journal

of Creative Research Thoughts (IJCRT), 2021, 9(10) |

ISSN:2320-2882.

6. Jayanthi G, Gayathri R, Vishalakshi M. Social

Distancing Detector and Indicator using Arduino,

Ilkogretim online-Elementary Education online, 2020,

19(3):47224732.
http://ilkogretionline.org,dio:10.17051/ilkogretim.2020.

03.735626.

7. Kyritsis, Michel Deriaz. A Queue Management

Approach for Social Distancing and Contact Tracing,

2020 Third International Conference on Artificial

Intelligence for Industries (AI4I).

8. Hassan Ugail, Riya Aggarwal, Andres Iglesias Patricia

Suarez, An Optimisation Model for Designing Social

Distancing Enhanced Physical Spaces, International

Conference on Internet of Things and Intelligent

Application(ITIA) 978-1-728-9301-4/20/$31.00@2020

IEEE|DOI:10.1109/ITIA 50152.2020.9312372.

9. Jie li,Zholong Ning, Behrouz jedari, Feng Xia, Ivan Lee,

And Amr Tolba, “Geo-Social Distance-Based Data

Dissemination for Socially Aware Networking,

Received March 22, 2016, accepted April 9, 2016, date

of publication April 13, 2016, date of current version
April 29, 2016. Digital Object Identifier

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 30 | P a g e

10.1109/ACCESS.2016.2553698

10. Hendra Adinanta, Hendra Adinanta, Suryadi, Jalu A.

Prakosa, Physical Distancing Monitoring with

Background Subtraction Methods, International

Conference on Radar, Antenna, Microwave, Electronics,

and Telecommunications, 2020.

11. Savyasachi Gupta, Rudraksh Kapil, Goutham

Kanahasabai. Shreyas Srinivas Joshi§, Aniruddha

Srinivas Joshi B. SD-Measure: A Social Distancing

Detector, 12th International Conference on

Computational Intelligence and Communication
Networks.

12. Abdalla Gad, Gasm ElBary, Mohammad Alkhedher,

Mohammed Ghazal, SMIEEE, “Vision-based Approach

for Automated Social Distance Violators Detection”,

Department of Electrical and Computer Engineering

Department of Mechanical Engineering Abu Dhabi

University Abu Dhabi, United Arab Emirates

mohammed.ghazal@adu.ac.ae

13. Sashmita Ragha1, Gayathri Vijay, Peddu Sai Harika1, A

Venkateswara Rao, Athira Gopinath, Sai Shibu N B, and

Gayathri G, “Low Cost Device to Maintain Social

Distancing during CoVID-19”, Amrita Vishwa

Vidyapeetham, Amritapuri, India Email:

saishibunb@am.amrita.edu

14. Mohd Ezanee Rusli, Mohammad Ali, “A Smart Social

Distancing Monitoring System”,

Mohammadali.vip@gmail.com Salman Yussof Institute

of Informatics and Computing in Energy Universiti
Tenaga Nasional Selangor, Malaysia

salman@uniten.edu.my

15. Sheshang Degadwala, Dhairya Vyas, Harsh

Dave,“Visual Social Distance Alert System Using

Computer Vision & Deep Learning.

