
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 243 | P a g e

The CFAR Radar Target Detector HW/SW Architecture Implemented on an FPGA

Riyadh Abdulhamza Al-Alwani
Department of Electrical Engineering, College of Engineering, University of Babylon, Babylon, Iraq

* Corresponding Author: Riyadh Abdulhamza Al-Alwani

* Corresponding Author’s Email: alwaniriyad@gmail.com

Article Info

ISSN (online): 2582-7138

Volume: 04

Issue: 03

May-June 2023

Received: 02-04-2023;

Accepted: 19-04-2023

Page No: 243-248

Abstract
This paper describes the HW/SW Codesign FPGA-based architecture of a log-

normally distributed B-ACOSD CFAR target detector for radar systems in the

abstract. The complete CFAR system is evaluated to see which components need to

be strengthened so that the detection procedure can be carried out in real time. To

ensure the CFAR Architecture is fully optimised, we have devoted careful attention to

the Altera environment's custom instruction strategy. The CFAR detector is a hybrid
hardware/software setup. The Avalon switch fabric allows the hardware modules to

talk to the NIOS II processor, which runs the software. The on-chip memory and

custom logic components complement the universal asynchronous receiver/transmitter

(UART) and JTAG (JTAG) interfaces. The suggested SoC is verified and tested with

the help of an Altera Stratix IV EP4SGX230KF4C2 running at 250MHz.

We improved the efficiency of our embedded target detection system by fusing

hardware and software approaches. When compared to a software-only solution, this

resulted in a 0.45µs reduction in overall latency.

Keywords: FPGA, HW/SW, CFAR, Architecture

1. Introduction
The received signal is processed by a radar system, which then determines the target type (target or clutter) and the positions of

the detected items. After then, the data is shown on the screen. Whenever the signal strength is greater than a predetermined

threshold, regardless of whether the background is cluttered or absent, the target can be easily localised. In real-world situations,

the echo is often accompanied with time- and location-varying background noise. Target extraction is more effective when the

threshold is dynamically rather than statically determined, taking into account local noise and clutter. Adaptive signal processing

utilising a configurable detection threshold is necessary to determine if the tested cell is a target [1].

In order to maintain a constant false alarm rate (CFAR) in radar systems, several approaches have been presented in the literature
[2, 3], including cell averaging (CA) and ordered statistics (OS). As mentioned in [4], one such device is the OS-CFAR detector.

This detector takes the noise level around it as a reference and adjusts accordingly. In conditions with homogenous backgrounds,

the OS-CFAR detector can differentiate closely spaced interferences with just a little increase in detection loss, in contrast to the

CA-CFAR detector. Although the CA-CFAR technique takes a lot more time to assess than the CFAR detector, it is the superior

CFAR strategy to use in homogeneous settings.

The Censored MeanLevel Detector (CMLD) [5, 6], Greatest-of-CFAR (GO-CFAR) algorithm [5, 7], and Smallest-of-CFAR (SO-

CFAR) approach [5, 8] are just a few examples of the many well-developed OS approaches that have been investigated for a

variety of purposes. However, as the number of targets changes, the assumption of a constant environment collapses. The CA-
CFAR processor's efficiency drops dramatically in these environments.

More robustness against a heterogeneous environment has been achieved by the development of new classes of CFAR

approaches [9, 10]. Unfortunately, real-time analysis was not possible because these systems were software-only. However,

processing radar data correctly requires keeping the false alarm rate consistent and reasonable.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 244 | P a g e

By comparing the processed target signal to the examined cell

using an adaptive threshold detector, a CFAR may be

derived. You need to know about probability distributions

like the Rayleigh, Weibull, K-, and lognormal distributions

to make this comparison. Constraints in terms of real time

must also be taken into account, and this includes reducing as

much time as possible spent on target identification,

particularly for high-resolution targets. Conducting a solution

space design inquiry is the only method to guarantee the

CFAR detector's success in this mission.

