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Abstract 
Eliciting oxidative stress and interference with biofilm formation by silver 

nanoparticles (AgNPs) comprise some of the postulated mechanisms of bacteria 

destruction. Plant extracts are commonly employed both as reducing agents and 

stabilizers of green-synthesized AgNPs. This yields a broad nanoparticle size 

distribution and unpredictable coating arising from diverse biomolecules and 

oxidation products in the final reaction mixture, which makes the comparison of 

different experiments exploiting green synthesised AgNPs as antimicrobial agents 
tricky. The current study synthesised citrate-capped silver nanoparticles (CtAgNPs) 

with a diameter of 37.9±8.6 nm functionalized via ligand exchange with betanin. 

Subsequently, the betanin silver nanoparticles (BtnAgNPs) ability to perturb the 

cellular oxidative stress defence mechanism of Staphylococcus aureus American Type 

Culture Collection (ATCC) 12600 and biofilm-forming properties were evaluated. 

Treatment with a minimum inhibitory concentration (MIC) of BtnAgNPs (12.5ppm) 

promoted reactive oxygen species accumulation and significantly reduced superoxide 

dismutase (SOD) and catalase activities. Furthermore, BtnAgNPs at sub-minimum 

inhibitory concentrations (SubMICs) to MIC range (0.39-12.5 ppm) inhibited the 

establishment of biofilms in a concentration-dependent manner. The study advocates 

for synthesis protocols that produce precise-sized nanoparticles followed by selective 

biomolecule functionalization for better antimicrobial efficacy comparative studies 

between AgNPs bearing different coatings in future experiments. 
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1. Introduction 
A nanotechnology-based approach using several types of metallic nanoparticles that have antimicrobial properties and other 

nano-dimension antibiotic carriers is gaining attention as a novel way of controlling pathogenic micro-organisms [1-3]. This 

provides a new arsenal against emerging pathogens that resist traditional antibiotics. The effectiveness of silver nanoparticles 

(AgNPs) as antimicrobial agents on diverse pathogens has been effectively demonstrated. Nevertheless, nanoparticles' precise 

destructive routes are an area of continuing investigation.  

Dos Santos et al. [4] reviewed some plausible mechanisms proposed by researchers. Silver and other metallic nanoparticles hinder 

growth and diminish cell viability via multiple cellular pathways. One of the ways is the nanoparticles contacting the 

mitochondrial membrane, which activates genes linked to apoptosis and ultimately causes apoptosis [5]. Additionally, 

mitochondrial damage results in the production of reactive oxygen species (ROS), which degrade DNA [6]. Moreover, DNA is 

damaged via direct interaction with nanoparticles. Synthesis inhibition and oxidation of proteins following the attachment of 

nanoparticles to ribosomes have been suggested as possible mechanisms too.  
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Furthermore, the build-up of nanoparticles on the plasma 

membrane of the cell causes temporary or complete damage 

to the conformation and/or functionality of the surface 

proteins, which results in the formation of holes. This permits 

nanoparticles to enter the cell and cell components to leak [7]. 

Specifically, Bethyl et al. [8] proposed that AgNPs could 

induce cell death in Escherichia coli by the creation of “pits” 

on the cell wall, increasing membrane permeability and 

eventual respiratory chain inactivation. Conversely, the silver 

ions arising from the dissolution of AgNPs can bind to the 

thiol and amino groups on the cell wall occasioning 
disruption of protein structure [9]. 

Triggering oxidative stress imbalance by antimicrobial 

agents is postulated to lead to the destruction of bacteria [10, 

11]. Strong evidence has been presented by studies 

demonstrating that AgNPs cause cell death in a variety of 

bacteria, including S. aureus, Klebsiella pneumoniae E. coli, 

Bacillus subtilis, Helicobacter felis, Helicobacter pylori, 

Salmonella flexneri, Pseudomonas aeruginosa and 

Streptococcus pneumoniae, through the formation of ROS [12, 

13]. Quercetin-mediated AgNPs were effective against multi-

drug resistant P. aeruginosa and S. aureus from goats with 

mastitis, at 1 and 2 ppm minimum inhibitory concentration 

(MIC) respectively. In the study, ROS generation and 

disruption of cell membrane integrity accompanied the 

nanoparticle's bactericidal activity [14]. 

