
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    243 | P a g e  

 

 

 
The CFAR Radar Target Detector HW/SW Architecture Implemented on an FPGA 

 

Riyadh Abdulhamza Al-Alwani 
Department of Electrical Engineering, College of Engineering, University of Babylon, Babylon, Iraq 
 

* Corresponding Author: Riyadh Abdulhamza Al-Alwani 

* Corresponding Author’s Email: alwaniriyad@gmail.com 

 

 

 

Article Info 

 

ISSN (online): 2582-7138 

Volume: 04  

Issue: 03 

May-June 2023 

Received: 02-04-2023;  

Accepted: 19-04-2023 

Page No: 243-248

Abstract 
This paper describes the HW/SW Codesign FPGA-based architecture of a log-

normally distributed B-ACOSD CFAR target detector for radar systems in the 

abstract. The complete CFAR system is evaluated to see which components need to 

be strengthened so that the detection procedure can be carried out in real time. To 

ensure the CFAR Architecture is fully optimised, we have devoted careful attention to 

the Altera environment's custom instruction strategy. The CFAR detector is a hybrid 
hardware/software setup. The Avalon switch fabric allows the hardware modules to 

talk to the NIOS II processor, which runs the software. The on-chip memory and 

custom logic components complement the universal asynchronous receiver/transmitter 

(UART) and JTAG (JTAG) interfaces. The suggested SoC is verified and tested with 

the help of an Altera Stratix IV EP4SGX230KF4C2 running at 250MHz.  

We improved the efficiency of our embedded target detection system by fusing 

hardware and software approaches. When compared to a software-only solution, this 

resulted in a 0.45µs reduction in overall latency.
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1. Introduction 
The received signal is processed by a radar system, which then determines the target type (target or clutter) and the positions of 

the detected items. After then, the data is shown on the screen. Whenever the signal strength is greater than a predetermined  

threshold, regardless of whether the background is cluttered or absent, the target can be easily localised. In real-world situations, 

the echo is often accompanied with time- and location-varying background noise. Target extraction is more effective when the 

threshold is dynamically rather than statically determined, taking into account local noise and clutter. Adaptive signal processing 

utilising a configurable detection threshold is necessary to determine if the tested cell is a target [1]. 

In order to maintain a constant false alarm rate (CFAR) in radar systems, several approaches have been presented in the literature 
[2, 3], including cell averaging (CA) and ordered statistics (OS). As mentioned in [4], one such device is the OS-CFAR detector. 

This detector takes the noise level around it as a reference and adjusts accordingly. In conditions with homogenous backgrounds, 

the OS-CFAR detector can differentiate closely spaced interferences with just a little increase in detection loss, in contrast to the 

CA-CFAR detector. Although the CA-CFAR technique takes a lot more time to assess than the CFAR detector, it is the superior 

CFAR strategy to use in homogeneous settings. 

The Censored MeanLevel Detector (CMLD) [5, 6], Greatest-of-CFAR (GO-CFAR) algorithm [5, 7], and Smallest-of-CFAR (SO-

CFAR) approach [5, 8] are just a few examples of the many well-developed OS approaches that have been investigated for a 

variety of purposes. However, as the number of targets changes, the assumption of a constant environment collapses. The CA-
CFAR processor's efficiency drops dramatically in these environments.  

More robustness against a heterogeneous environment has been achieved by the development of new classes of CFAR 

approaches [9, 10]. Unfortunately, real-time analysis was not possible because these systems were software-only. However, 

processing radar data correctly requires keeping the false alarm rate consistent and reasonable. 
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By comparing the processed target signal to the examined cell 

using an adaptive threshold detector, a CFAR may be 

derived. You need to know about probability distributions 

like the Rayleigh, Weibull, K-, and lognormal distributions 

to make this comparison. Constraints in terms of real time 

must also be taken into account, and this includes reducing as 

much time as possible spent on target identification, 

particularly for high-resolution targets. Conducting a solution 

space design inquiry is the only method to guarantee the 

CFAR detector's success in this mission. 

However, CFAR radar detection is still more theoretical than 
practical in a real-time scenario due to the absence of easily 

accessible high-computational signal processing methods. 

System-on-chip (SoC) architecture is a possible option for the 

real-time CFAR processor due to the time-sensitive nature of 

target identification by a high-resolution radar system. The 

CPU, glue logic, and memory are all combined onto a single 

chip in systems-on-a-chip architecture. SoC manufacturing 

has been made easier and faster thanks to recent 

developments in field programmable gate array (FPGA) 

technology. 