However, CFAR radar detection is still more theoretical than
practical in a real-time scenario due to the absence of easily

accessible high-computational signal processing methods.

System-on-chip (SoC) architecture is a possible option for the

real-time CFAR processor due to the time-sensitive nature of

target identification by a high-resolution radar system. The

CPU, glue logic, and memory are all combined onto a single

chip in systems-on-a-chip architecture. SoC manufacturing

has been made easier and faster thanks to recent

developments in field programmable gate array (FPGA)

technology.

In this research, we demonstrate the implementation of the B-

ACOSD CFAR algorithm on a Nios II-based FPGA for the

detection of censored ordered statistics. This detector should

be able to reliably perform automatic target recognition and

interference counting inside a lognormal clutter distribution.

The CFAR detector runs on an Altera Stratix IV board with a

hybrid hardware/software design based on the combination

of the NIOS II core processor and bespoke logics written in
VHDL language. To provide for efficient data transfer

between the various parts of the system-on-chip, the Avalon

switch fabric is included into the same FPGA as the rest of

the parts.

On the forth page. The suggested CFAR system is well-suited

for high-resolution radar applications in arid regions [11], as it

serves as a prototypical HW/SW example of how to acquire

a processing latency of less than 500 ns.An overview of the

remaining sections of this work is provided below. In Section

2, we'll cover the basics of CFAR, while in Section 3, we'll

go into studies of how various CFAR algorithms may be

implemented in hardware. In Section 3, the B-ACOSD

algorithms and formulae are presented. In Section 4, we detail

the detectors' SoC HW/SW FPGA architecture. The

embedded system's co-simulation findings and

implementation for target identification are presented in

Section 5. Our last thoughts and suggestions for further study
are presented in Section 6.

2. Related work
Some form of detecting mechanism is necessary for a radar

system to ascertain whether or not a return originated from a

target. When the threshold is too low, more targets are

recognised, but there is also an increase in false positives. If

the threshold is set too high, however, fewer false alarms will

occur at the expense of fewer targets being acknowledged.

Most radar detectors have their thresholds set to limit the

possibility of false alerts. (Pfa). A false alarm threshold may

be determined if the levels of background noise, clutter, and

interference are constant throughout time and place. But in

reality, the levels of spatial and temporal noise are raised by

unwanted clutter and interference sources. To keep the false

alarm probability constant, the threshold might be adjusted

up or down in real time using an adaptive threshold. The term
"CFAR detection" is used to characterise this method.

Figure 1 depicts a fairly typical CFAR processor. A shift

register is used to serially arrange the input signals. By

applying a CFAR processor to data from neighbouring cells,

the adaptive threshold (X0) may be determined. Whether or

whether X0 is bigger than the target value is used to make the

call. If the value of the tested cell is higher than the threshold

value, it is considered to be a target.

Fig 1: Schematic representation of a common CFAR algorithm

The geometric mean of the reference cells is used by the CA-

CFAR detector [3], the simplest and oldest CFAR detector, to

establish its adaptive threshold. In recent years, other

alternative CFAR algorithms have been created. Based on the

clutter power distribution and the interference objectives,

three models may be used to categorise CFAR algorithms.
 When the clutter power distribution changes, the

likelihood of a false alarm rises, but this may be

mitigated by employing the greatest-of-selection logic

for the CA-CFAR detector (GO-CFAR) [12]. A hence-

CFAR approach using smallest-of-selection logic is

recommended for the CA-CFAR detector since the GO-
CFAR detector's target detection effectiveness decreases

in the presence of several interfering targets. [13].

