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Abstract 
Social distancing is a recommended solution by the World Health Organization 

(WHO) to minimize the spread of COVID-19 in public places. The majority of 

governments and national health authorities have set the 2-meter physical distancing 

as a mandatory safety measure in shopping centers, schools and other covered areas. 

In this research, we develop a generic Deep Neural Network-Based model for 

automated people detection, tracking, and inter-people distances estimation in the 
crowd, using common CCTV security cameras. The proposed model includes a YOLO 

v4-based framework and inverse perspective mapping for accurate people detection 

and social distancing monitoring in challenging conditions, including people 

occlusion, partial visibility, and lighting variations. We identify high-risk zones with 

the highest possibility of virus spread and infections. This may help authorities to 

redesign the layout of a public place or to take precaution actions to mitigate high-risk 

zones. The efficiency of the proposed methodology is evaluated on the Oxford Town 

Centre dataset, with superior performance in terms of accuracy and speed compared 

to three state-of-the-art methods.
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1. Introduction 
The novel generation of the corona virus disease  

(COVID-19) was reported in late December 2019 in Wuhan, China. After only a few months, the virus was hit by the global 

outbreak in 2020. On May 2020 The World Health Organization (WHO) announced the situation as the pandemic. The statistics 

by WHO on 26 August 2020 confirms 23.8 million infected people in 200 countries. The mortality rate of the infectious virus 

also shows a scary number of 815,000 people. With the growing trend of patients, there is still no effective cure or available 

treatment for the virus. While scientists, healthcare organizations, and researchers are continuously working to produce 

appropriate medications or vaccines for the deadly virus, no definite success has been reported at the time of this research,  and 

there are no certain treatments or recommendation to prevent or cure this new disease. Therefore, precautions are taken by the 

whole world to limit the spread of infection. These harsh conditions have forced the global communities to look for alternative 

ways to reduce the spread of the virus. Social distancing, precaution actions to prevent the proliferation of the disease, by 

minimizing the proximity of human physical contacts in covered or crowded public places. 

 

2. Related Work 
In Recent paper [1] Centroid tracking algorithm is used for calculating pairwise distances between the objects. To automate the 
process of monitoring the social distancing it is an efficient real-time deep learning based framework. 

Deep learning technique, addressed in paper [2] It is important to monitor the social distance and wear masks at public places and 

take actions accordingly. This tool was developed to alert humans to maintain a safe distance with each other by video feed. 

Deep learning gained more attention in object detection which is used for human detection purposes. 
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The video frame from the camera is used as input, and the 

open-source object detection YOLOv3 object detection is 

used to identify humans in video sequences.  

Paper [3] proposed presented creating a system for person 

detection for monitoring crowd social distance. In the first 

part, we used deep learning approach for the object detection 

where we trained a model that reached good performances for 

the task. For the social distance and location calculation, we 

have developed a method based on triangulation equations to 

transform from the image pixel space to 3D world space and 

calculating the distance between each pair of persons, and 
then we did a proof of concept test using phone camera and 

measurements. 

In paper [4] this tail tracking and social distance robot, we can 

calculate the distance between people and limit the 

development of viral diseases, especially where social 

distance is an important factor. Used in all queues of banks, 

government agencies, shopping malls, theatres, etc.  

In paper [5]. This paper proposes a wearable social distancing 

detector that uses a microcontroller with an ultrasonic sensor 

to detect the distance between two persons and provides a 

warning if the person fails to obey the rule. The system could 

perform social distancing detection accurately and can assist 

in the Arduino UNO.  

Paper [6] This tool could assist the efforts of the governments 

to regulate the virus. It are often implemented in closed areas 

or institutions, monitor the extent of people's commitment, 

and supply analysis and a faster approach to detect possibly 

corona suspicion cases. The results showed the success of our 
approach in detecting the distance with accurate measures of 

the important world coordinates. 

Paper [7] present a queue management tool that can be used to 

allow people that wait for a service practice social distancing. 

Paper [8] proposed a method of design optimisation for 

managing the rearrangement of physical spaces with social 

distancing constraints in the wake of the COVID-19 

pandemic. 

In paper [9] this paper first took advantage of interest inclusion 

and intersection, combined geographical information 

(location) and social information (interest). Then the concept 

of geo-social distance together with a data dissemination 

strategy (called GSD) have been presented to assist nodes to 

choose appropriate forwarders in a conference scenario. 