S. aureus occurs ubiquitously on humans' and animals' skin, 

and mucous membranes. It is a remarkably versatile 

organism, well adapted to its human host. Normally this 
colonisation is asymptomatic and goes unnoticed. However, 

S. aureus is frequently involved in mucous membranes and 

skin infections. It can also turn on its host and trigger a range 

of infections, from minor skin and soft tissue infections to 

fatal sepsis [15]. Currently, S. aureus is a frequent isolate from 

patients. From a clinical perspective, hard-to-treat infections 

caused by methicillin-resistant S. aureus (MRSA) are a major 

concern. The World Health Organization (WHO) has 

highlighted the increasing occurrence of severe hospital and 

community infections associated with first-line drug-resistant 

S. aureus. It is estimated that individuals with MRSA are 

64% more likely to succumb than those with non-resistant 

infections. Consequently, MRSA plus other subtypes of 

antibiotic-resistant microbes e.g. E. coli and K. pneumoniae, 

which cause nosocomial infections, and Mycobacterium 

tuberculosis causing multidrug-resistant tuberculosis, have 

been singled out as disease-causing organisms of global 
concern warranting special interest to ameliorate their threat 
[16].  

On the other hand Park and Seo [17] noted that gastroenteritis 

from staphylococcal food poisoning (SFP) is very common 

globally. It is caused by ingesting food contaminated by 

Staphylococcus containing preformed staphylococcal 

enterotoxins. The toxins are heat resistant and can withstand 

100 °C for 30 min. In the Staphylococcus genus, S. aureus 

has been singled as the predominant cause of SFP. The 

intoxication is characterized by abdominal cramps, vomiting 

and diarrhoea. 

Initially, it was thought that MRSA was a human-associated 

problem and more so a hospital-acquired infection. However, 

MRSA has been encountered in pets, and farm animals used 

as food and their products, indicating its permeation into the 

food chain [18-20]. MRSA isolates from milk and their products 

have been found to produce enterotoxin [21]. Consequently, 
finding new and effective ways of controlling MRSA is a 

priority for medical and food microbiologists. 

The existence of biofilms is a normal occurrence in nature 

among many microbial species. It helps microbes resist 

external stresses. Biofilm formation is a prominent virulence 

factor of S. aureus [22]. Silver nanoparticles have been 

demonstrated to inhibit biofilm formation. Their efficacy 

depends on the size, dissolution into silver ions and stability 

of surface passivation [9, 23]. 

A diverse range of green synthesized AgNPs has been made 

and shown to inhibit the growth of pathogenic microbes via 

various mechanisms [24-28]. However, their fabrication 
reproducibility is hampered by their synthesis reactants' 

heterogeneity in composition and concentration. This 

translates to a lack of control over surface properties and size 

distribution. Consequently, varying results on their efficacy 

as antimicrobial substances are observed. Previous 

experiments have demonstrated that size-tuned and easily 

fuctionalizable AgNPs can be produced using citrate and 

tannic acid as reducing and stabilizing agents [29-32]. 

Moreover, commercial vendors offer citrate-stabilized 

AgNPs that can be used as a base for desirable biomolecule 

coating.  

Betanin is then the main colouring molecule of red beetroot 

and has high antioxidant properties [33]. Beetroot extracts and 

purified betanin-synthesised AgNPs have been shown to 

possess antimicrobial activity [34-36]. Our recent studies 

detailed post-synthesis biomolecule functionalization of size-

tuneable and easily surface-modifiable citrate-capped silver 

nanoparticles (CtAgNPs) with betanin and tested their 
antimicrobial activity [37]. Herein, we report the impact of the 

post-synthesis functionalized betanin silver nanoparticles 

(BtnAgNPs) on the cellular oxidative stress defence 

mechanism of S. aureus and biofilm-forming properties. This 

is in an effort to elucidate plausible routes through which 

BtnAgNPs inhibit the proliferation of S. aureus. 

 

2. Materials and Methods 

2.1. Materials 
The following items were obtained from Himedia (Mumbai, 

India): tannic acid (C76H52O46), silver nitrate (AgNO3), 

sodium citrate tribasic dihydrate (Na3C6H5O7. 2H2O), 

Mueller Hinton agar (MHA) and Mueller Hinton broth 

(MHB). Sigma-Aldrich (St. Louis, MO) provided betanin, 2’, 

7’-dichlorodihydrofluorescin diacetate (DCFH-DA), 

superoxide dismutase (SOD) and catalase assay kits. All 

solutions were made with ultrapure water (>18.2 MΩ.cm 
resistivity) prepared by PURELAB Option-Q™ (ELGA 

LabWater, UK). Teflon-coated stirrers and glassware used to 

prepare nanoparticles were first washed with a detergent, then 

aqua regia, thorough ultrapure water rinsing, and lastly with 

acetone. 