 The CMLD may be utilised as a target detector when the

background clutter consists of uniform white Gaussian

noise and distracting targets. The CMLD is able to

estimate the noise level by excluding a portion of the

noise from the target sample. Furthermore, when the data

in the window has been organised, the trimmed mean-

level CFAR (TM-CFAR) detector [4] uses trimmed

averaging. If you don't know how many false positives

to predict, you can use the generalised CMLD (GCMLD)

or the OS-CFAR detector (which selects a single ordered

sample to reflect the expected noise level in the cell

being tested). The generalised two-level CMLD (GTL-

CMLD) [14] uses an automatic censoring technique to

exclude samples with interfering targets or extended

clutter from the reference window of the tested cell. This
method is frequently employed whenever there is a shift

in the clutter power distribution and interference from

several targets.

 Non-Gaussian distributions of clutter are covered in the

final presentation. The lognormal, Weibull, gamma, and

K-distributions have all been used to describe the non-

Gaussian clutter distributions discovered by envelopes.

There has been some development in Weibull clutter

CFAR detection recently. For example, in [15] we find a

presentation and analysis of the performance of the

maximum-likelihood CFAR (ML-CFAR) under

situations of undetermined size and shape parameters.

For this reason, we have developed the optimum Weibull

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 245 | P a g e

CFAR (OW-CFAR) approach [16], whereby statistical

tests are formulated in terms of an estimate of the mean

power of the Weibull clutter.

 Theoretical progress in CFAR detection has outpaced its

hardware implementation. Few attempts have been

recorded to build CFAR processors in hardware. In

particular, the hardware architecture shown in [16-18] is

flexible, and may be utilised to deal with noisy signals

for target recognition using CFAR algorithms. The

architecture was made to be set for Max, Min, and Cell-

Average (CA) CFAR algorithms, in addition to allowing
parallel/pipeline processing. In [19], we learn about a

parallel OS-CFAR implementation. Combining the

FPGA architectures for CACFAR and OS-CFAR is what

[20] does. The TM-CFAR algorithm is shown to be

implemented on an FPGA in [21]. Simple CFAR

algorithms, which fared best when the clutter followed a

Gaussian distribution, were used in all of these examples.

Automatic Censored Cell Averaging (ACCA) ODV CFAR

was developed by Alsuwailem et al. [22] as a defence

mechanism against this. However, validation is performed in

an environment that is not real-time, and dynamic interaction

with the underlying architecture is not supported. In addition,

the Radar System ecosystem lacks a standard interface for

facilitating communication between its many components.

The radar sensor of the vehicle utilised by Winkler et al. [23]

was built on a system-on-chip (SoC) with a programmable

central processing unit (CPU). All input/output and user-
defined logic is managed by the central processing unit.

Earlier this year, Almarshad et al. [24] unveiled an automated

censoring detector called the ACOSD CFAR. Automatic

filtering of competing targets of unknown number in log-

normal noise is a key component of this strategy. As radar

resolution has improved, the log-normal distribution has

become the preferred model for representing the amplitude of

clutter, replacing the less precise Rayleigh distribution.

However, when samples are obtained from a log-normal

distribution, the automated censoring techniques established

for Rayleigh clutter and described in [11, 22] cannot be applied

directly. The rest of this study focuses on SoC

implementation algorithms. The idea comes from the

ACOSD-CFAR [24].

3. The Algorithms for Detecting ACOSD
ACOSD CFAR algorithms include a two-stage detection
process: (1) excluding potentially misleading reference cells,

and (2) doing the actual detection. Using a properly rated cell

set, adaptive thresholds are calculated in real-time, and the

unknown background level is estimated. You don't need to

know anything about the clutter's make-up or the number of

overlapping targets to utilise this detector. These are the parts

that make up a CFAR processor: A delay line is tapped to

record the radar's outputs. The signal in question is the one in

the cell with the subscript. At the conclusion of the CFAR

procedure, the tissue is encircled with scaffolding cells. The

ACOSD cell-free acidic residue (CFAR) arranges

neighbouring cells from smallest to largest by size. We tap

into the radar's delay line signal (XI:i=0,1,...,N) and record it.