In paper [10] propose computer vision-based social distancing 

monitoring by using background subtraction method. This 

method has potency to measure and detect persons position 
and measure the distance of each other. This method also 

offers low computational process so the need of an additional 

hardware such as GPU is unnecessary. In this works, we 

compared background several subtraction method such as 

Geometric Multigrid (GMG), k-Nearest Neighbor (KNN), 

Mixture of Gaussian (MOG), and Mixture of Gaussian 2 

(MOG2). 

In paper [11] The proposed framework leverages the Mask R-

CNN deep neural network to detect people in a video frame. 

To consistently identify whether social distancing is practiced 

during the interaction between people, a centroid tracking 

algorithm is utilised to track the subjects over the course of 

the footage. With the aid of authentic algorithms for 

approximating the distance of people from the camera and 

between themselves.  

We determine whether the social distancing guidelines are 

being adhered to. 

This paper [12] This paper proposes a different approach to 

monitor social distancing, using cameras, and combining 

different computer vision algorithms. The approach utilizes 

the concept of inverse perspective mapping (IPM) together 

with the camera’s intrinsic information to produce a bird’s 

eye view with real-world coordinates of the frame being 

processed from a video source. The process starts with image 

enhancement, foreground detection using Gaussian Mixture 

Model (GMM) background subtraction, tracking using 
Kalman filter, computing real-world distance measurements 

between individuals, and detecting those who have been in 

less than 2 meters apart as they are considered to be in 

contact.  

In paper [13] There are many advantages for using the smart 

cap. It is easy to use and very cheap. It helps prevent the 

infection and spread of contagious diseases. It can be reused 

for a long period of time. Cleaning of the cap is also possible. 

The shield in the cap also helps replace the mask and gave 

clear visibility to the facial expressions and lip movement to 

increase the effectiveness of the conversations and 

understand emotions clearer.  

 

3. Methodology 
The proposed system focuses On how to identify the person 

on image/video stream whether the social distancing is 

maintained or not with the help of computer vision and deep 

learning algorithm by using the OpenCV, Tensor flow 
library. 

We propose and implement a AI based Social distance 

monitoring system to help to avoid human interaction in 

public places. Rising AI technology for a secure, transparent 

and decentralized coordination platform. To deploy pre-

trained YOLOv3 for human detection and computing their 

bounding box centroid information. In addition, a transfer 

learning method is applied to enhance the performance of the 

model. The additional training is performed with overhead 

data set, and the newly trained layer is appended to the pre-

trained model. 

In order to track the social distance between individuals, the 

Euclidean distance is used to approximate the distance 

between each pair of the centroid of the bounding box 

detected. In addition, a social distance violation threshold is 

specified using a pixel to distance estimation. Utilizing a 

centroid tracking algorithm to keep track of the person who 
violates the social distance threshold. 

A. Advantages  

Having social distancing detection in the workplace is a great 

way of reassuring staff that the workplace has been made safe 

for their benefit. The solution is also safer than the thermal 

cameras – those without a fever can also be contagious. 

With the detection software you will have the ability to see 

which areas gain the most traction and are the offices 

‘hotspots. From this data you will then be able to put the most 

relevant safety measures in place.  

The technology isn’t just for the office, for example, at a 

factory where employees are very close to each other, the 

software can be integrated into their security camera systems. 

Allowing them to monitor the working environment and 

highlight people whose distancing is below the minimum 

acceptable distance. 
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Fig 1: Architecture Diagram 

 

4. Implementation 

A. Tensorflow 
Tensorflow is a symbolic math library based on dataflow and 

differentiable programming. It is used for both research and 

production at Google. Its flexible architecture allows for the 

easy deployment of computation across a variety of platforms 

(CPUs, GPUs, TPUs), and from desktops to clusters of 

servers to mobile and edge devices. 

Tensor Flow computations are expressed as stateful dataflow 

graphs. The name Tensor Flow derives from the operations 
that such neural networks perform on multidimensional data 

arrays, which are referred to as tensors. 

TensorFlow provides stable Python (for version 3.7 across all 

platforms) and C APIs; and without API backwards 

compatibility guarantee: C++, Go, Java, JavaScript and Swift 

(archived and development has ceased). Third-party 

packages are available for C#, Haskell, Julia, MATLAB, R, 

Scala, Rust, OCaml, and Crystal. 

"New language support should be built on top of the C API. 