In this research, we demonstrate the implementation of the B-

ACOSD CFAR algorithm on a Nios II-based FPGA for the 

detection of censored ordered statistics. This detector should 

be able to reliably perform automatic target recognition and 

interference counting inside a lognormal clutter distribution. 

The CFAR detector runs on an Altera Stratix IV board with a 

hybrid hardware/software design based on the combination 

of the NIOS II core processor and bespoke logics written in 
VHDL language. To provide for efficient data transfer 

between the various parts of the system-on-chip, the Avalon 

switch fabric is included into the same FPGA as the rest of 

the parts. 

On the forth page. The suggested CFAR system is well-suited 

for high-resolution radar applications in arid regions [11], as it 

serves as a prototypical HW/SW example of how to acquire 

a processing latency of less than 500 ns.An overview of the 

remaining sections of this work is provided below. In Section 

2, we'll cover the basics of CFAR, while in Section 3, we'll 

go into studies of how various CFAR algorithms may be 

implemented in hardware. In Section 3, the B-ACOSD 

algorithms and formulae are presented. In Section 4, we detail 

the detectors' SoC HW/SW FPGA architecture. The 

embedded system's co-simulation findings and 

implementation for target identification are presented in 

Section 5. Our last thoughts and suggestions for further study 
are presented in Section 6. 

 

2. Related work 
Some form of detecting mechanism is necessary for a radar 

system to ascertain whether or not a return originated from a 

target. When the threshold is too low, more targets are 

recognised, but there is also an increase in false positives. If 

the threshold is set too high, however, fewer false alarms will 

occur at the expense of fewer targets being acknowledged. 

Most radar detectors have their thresholds set to limit the 

possibility of false alerts. (Pfa). A false alarm threshold may 

be determined if the levels of background noise, clutter, and 

interference are constant throughout time and place. But in 

reality, the levels of spatial and temporal noise are raised by 

unwanted clutter and interference sources. To keep the false 

alarm probability constant, the threshold might be adjusted 

up or down in real time using an adaptive threshold. The term 
"CFAR detection" is used to characterise this method. 

Figure 1 depicts a fairly typical CFAR processor. A shift 

register is used to serially arrange the input signals. By 

applying a CFAR processor to data from neighbouring cells, 

the adaptive threshold (X0) may be determined. Whether or 

whether X0 is bigger than the target value is used to make the 

call. If the value of the tested cell is higher than the threshold 

value, it is considered to be a target. 

 

 
 

Fig 1: Schematic representation of a common CFAR algorithm 
 

The geometric mean of the reference cells is used by the CA-

CFAR detector [3], the simplest and oldest CFAR detector, to 

establish its adaptive threshold. In recent years, other 

alternative CFAR algorithms have been created. Based on the 

clutter power distribution and the interference objectives, 

three models may be used to categorise CFAR algorithms. 
 When the clutter power distribution changes, the 

likelihood of a false alarm rises, but this may be 

mitigated by employing the greatest-of-selection logic 

for the CA-CFAR detector (GO-CFAR) [12]. A hence-

CFAR approach using smallest-of-selection logic is 

recommended for the CA-CFAR detector since the GO-
CFAR detector's target detection effectiveness decreases 

in the presence of several interfering targets. [13]. 

 The CMLD may be utilised as a target detector when the 

background clutter consists of uniform white Gaussian 

noise and distracting targets. The CMLD is able to 

estimate the noise level by excluding a portion of the 

noise from the target sample. Furthermore, when the data 

in the window has been organised, the trimmed mean-

level CFAR (TM-CFAR) detector [4] uses trimmed 

averaging. If you don't know how many false positives 

to predict, you can use the generalised CMLD (GCMLD) 

or the OS-CFAR detector (which selects a single ordered 

sample to reflect the expected noise level in the cell 

being tested). The generalised two-level CMLD (GTL-

CMLD) [14] uses an automatic censoring technique to 

exclude samples with interfering targets or extended 

clutter from the reference window of the tested cell. This 
method is frequently employed whenever there is a shift 

in the clutter power distribution and interference from 

several targets. 

 Non-Gaussian distributions of clutter are covered in the 

final presentation. The lognormal, Weibull, gamma, and 

K-distributions have all been used to describe the non-

Gaussian clutter distributions discovered by envelopes. 

There has been some development in Weibull clutter 

CFAR detection recently. For example, in [15] we find a 

presentation and analysis of the performance of the 

maximum-likelihood CFAR (ML-CFAR) under 

situations of undetermined size and shape parameters. 

For this reason, we have developed the optimum Weibull 
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CFAR (OW-CFAR) approach [16], whereby statistical 

tests are formulated in terms of an estimate of the mean 

power of the Weibull clutter. 