The goal signal is in the test cell, which is denoted by the

subscript [I=0]. The remaining neighbouring cells are the

CFAR method's necessary auxiliary cells. The ACOSD

CFAR ranks the N neighbouring cells from largest to
smallest.

X(1)≤X(2)≤------≤X(N) (1)

Following cell sorting, cells go to the detection step. There

are currently two distinct algorithms used by B-ACOSD and

F-ACOSD. In the B-ACOSD method, the sample X(N) is

measured against an adaptive threshold (TC0) calculated by

a formula.

TC0=X(1)1-α0 X(p)α0. (2)

The maximum number of observations is denoted by X(P),
and the level of false censoring desired by the constant.

Detection performance is said to be rather excellent at

(p>N/2) according to [26]. In the event that X(N)TC0, then

X(N) is a noise-free, clutter-free sample, and the process will

stop. If sample X(N) exceeds the threshold TC0, then it is

assumed to be the echo back from a misbehaving target. The

algorithm now needs to decide if X(N-1) is larger or lower

than the threshold value, given that X(N) has been censored.

Fig 2: Algorithm block diagram for B-ACOSD

Tct=x(1)1-α1x(p)α1 (3)

In order to determine if the given data is an interference-free

sample of clutter or a target with interference. The (K+1)th

iteration compares the x(N-K) sample against the TCK

threshold and makes a decision based on the results.

 (4)

Where Tck=x(1)1-αkx(p)αk

Clutter samples with interference are shown to be X(N-K+1),

X(N-K+2), X(N), and so on, whereas (H0) means that X(N-

K) is a clutter sample without interference. The subsequent

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 246 | P a g e

tests will proceed on the assumption that H1 is correct. If the

cell being probed is found to be homogenous (i.e., clutter

sample alone), the procedure terminates; otherwise, it

continues until the K=NP highest cells have been evaluated.

The block diagram of the B-ACOSD algorithm is shown in

Figure 2.

If the tested cell, X0, is larger than the threshold cell, Tak,

then detection has occurred.

 (5)

Both H1 and H0 assume that the target is either present or

absent from the test cell, respectively. The cutoff value in B-

ACOSD CFAR is

Tak=X(1)1-ΒkX(N-K)Βk (6)

By choosing K = number of overlapping targets observed

during centring phases, the design's Pfa is decreased.

Threshold Values
Choosing an appropriate threshold for the algorithms is

essential [26]. These cutoffs need to be established so as to

reduce, as much as possible, the chance of a false positive in

a carefully monitored hypothesis test. The thresholds were

determined using Monte Carlo simulation with small Pfa and

Pfc values.

B-ACOSD's computed threshold parameters k and k for

Pfa=0.001 and Pfc=0.01 are shown in Table 1.

Table 1: Pfa=0.001 and Pfc=0.01 are the threshold values for B-
ACOSD.

4. B-ACOSD CFAR architecture HW/SW development

using FPGAS
A-Hardware and Software Framework for Radar Systems
A Nios II fast processor was integrated into an FPGA board

(Altera Stratix IV) to carry out the B-ACOSD algorithm.

Hardware modules developed with VHDL code and the

custom instruction technique, and software modules given in

ANSI C. To speed up time-critical software calculations, we

actually add to the Nios II processor's instruction set with
specific instructions. Because the ALU of the Nios II

processor is located near a proprietary logic component,

developers may combine many standard instructions into a

single one for hardware execution, saving both time and

space. The computationally expensive software of the CFAR

programme is optimised with the use of custom instruction,

and not only the outer loops. We may modify the Nios II core

processor on our system-on-chip with the help of

supplementary instructions so that it meets the stringent

timing requirements of the B-ACOSD design.

The components of the embedded CFAR architecture are

shown in Figure.3.

Nios II core processor with Master port, 8 KB data cache, 16

KB instruction cache, and 32 bits of data route and software

speed.

Fig 3: Embedded System with B-ACOSD based on Nios II

 Our embedded system relies on the Avalon bus, which is

incompatible with any hardware components not defined

in HDL language at the RTL level and sporting only

slave ports.