 

B. Yolo v3 
YOLO V3 is an improvement over previous YOLO detection 

networks. Compared to prior versions, it features multi-scale 

detection, stronger feature extractor network, and some 

changes in the lossfunction. As a result, this network can now 

detect many more targets from big to small. And, of course, 

inference possible on GPU devices. Well, as a beginner to 

object detection, you might not have a clear image of what do 
they mean here. But you will gradually understand them later 

in my post. For now, just remember that YOLO V3 is one of 

the best models in terms of real-time object detection as of 

2019. 

 

 
 

Fig 2: Network Architecture 
 

First of all, let’s talk about how this network look like at a 

high-level diagram (Although, the network architecture is the 

least time-consuming part of implementation). The whole 

system can be divided into two major components: Feature 

Extractor and Detector; both are multi-scale. When a new 

image comes in, it goes through the feature extractor first so 

that we can obtain feature embeddings at three (or more) 

different scales. Then, these features are feed into three (or 

more) branches of the detector to get bounding boxes and 

class information. 

 

C. Darknet-53 
The feature extractor YOLO V3 uses is called Darknet-53. 

You might be familiar with the previous Darknet version 

from YOLO V1, where there’re only 19 layers. But that was 
like a few years ago, and the image classification network has 

progressed a lot from merely deep stacks of layers. ResNet 

brought the idea of skip connections to help the activations to 

propagate through deeper layers without gradient 

diminishing. Darknet-53 borrows this idea and successfully 

extends the network from 19 to 53 layers, as we can see from 

the following diagram. 

 
Table 1: Darknet-53 

 

 
 

D. Diagram from YOLOv3: An Incremental Improvement 

This is very easy to understand. Consider layers in each 

rectangle as a residual block. The whole network is a chain 

of multiple blocks with some strides 2 Conv layers in 

between to reduce dimension. Inside the block, there’s just a 

bottleneck structure (1x1 followed by 3x3) plus a skip 

connection. If the goal is to do multi-class classification as 

ImageNet does, an average pooling and a 1000 ways fully 
connected layers plus softmax activation will be added. 

However, in the case of object detection, we won’t include 

this classification head. Instead, we are going to append a 

“detection” head to this feature extractor. And since YOLO 

V3 is designed to be a multi-scaled detector, we also need 

features from multiple scales. Therefore, features from last 

three residual blocks are all used in the later detection. In the 
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diagram below, I’m assuming the input is 416x416, so three 

scale vectors would be 52x52, 26x26, and 13x13. Please note 

that if the input size is different, the output size will differ 

too.

 

 
 

Fig 3: YOLOV3 

 

E. Multi-scale Detector 
Once we ave three features vectors, we can now feed them 

into the detector. But how should we structure this detector? 

Unfortunately, the author didn’t bother to explain this part 

this his paper. But we could still take a look at the source code 
he published on Github. Through this config file, multiple 

1x1 and 3x3 Conv layers are used before a final 1x1 Conv 

layer to form the final output. For medium and small scale, it 

also concatenates features from the previous scale. By doing 

so, small scale detection can also benefit from the result of 

large scale detection.

 

 
 

Fig 4: Multi-scale Detector 

 

Assuming the input image is (416, 416, 3), the final output of 

the detectors will be in shape of [(52, 52, 3, (4 + 1 + 

num_classes)), (26, 26, 3, (4 + 1 + num_classes)), (13, 13, 3, 

(4 + 1 + num_classes))]. The three items in the list represent 

detections for three scales. But what do the cells in this 

52x52x3x(4+1+num_classes) matrix mean? Good questions. 
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This brings us to the most important notion in pre-2019 object 

detection algorithm: anchor box (prior box). 

 

F. Anchor Box 
The goal of object detection is to get a bounding box and its 

class. Bounding box usually represents in a normalized xmin, 

ymin, xmax, ymax format. For example, 0.5 xmin and 0.5 

ymin mean the top left corner of the box is in the middle of 

the image. Intuitively, if we want to get a numeric value like 

0.5, we are facing a regression problem. We may as well just 

have the network predict for values and use Mean Square 
Error to compare with the ground truth. However, due to the 

large variance of scale and aspect ratio of boxes, researchers 

found that it’s really hard for the network to converge if we 

just use this “brute force” way to get a bounding box. Hence, 

in Faster-RCNN paper, the idea of an anchor box is proposed. 