 Theoretical progress in CFAR detection has outpaced its 

hardware implementation. Few attempts have been 

recorded to build CFAR processors in hardware. In 

particular, the hardware architecture shown in [16-18] is 

flexible, and may be utilised to deal with noisy signals 

for target recognition using CFAR algorithms. The 

architecture was made to be set for Max, Min, and Cell-

Average (CA) CFAR algorithms, in addition to allowing 
parallel/pipeline processing. In [19], we learn about a 

parallel OS-CFAR implementation. Combining the 

FPGA architectures for CACFAR and OS-CFAR is what 

[20] does. The TM-CFAR algorithm is shown to be 

implemented on an FPGA in [21]. Simple CFAR 

algorithms, which fared best when the clutter followed a 

Gaussian distribution, were used in all of these examples. 

 

Automatic Censored Cell Averaging (ACCA) ODV CFAR 

was developed by Alsuwailem et al. [22] as a defence 

mechanism against this. However, validation is performed in 

an environment that is not real-time, and dynamic interaction 

with the underlying architecture is not supported. In addition, 

the Radar System ecosystem lacks a standard interface for 

facilitating communication between its many components. 

The radar sensor of the vehicle utilised by Winkler et al. [23] 

was built on a system-on-chip (SoC) with a programmable 

central processing unit (CPU). All input/output and user-
defined logic is managed by the central processing unit. 

Earlier this year, Almarshad et al. [24] unveiled an automated 

censoring detector called the ACOSD CFAR. Automatic 

filtering of competing targets of unknown number in log-

normal noise is a key component of this strategy. As radar 

resolution has improved, the log-normal distribution has 

become the preferred model for representing the amplitude of 

clutter, replacing the less precise Rayleigh distribution. 

However, when samples are obtained from a log-normal 

distribution, the automated censoring techniques established 

for Rayleigh clutter and described in [11, 22] cannot be applied 

directly. The rest of this study focuses on SoC 

implementation algorithms. The idea comes from the 

ACOSD-CFAR [24]. 

 

3. The Algorithms for Detecting ACOSD 
ACOSD CFAR algorithms include a two-stage detection 
process: (1) excluding potentially misleading reference cells, 

and (2) doing the actual detection. Using a properly rated cell 

set, adaptive thresholds are calculated in real-time, and the 

unknown background level is estimated. You don't need to 

know anything about the clutter's make-up or the number of 

overlapping targets to utilise this detector. These are the parts 

that make up a CFAR processor: A delay line is tapped to 

record the radar's outputs. The signal in question is the one in 

the cell with the subscript. At the conclusion of the CFAR 

procedure, the tissue is encircled with scaffolding cells. The 

ACOSD cell-free acidic residue (CFAR) arranges 

neighbouring cells from smallest to largest by size. We tap 

into the radar's delay line signal (XI:i=0,1,...,N) and record it. 

The goal signal is in the test cell, which is denoted by the 

subscript [I=0]. The remaining neighbouring cells are the 

CFAR method's necessary auxiliary cells. The ACOSD 

CFAR ranks the N neighbouring cells from largest to 
smallest. 

X(1)≤X(2)≤------≤X(N)  (1) 
 

Following cell sorting, cells go to the detection step. There 

are currently two distinct algorithms used by B-ACOSD and 

F-ACOSD. In the B-ACOSD method, the sample X(N) is 

measured against an adaptive threshold (TC0) calculated by 

a formula.  
 

TC0=X(1)1-α0 X(p)α0.  (2) 

 
The maximum number of observations is denoted by X(P), 
and the level of false censoring desired by the constant. 

Detection performance is said to be rather excellent at 

(p>N/2) according to [26]. In the event that X(N)TC0, then 

X(N) is a noise-free, clutter-free sample, and the process will 

stop. If sample X(N) exceeds the threshold TC0, then it is 

assumed to be the echo back from a misbehaving target. The 

algorithm now needs to decide if X(N-1) is larger or lower 

than the threshold value, given that X(N) has been censored. 

 

 
 

Fig 2: Algorithm block diagram for B-ACOSD 

 

Tct=x(1)1-α1x(p)α1  (3) 
 

In order to determine if the given data is an interference-free 

sample of clutter or a target with interference. The (K+1)th 

iteration compares the x(N-K) sample against the TCK 

threshold and makes a decision based on the results. 