 The Avalon Memory Mapped bus is used by the SIF to

communicate with the custom instruction, NIOS II

processor, and all other interfaces on the same system-

on-chip.

 Additional timers and on-chip memory of 128kx32 and

64kx16 provide accurate monitoring of all timing aspects
inside the CFAR architecture.

 Connecting to a target, downloading software, and

seeing on-chip trace data are all made easier using JTAG

UART interfaces.

B. HW/SW Design Process
To build the B-ACOSD System on Chip, we propose a

conventional HW/SW design strategy, as shown in Figure 4.

Fig 4: Typical Hardware and Software Design Flow

 The first step is to use an HLL, such as ANSI C, to

construct a software architecture from scratch. The

FPGA's Nios II processor is executing the software under

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 247 | P a g e

microC/OS II to determine whether crucial parts should

be exported as hardware.

 Before adding the custom instruction modules into the

design, create them in an HDL language like VHDL or

Verilog and test them with simulations.

 Add the custom instructions to the SOPC as an internal

instruction used by the Nios II processor to include them

into the design. You may use either ANSI C or assembly

to run these one-of-a-kind instructions.

 • Co-simulate the system using the Nios II, bespoke

logics, embedded memory, and other interfaces available
on the stratix IV prototype Board.

5. Field Testing and Verification
Depending on where you draw the line between hardware and

software, the B-ACOSD CFAR design, which is based on a

single FPGA chip, may or may not look like Figure.3. Our

algorithms' less crucial components are executed by the Nios

II core processor, while the crucial bits are exported as

bespoke logic specified in VHDL. A first-realization pure

software core operating on the Nios II processor has been

used to calculate execution time for the three primary

components, which include sorting, filtering, and identifying

modules. Second, we used the Avalon interface to link the

Nios II CPU to the components listed in the VHDL file.

Below is a breakdown of how long it takes to run the B-

ACOSD design on a Stratix IV board.

Table 2: B-ACOSD software module execution time

According to our findings, the most critical part of the
procedure is identifying the cutoff computation for the

filtering module and a subset of the detection module. The

sorting mechanism also plays an important role. In order to

incorporate the filtering and sorting modules into the

detection, we opt to send two user-defined commands. The

rest of the code has been updated to work with Nios II core

processors. To improve the B-ACOSD's sorting algorithm

and lookup table configuration without raising the constant

false alarm rate, we tried decreasing the accuracy and the

quantity of on-chip memory used during the log function

computation.
Hardware implementations of the exponential equations (5,

7) are challenging and expensive due to the necessity for

floating point computing. Equations (5) and (7) are

logarithmized as follows to reduce hardware requirements

and calculation time.

In this case, the multiplication step in computing power is

replaced by an addition. Since hardware implementations of

logarithmic computing are complex and time-consuming,

this overhead can be reduced by resorting to a lookup table.

The lookup table is based on actual observations of real-

world radar input data, and it represents lognormal

distributions with parameters =1 and =1.1, as stated in [26].

Following the current trend towards logarithmic notation, we

transformed the values of our test cells using a LUT that can

handle up to 2000 numbers. This logarithmic transformation

is likewise accomplished using the aforementioned

conversion table. The lookup table is stored in the FPGA's

32K ROM, which is located directly on the device. The chip's

32 kilobytes of ROM can store data with a resolution of

0.0610 bits. This MATLAB simulation of BACOSD CFAR
censoring at a fixed resolution yields findings that agree with

the real-number version.

Due to its lowered delay in software implementation (as

shown in table 3) and its hardware implementation (which

provides a high degree of parallelism and an interesting

timing), we have changed a Parallel Range Computing (PRC)

strategy for bubble sorting to speed up execution time.