Anchor box is a prior box that could have different pre-

defined aspect ratios. These aspect ratios are determined 

before training by running K-means on the entire dataset. But 

where does the box anchor to? We need to introduce a new 

notion called the grid. In the “ancient” year of 2013, 

algorithms detect objects by using a window to slide through 

the entire image and running image classification on each 

window. However, this is so inefficient that researchers 

proposed to use Conv net to calculate the whole image all in 

once (technically, only when your run convolution kernels in 

parallel.) Since the convolution outputs a square matrix of 

feature values (like 13x13, 26x26, and 52x52 in YOLO), we 

define this matrix as a “grid” and assign anchor boxes to each 
cell of the grid. In other words, anchor boxes anchor to the 

grid cells, and they share the same centroid. And once we 

defined those anchors, we can determine how much does the 

ground truth box overlap with the anchor box and pick the 

one with the best IOU and couple them together. I guess you 

can also claim that the ground truth box anchors to this anchor 

box. In our later training, instead of predicting coordinates 

from the wildwest, we can now predict offsets to these 

bounding boxes. This works because our ground truth box 

should look like the anchor box we pick, and only subtle 

adjustment is needed, whhich gives us a great head start in 

training. 

 

 
 

Fig 5: Anchor Box 

 

In YOLO v3, we have three anchor boxes per grid cell. And 

we have three scales of grids. Therefore, we will have 

52x52x3, 26x26x3 and 13x13x3 anchor boxes for each scale. 

For each anchor box, we need to predict 3 things: 

1. The location offset against the anchor box: tx, ty, tw, th. 
This has 4 values 

2. The objectness score to indicate if this box contains an 

object. this has 1 value. 

3. The class probabilities to tell us which class this box 

belongs to. This has num_classes values. 

 

In total, we are predicting 4 + 1 + num_classes values for one 

anchor box, and that’s why our network outputs a matrix in 

shape of 52x52x3x(4+1+num_classes) as I mentioned before. 

tx, ty, tw, th isn’t the real coordinates of the bounding box. 

It’s just the relative offsets compared with a particular anchor 

box. I’ll explain these three predictions more in the Loss 

Function section after. 

 

G. Anchor 
Anchor box not only makes the detector implementation 

much harder and much error-prone, but also introduced an 

extra step before training if you want the best result. So, 

personally, I hate it very much and feel like this anchor box 

idea is more a hack than a real solution. In 2018 and 2019, 

researchers start to question the need for anchor box. Papers 

like CornerNet, Object as Points, and FCOS all discussed the 

possibility of training an object detector from scratch without 

the help of an anchor box. 

 

A. Loss Function 
With the final detection output, we can calculate the loss 

against the ground truth labels now. The loss function 

consists of four parts (or five, if you split noobj and obj): 

centroid (xy) loss, width and height (wh) loss, objectness (obj 

and noobj) loss and classification loss. When putting 

together, the formula is like this: 
 

 
 

The first part is the loss for bounding box centroid. tx and ty 

is the relative centroid location from the ground truth. tx’ and 

ty’ is the centroid prediction from the detector directly. The 

smaller this loss is, the closer the centroids of prediction and 

ground truth are. Since this is a regression problem, we use 

mean square error here. Besides, if there’s no object from the 

ground truth for certain cells, we don’t need to include the 

loss of that cell into the final loss. Therefore we also multiple 

by obj_mask here. obj_mask is either 1 or 0, which indicates 

if there’s an object or not. In fact, we could just use obj as 

obj_mask, obj is the object ness score that I will cover later. 

One thing to note is that we need to do some calculation on 
ground truth to get this tx and ty. So, let’s see how to get this 

value first. As the author says in the paper: 

 

 
 

Here bx and by are the absolute values that we usually use as 

centroid location. For example, bx = 0.5, by = 0.5 means that 
the centroid of this box is the center of the entire image. 

However, since we are going to compute centroid off the 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    27 | P a g e  

 

anchor, our network is actually predicting centroid relative 

the top-left corner of the grid cell. Why grid cell? Because 

each anchor box is bounded to a grid cell, they share the same 

centroid. So the difference to grid cell can represent the 

difference to anchor box. In the formula above, sigmoid(tx) 

and sigmoid(ty) are the centroid location relative to the grid 

cell. For instance, sigmoid(tx) = 0.5 and sigmoid(ty) = 0.5 

means the centroid is the center of the current grid cell (but 

not the entire image). Cx and Cy represents the absolute 

location of the top-left corner of the current grid cell. So if 

the grid cell is the one in the SECOND row and SECOND 
column of a grid 13x13, then Cx = 1 and Cy = 1. And if we 

add this grid cell location with relative centroid location, we 

will have the absolute centroid location bx = 0.5 + 1 and by 

= 0.5 + 1. Certainly, the author won’t bother to tell you that 

you also need to normalize this by dividing by the grid size, 

so the true bx would be 1.5/13 = 0.115. Ok, now that we 

understand the above formula, we just need to invert it so that 

we can get tx from bx in order to translate our original ground 

truth into the target label. Lastly, Lambda_Coord is the 

weight that Joe introduced in YOLO v1 paper. This is to put 

more emphasis on localization instead of classification. The 

value he suggested is 5. 