 

 (4) 
 
Where Tck=x(1)1-αkx(p)αk 

 

Clutter samples with interference are shown to be X(N-K+1), 

X(N-K+2), X(N), and so on, whereas (H0) means that X(N-

K) is a clutter sample without interference. The subsequent 
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tests will proceed on the assumption that H1 is correct. If the 

cell being probed is found to be homogenous (i.e., clutter 

sample alone), the procedure terminates; otherwise, it 

continues until the K=NP highest cells have been evaluated. 

The block diagram of the B-ACOSD algorithm is shown in 

Figure 2. 

If the tested cell, X0, is larger than the threshold cell, Tak, 

then detection has occurred. 

 

  (5) 
 
Both H1 and H0 assume that the target is either present or 

absent from the test cell, respectively. The cutoff value in B-

ACOSD CFAR is 
 
Tak=X(1)1-ΒkX(N-K)Βk  (6) 
 

By choosing K = number of overlapping targets observed 

during centring phases, the design's Pfa is decreased.  

 

Threshold Values 
Choosing an appropriate threshold for the algorithms is 

essential [26]. These cutoffs need to be established so as to 

reduce, as much as possible, the chance of a false positive in 

a carefully monitored hypothesis test. The thresholds were 

determined using Monte Carlo simulation with small Pfa and 

Pfc values. 

B-ACOSD's computed threshold parameters k and k for 

Pfa=0.001 and Pfc=0.01 are shown in Table 1. 
 

Table 1: Pfa=0.001 and Pfc=0.01 are the threshold values for B-
ACOSD. 

 

 
 

4. B-ACOSD CFAR architecture HW/SW development 

using FPGAS 
A-Hardware and Software Framework for Radar Systems 
A Nios II fast processor was integrated into an FPGA board 

(Altera Stratix IV) to carry out the B-ACOSD algorithm.  

Hardware modules developed with VHDL code and the 

custom instruction technique, and software modules given in 

ANSI C. To speed up time-critical software calculations, we 

actually add to the Nios II processor's instruction set with 
specific instructions. Because the ALU of the Nios II 

processor is located near a proprietary logic component, 

developers may combine many standard instructions into a 

single one for hardware execution, saving both time and 

space. The computationally expensive software of the CFAR 

programme is optimised with the use of custom instruction, 

and not only the outer loops. We may modify the Nios II core 

processor on our system-on-chip with the help of 

supplementary instructions so that it meets the stringent 

timing requirements of the B-ACOSD design. 

The components of the embedded CFAR architecture are 

shown in Figure.3. 

 

Nios II core processor with Master port, 8 KB data cache, 16 

KB instruction cache, and 32 bits of data route and software 

speed. 

 

 
 

Fig 3: Embedded System with B-ACOSD based on Nios II 

 

 Our embedded system relies on the Avalon bus, which is 

incompatible with any hardware components not defined 

in HDL language at the RTL level and sporting only 

slave ports. 

 The Avalon Memory Mapped bus is used by the SIF to 

communicate with the custom instruction, NIOS II 

processor, and all other interfaces on the same system-

on-chip. 

 Additional timers and on-chip memory of 128kx32 and 

64kx16 provide accurate monitoring of all timing aspects 
inside the CFAR architecture. 

 Connecting to a target, downloading software, and 

seeing on-chip trace data are all made easier using JTAG 

UART interfaces. 

 

B. HW/SW Design Process 
To build the B-ACOSD System on Chip, we propose a 

conventional HW/SW design strategy, as shown in Figure 4. 

 

 
 

Fig 4: Typical Hardware and Software Design Flow 

 

 The first step is to use an HLL, such as ANSI C, to 

construct a software architecture from scratch. The 

FPGA's Nios II processor is executing the software under 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    247 | P a g e  

 

microC/OS II to determine whether crucial parts should 

be exported as hardware.  

  Before adding the custom instruction modules into the 

design, create them in an HDL language like VHDL or 

Verilog and test them with simulations. 

 Add the custom instructions to the SOPC as an internal 

instruction used by the Nios II processor to include them 

into the design. You may use either ANSI C or assembly 

to run these one-of-a-kind instructions. 

 • Co-simulate the system using the Nios II, bespoke 

logics, embedded memory, and other interfaces available 
on the stratix IV prototype Board. 

 
5. Field Testing and Verification 
Depending on where you draw the line between hardware and 

software, the B-ACOSD CFAR design, which is based on a 

single FPGA chip, may or may not look like Figure.3. Our 

algorithms' less crucial components are executed by the Nios 

II core processor, while the crucial bits are exported as 

bespoke logic specified in VHDL. A first-realization pure 

software core operating on the Nios II processor has been 

used to calculate execution time for the three primary 

components, which include sorting, filtering, and identifying 

modules. Second, we used the Avalon interface to link the 

Nios II CPU to the components listed in the VHDL file. 