Table 3: Execution time of several sorting strategies on the Nios II

processor

We have integrated the hardware and software components

of the design, performed simulations, and studied the
complexity differences between the two variations with and

without the unique instruction. The A-COSD detector's

execution complexity employing only the Nios II core

processor from the FPAG download is shown in Table 4.

Table 5 provided a summary of the system's hardware,

including information on the combinational LUTs, logic

registers, and On-chip memory. The complexity of the design

grows noticeably when the custom logics are implemented as

discrete hardware components. As processing time decreases

from 143 µs to 0.45 µs, people will spend less time waiting.

Table 4: Powerful Nios II CPUs (100 percent Software Answer)

Table 5: SoC hardware and software for B-ACOSD

The highest clock speed for the NIOS processor in an N=16,

p=12 SoC implemented on an FPGA is 250 MHz. Once the

software B-ACOSD was in place, we utilised the Avalon

interface to relocate the delay-critical components to a set of

custom logic blocs that were then linked to the Nios II CPU.

Up to 0.45µs of delay can be removed from the overall layout.

Processing speeds of less than half a micro-second are needed

for real-time applications [24]. The proposed system-on-chip

has a default configuration that includes 16-bit data samples,

16 reference cells, and 2 guard cells for demonstration

purposes. 256 samples of data were generated using an

exponential distribution to verify the HW/SW design. The

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 248 | P a g e

ROM can hold up to 16 x 256 bytes of data. One 256-

megabyte RAM is used to store the data.

6. Conclusion
The authors of this study claim to have implemented the B-

ACOSD CFAR target detector for lognormal clutter in both

hardware and software. The suggested system-on-chip is

simple to construct and quick to prototype, which are both

advantages. The hardware configuration of the prototype

worked well enough in a short enough amount of time to

validate the idea of co-design. In an effort to export and
develop the hardware components in a timely manner, we

investigated the custom instruction approach. A large number

of interfaces and components, including NiosII, custom

logics, on-chip memory, Avalon switch fabric, and more, are

included in the proposed FPGA implementation. The

suggested architecture has a latency of 0.45µs for detecting

each tested cell, which is significantly less than the 0.5µs

needed for real-time detection. The EP4SGX230KF4C2

device in the Stratix IV development kit allowed us to

precisely measure and validate all time limitations in the

proposed design.

References
1. M Barkat. Signal Detection and Estimation. Norwood,

MA: Artech House, 2005.

2. RS Johnson, HM Finn. Adaptive detection mode with

threshold control as a function of sampled clutter-level

estimates, RCA Review. 1968; 29:414-463.
3. H Rohling. Radar CFAR thresholding in clutter and

multiple target situations, IEEE Trans. Aerospace and

Electronics Systems. 1983; 19(4):608-621.

4. SA Kassam, PP Gandhi. Analysis of CFAR processors

in nonhomogenous background, IEEE Trans. Aerospace

and Electronics Systems. 1988; 24(4):427-455.

5. HA Meziani, F Soltani. Performance analysis of some

CFAR detectors in homogenous and non-homogenous

Pearson-distributed clutter, Signal Processing. 2006;

86:2115-2122.

6. GM Dillard, JT Rickard. Adaptive detection algorithms

for multiple target situations, IEEE Trans. Aerospace

and Electronics Systems. 1977; 13(4):383-343.

7. A Mezache, F Soltani. A novel threshold optimization of

ML CFAR detector in Weibull clutter using Fuzzy-

neural networks, Signal Processing. 2007; 87:2100-

2110.
8. M Barkat, T Larouissi. Performance Analysis of order-

statistic CFAR detectors in time diversity systems for

partially correlated chi-square targets and multiple target

situations, Signal Processing. 2006; 86(7):1617-1631.

9. MA Khalighi, MH Bastani. Adaptive CFAR processor

for nonhomogenous environemnt, IEEE Trans.

Aerospace and Electronics Systems. 2000; 36(3):889-

897.

10. P Henttu, M Juntti, H Saarnisaari. Iterative

multidimensional impulse detectors for communications

based on the classical diagnostic methods, IEEE Trans.