 

 
 

 
 

The next one is the width and height loss. Again, the author 

says: 

 

 
 

Here bw and bh are still the absolute width and height to the 

whole image. pw and ph are the width and height of the prior 

box (aka. anchor box, why there’re so many names). We take 

e^(tw) here because tw could be a negative number, but width 

won’t be negative in real world. So this exp() will make it 

positive. And we multiply by prior box width pw and ph 

because the prediction exp(tw) is based off the anchor box. 

So this multiplication gives us real width. Same thing for 

height. Similarly, we can inverse the formula above to 

translate bw and bh to tx and th when we calculate the loss. 

 

 
 
The third and fourth items are object ness and non-object ness 

score loss. Object ness indicates how likely is there an object 

in the current cell. Unlike YOLO v2, we will use binary 

cross-entropy instead of mean square error here. In the 

ground truth, object ness is always 1 for the cell that contains 

an object, and 0 for the cell that doesn’t contain any object. 

By measuring this obj_loss, we can gradually teach the 

network to detect a region of interest. In the meantime, we 

don’t want the network to cheat by proposing objects 

everywhere. Hence, we need noobj_loss to penalize those 

false positive proposals. We get false positives by masking 

prediction with 1-obj_mask. The `ignore_mask` is used to 

make sure we only penalize when the current box doesn’t 

have much overlap with the ground truth box. If there is, we 

tend to be softer because it’s actually quite close to the 

answer. As we can see from the paper, “If the bounding box 

prior is not the best but does overlap a ground truth object by 
more than some threshold we ignore the prediction.” Since 

there are way too many noobj than obj in our ground truth, 

we also need this Lambda_Noobj = 0.5 to make sure the 

network won’t be dominated by cells that don’t have objects. 

class_loss = Sum(Binary_Cross_Entropy(class, class’) * 

obj_mask) 

The last loss is classification loss. If there’re 80 classes in 

total, the class and class’ will be the one-hot encoding vector 

that has 80 values. In YOLO v3, it’s changed to do multi-

label classification instead of multi-class classification. 

Why? Because some dataset may contains labels that are 

hierarchical or related, eg, woman and person. so each output 

cell could have more than 1 class to be true. Correspondingly, 

we also apply binary cross-entropy for each class one by one 

and sum them up because they are not mutually exclusive. 

And like we did to other losses, we also multiply by this 

obj_mask so that we only count those cells that have a ground 
truth object. 

To fully understand how this loss works, I suggest you 

manually walk through them with a real network prediction 

and ground truth. Calculating the loss by your calculator (or 

tf math) can really help you to catch all the nitty-gritty details. 

And I did that by myself, which helped me find lots of bugs 

 

5. Work Done 

A. Approach 
1. Detect humans in the frame with yolov3. 

2. Calculates the distance between every human who is 

detected in the frame. 

3. Shows how many people are at High, Low and Not at 

risk. 
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Fig 6: Flow diagram of social distancing detector model 

 

B. Camera Perspective Transformation or Camera 

Calibration 
As the input video may be taken from an arbitrary perspective 

view, the first step is to transform perspective of view to a 

bird’s-eye (top-down) view. As the input frames are 

monocular (taken from a single camera), the simplest 
transformation method involves selecting four points in the 

perspective view which define ROI where we want to 

monitor social distancing and mapping them to the corners of 

a rectangle in the bird’s-eye view. also these points should 

form parallel lines in real world if seen from above (bird’s 

eye view). This assumes that every person is standing on the 

same flat ground plane. This top view or bird eye view has 

the property that points are distributed uniformly horizontally 

and vertically (scale for horizontal and vertical direction will 

be different). From this mapping, we can derive a 

transformation that can be applied to the entire perspective 

image. 