Below is a breakdown of how long it takes to run the B-

ACOSD design on a Stratix IV board. 

 
Table 2: B-ACOSD software module execution time 

 

 
 

According to our findings, the most critical part of the 
procedure is identifying the cutoff computation for the 

filtering module and a subset of the detection module. The 

sorting mechanism also plays an important role. In order to 

incorporate the filtering and sorting modules into the 

detection, we opt to send two user-defined commands. The 

rest of the code has been updated to work with Nios II core 

processors. To improve the B-ACOSD's sorting algorithm 

and lookup table configuration without raising the constant 

false alarm rate, we tried decreasing the accuracy and the 

quantity of on-chip memory used during the log function 

computation.  
Hardware implementations of the exponential equations (5, 

7) are challenging and expensive due to the necessity for 

floating point computing. Equations (5) and (7) are 

logarithmized as follows to reduce hardware requirements 

and calculation time. 

 

 
 
In this case, the multiplication step in computing power is 

replaced by an addition. Since hardware implementations of 

logarithmic computing are complex and time-consuming, 

this overhead can be reduced by resorting to a lookup table. 

The lookup table is based on actual observations of real-

world radar input data, and it represents lognormal 

distributions with parameters =1 and =1.1, as stated in [26].  

Following the current trend towards logarithmic notation, we 

transformed the values of our test cells using a LUT that can 

handle up to 2000 numbers. This logarithmic transformation 

is likewise accomplished using the aforementioned 

conversion table. The lookup table is stored in the FPGA's 

32K ROM, which is located directly on the device. The chip's 

32 kilobytes of ROM can store data with a resolution of 

0.0610 bits. This MATLAB simulation of BACOSD CFAR 
censoring at a fixed resolution yields findings that agree with 

the real-number version. 

Due to its lowered delay in software implementation (as 

shown in table 3) and its hardware implementation (which 

provides a high degree of parallelism and an interesting 

timing), we have changed a Parallel Range Computing (PRC) 

strategy for bubble sorting to speed up execution time. 

 
Table 3: Execution time of several sorting strategies on the Nios II 

processor 
 

 
 

We have integrated the hardware and software components 

of the design, performed simulations, and studied the 
complexity differences between the two variations with and 

without the unique instruction. The A-COSD detector's 

execution complexity employing only the Nios II core 

processor from the FPAG download is shown in Table 4. 

Table 5 provided a summary of the system's hardware, 

including information on the combinational LUTs, logic 

registers, and On-chip memory. The complexity of the design 

grows noticeably when the custom logics are implemented as 

discrete hardware components. As processing time decreases 

from 143 µs to 0.45 µs, people will spend less time waiting. 
 

Table 4: Powerful Nios II CPUs (100 percent Software Answer) 
 

 
 

Table 5: SoC hardware and software for B-ACOSD 
 

 
 
The highest clock speed for the NIOS processor in an N=16, 

p=12 SoC implemented on an FPGA is 250 MHz. Once the 

software B-ACOSD was in place, we utilised the Avalon 

interface to relocate the delay-critical components to a set of 

custom logic blocs that were then linked to the Nios II CPU. 

Up to 0.45µs of delay can be removed from the overall layout. 

Processing speeds of less than half a micro-second are needed 

for real-time applications [24]. The proposed system-on-chip 

has a default configuration that includes 16-bit data samples, 

16 reference cells, and 2 guard cells for demonstration 

purposes. 256 samples of data were generated using an 

exponential distribution to verify the HW/SW design. The 
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ROM can hold up to 16 x 256 bytes of data. One 256-

megabyte RAM is used to store the data. 

 

6. Conclusion 
The authors of this study claim to have implemented the B-

ACOSD CFAR target detector for lognormal clutter in both 

hardware and software. The suggested system-on-chip is 

simple to construct and quick to prototype, which are both 

advantages. The hardware configuration of the prototype 

worked well enough in a short enough amount of time to 

validate the idea of co-design. In an effort to export and 
develop the hardware components in a timely manner, we 

investigated the custom instruction approach. A large number 

of interfaces and components, including NiosII, custom 

logics, on-chip memory, Avalon switch fabric, and more, are 

included in the proposed FPGA implementation. The 

suggested architecture has a latency of 0.45µs for detecting 

each tested cell, which is significantly less than the 0.5µs 

needed for real-time detection. The EP4SGX230KF4C2 

device in the Stratix IV development kit allowed us to 

precisely measure and validate all time limitations in the 

proposed design. 
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