Communication. 2005; 53(3):395-398.

11. S Alshebeili, SM Alhumaidi, AM Obied, YM Seddiq.

FPGA Based Implementation of a CFAR Processor

using Batcher's sort and LUT arithmetic, in 4th

International Design and Test Workshop (IDT),Riyadh-

KSA, 2009, 1-6.
12. JH Sawyers, VG Hansen. Detectability loss due to

greatest of selection in a cell-averaging CFAR, IEEE

Trans. Aerospace and Electronics Systems. 1980;

16:115-118.

13. M Weiss. Analysis od some modified cell-averaging

CFAR processors in multiple target situations," IEEE

Trans. Aerospace and Electronics Systems. 1982;

15(1):102-114.

14. SD Himonas, PK Varshney, M Barkat. CFAR detection

for multiple target situations, IEE Proceeding, Part F:

Radar and Signal Processin. 1989; 136(5):193-210.

15. R Ravid, N Levanon. Maximum-likelihood CFAR for
Weibull background, [16] R. Ravid and N. Levanon,

“Maximum-likelihood CFAR for Weibull background,”

IEE Proceeding, Part F: Radar and Signal Processing.

1992; 139(3):256-264.

16. V Anastassopoulos, G Lampropoulos. Optimal CFAR

detection in Weibull clutter, [17] V. Anastassopoulos

and G. Lampropoulos, Optima IEEE Trans. Aerospace

and Electronic System. 1995; 31(1):52-64.

17. C Torres, S Lopez, R Cumplido. A configurable FPGA-

based Hardware Architecture for Adaptive Processing of

Noisy Signals for Target Detection Based on Constant

False Alarm Rate (CFAR) Algorithms, in Global Signal

Processing Conference, Santa Clara CA, 2004, 214-218.

18. ML Bencheikh, B Magaz. An Efficient FPGA

Implementation of the OS-CFAR Processor, in

International Radar Symposium, Wroclaw, 2008, 1-4.

19. R Cumplido, C Uribe, F Del, Campo R Perez. A versatile

hardware architecture for a constant false alarm rat
processor based on a linear insertion sorter, Digital

Signal Processing. 2010; 20:1733-1747.

20. JK Ali, ZT Yassen, TR Saed. An FPGA-based

implementation of CA-CFAR processor, Asian Journal

of Information Technology. 2007; 6(4):511-514.

21. AM Alsuwailem, SA Alshebeili, M Alamar. Design and

implementation of a configurable real-time FPGA-based

TM-CFAR processor for radar target detection, Journal

of Active and Passive Electronic Devices. 2008; 3(3-

4):241-256.

22. AM Alsuwailem, MH Alhowaish, SA Alshebeili, SM

Qasim. Field programmable gate array-based design and

realization of automatic censored cell averaging constant

false alarm rate detector based on ordered data

variability, IET Circuits, Devices & Systems. 2009;

3(1):12-21.

23. J Detlefsen, U Siart, J Buchlert, M. Wagner, V Winkler.
FPGA based signal processing of an automotive radar

sensor, in First European Radar Conference,

Amsterdam, 2004, 245-248.

24. M Barkat, SA Alshebeili, MN Almarshad. A Monte

Carlo simulation for two novel automatic censoring

techniques of radar interfering targets in log-normal

clutter, Signal Processing. 2007; 88(3):719-732.

25. R Djemal. A real-time FPGA-based implementation of

target detection technique in non-homogenous

environement, in Design and Technology of Integrated

System in Nanoscale Era (DTIS), Hammamet- Tunisia,

2010, 1-6.

26. R Djemal, S Alshebeili, I Rosyadi. Design and

Implementation of Real-time Automatic Censoring

Systen on Chip for Radar Detection, in World Academic

of Science, Engineering and Technology (WASET),

Penang - Malaysia, 2009, 318-324.