 

 
 

Fig 7 

 

Above image shows how we can select Region of Interest 

(ROI) and this is one time step. We draw 8 points on first 

frame using mouse click event. First four points will define 

ROI where we want to monitor social distancing. Next 3 

points will define 180 cm(unit length) distance in horizontal 

and vertical direction and those should form parallel lines 

with ROI. In above image we can se point 5 and point 6 

defines 180 cm in real life in horizontal direction and point 5 
and point 7 defines 180 cm in real life in vertical direction. 

As we can see ROI formed by first 4 points has different 

length in horizontal and vertical direction, so number of 

pixels in 180 cm for horizontal and vertical direction will be 

different in rectangle (bird’s eye view) formed after 

transformation. 

So from point 5, 6, 7 we are calculating scale factor in 

horizontal and vertical direction of the bird’s eye view, e.g. 

how many pixels correspond to 180 cm in real life. 

 

C. Detection 
The second step to detect pedestrians and draw a bounding 

box around each pedestrian. To clean up the output bounding 

boxes, we apply minimal post-processing such as non-max 

suppression (NMS) and various rule-based heuristics, so as 

to minimize the risk of over fitting. 

 

D. Distance Calculation 
Now we have bounding box for each person in the frame. We 

need to estimate person location in frame. i.e we can take 

bottom center point of bounding box as person location in 

frame. Then we estimate (x,y) location in bird’s eye view by 

applying transformation to the bottom center point of each 

person’s bounding box, resulting in their position in the bird’s 

eye view. Last step is to compute the bird’s eye view distance 

between every pair of people and scale the distances by the 

scaling factor in horizontal and vertical direction estimated 

from calibration. 

 

E. Working 
Running the program will give you frame (first frame) where 
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you need to draw ROI and distance scale. To get ROI and 

distance scale points from first frame Code to transform 

perspective to Bird’s eye view (Top view) and to calculate 

horizontal and vertical 180 cm distance in Bird’s eye view 

ROI and Scale points’ selection for first frame. The second 

step to detect pedestrians and draw a bounding box around 

each pedestrian. To detect humans in video and get bounding 

box details. 

Now we have bounding box for each person in the frame. We 

need to estimate person location in frame. i.e we can take 

bottom center point of bounding box as person location in 
frame. Then we estimate (x,y) location in bird’s eye view by 

applying transformation to the bottom center point of each 

person’s bounding box, resulting in their position in the bird’s 

eye view. To calculate bottom center point for all bounding 

boxes and projecting those points in Bird’s eye view. Last 

step is to compute the bird’s eye view distance between every 

pair of people (Point) and scale the distances by the scaling 

factor in horizontal and vertical direction estimated from 

calibration. 

 

 
 

Fig 8: Bird Eye view 

 

F: Bird Eye view 
Lastly we can draw Bird’s Eye View for region of interest 

(ROI) and draw bounding boxes according to risk factor for 

humans in a frame and draw lines between boxes according 

to risk factor between two humans. Red, Yellow, Green 

points represents risk to human in Bird’s eye view. Red: High 

Risk, Yellow: Low Risk and Green: No Risk. Red, Yellow 

lines between two humans in output tell they are violating 
social distancing rules.  

 

6. Conclusion 
The emerging trends and the availability of intelligent 

technologies make us to develop new models that help to 

satisfy the needs of emerging world. so we have developed a 

novel social distancing detector which can possibly 

contribute to public healthcare. The model proposes an 

efficient real-time deep learning based framework to 

automate the process of monitoring the social distancing via 

object detection and tracking approaches, where each 

individual is identified in the real-time with the help of 

bounding boxes. Identifying the clusters or groups of people 

satisfying the closeness property computed with the help of 

Bird’s eye view approach. The number of violations is 

confirmed by computing the number of groups formed and 

violation index term computed as the ratio of the number of 

people to the number of groups. The extensive trials were 

conducted with popular state-of-the-art object detection 

models Faster RCNN, SSD, and YOLO v3, since this 

approach is highly sensitive to the spatial location of the 

camera, the same approach can be fine tuned to better adjust 

with the corresponding field of view. This system works very 

effectively and efficiently in identifying the social distancing 

between the people and generating the alert that can be 

handled and monitored. 

 

7. Future Enhancement 
The Present work is fully focused on the scheduling based 

process.We have a proposed AI based model and presented a 

Map Reduce to solve the social distance monitoring 

process.Simulations have shown that our Map Reduce 

process can significantly reduce the time of job execution and 

resource allocation.  
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