 

2.2. Fabrication of post-synthesis functionalized betanin 

nanoparticles 
The BtnAgNPs were prepared by ligand exchange 

functionalization of CtAgNPs of 37.9 ± 8.6 nm means size 

(transmission microscopy analysis) as per a previously 

reported procedure [37].  

Briefly, to prepare the base CtAgNPs, 1 ml of AgNO3 (25.00 

mM) was quickly injected into 100 ml reflux boiling and 

continuously stirred solution containing C76H52O46 and 

Na3C6H5O7. 2H2O at concentrations of 1 mM and 5.00 mM 

respectively. The mixture was transferred to a sterile glass 
media bottle and stored at 4 °C before purification. Excess 
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citrate and tannic acid were removed to yield purified 

nanoparticles. This was accomplished by first concentrating 

the particles through centrifuging the as-synthesized mix for 

10 min at 10000 g in 1.5 ml centrifuge tubes utilizing an RC 

4100™ centrifuge (Elteck, India). This was followed by the 

removal of the supernatant, adding 1.5 ml of 2.2 mM 

Na3C6H5O7. 2H2O and shaking to suspend the particles. The 

centrifugation was done again, the supernatant removed, and 

the particles were re-suspended in 2.2 mM Na3C6H5O7. 2H2O 

and stored under refrigeration.  

 
2.3. Characterization of Nanoparticles 
The formation of nanoparticles was monitored by obtaining 

an absorbance spectrum between 300-800 nm at 1nm 

intervals with a Model U-3900 double-beam 

spectrophotometer (Hitachi, Japan). A Nanotrac Wave™ 

model MN401 (Microtrac Inc., USA) was used to measure 

the hydrodynamic diameter and zeta potential. The 

equipment applied the dynamic light scattering (DLS) 

technique with the backscattering laser probe mounted at a 

180 ° angle and set at 780 nm. The nanoparticles images, 

selected area diffraction (SAED) pattern and energy 

dispersive X-ray spectroscopy (EDS) spectrum were 

obtained using a JEM 2100F high resolution-transmission 

electron microscope (HR-TEM) at an acceleration voltage of 

200 kV (Jeol, Japan). Transmission electron microscope 

image processing, size measurement and counting of 

nanoparticles were done using ImageJ 1.52n software [38]. 

The SAED gatan format diffraction patterns were analysed 
with the Get dSpace plug-in for ImageJ to determine and 

index the interplanar spacing. Computation of nanoparticles 

descriptive statistics and size distribution histogram was done 

with data analysis add-ins enabled Microsoft® Excel 2010. 

An Element™ XR spectrometer (Thermo Fisher Scientific, 

Germany), which applies high-resolution inductively coupled 

plasma mass spectrometry (HR-ICP-MS), was used to 

measure the total silver concentration in the purified 

nanoparticle colloids.  

Characterization data was used to compute requisite 

information for functionalizing the nanoparticles. The mean 

surface area and nanoparticle count in the dispersions were 

estimated as outlined by Mbae and Umesha [37]. The mean 

volume of the nanoparticles was calculated using the mean 

diameter derived from TEM. Multiplication of volume with 

silver’s density gave the average core mass. The number of 

nanoparticles/litre was estimated by dividing the total mass 
of silver in the solution computed from HR-ICP-MS 

calculations by the nanoparticles' average mass. A linear 

range UV-Vis absorbance calibration curve of silver 

concentration in the nanoparticle dispersion against 

absorbance at the maximum wavelength (λmax) of the 

localized surface plasmon resonance (LSPR) was derived to 

quickly estimate nanoparticle concentration for use in 

bacterial growth media. 

 

2.4. Post-synthesis functionalization with betanin 
The procedure described by Mbae and Umesha [37] was used 

for the determination of the quantity of betanin to be added 

for nanoparticle ligand exchange. An assumption of 5 ligands 

per nm2 was made and then an extra ×20 of what is required 

was provided to ensure adequate coverage and an excess 

amount. To produce BtnAgNPs, 1 ml aliquots of purified 

nanoparticle colloids at an estimated concentration of 
3.3×1010 AgNPs/ml were put into 1.5 ml centrifuge tubes, 50 

µl (0.5 mM) betanin aqueous solution added and the mixture 

was shaken for 12 h in darkness using a tube rocker. To 

remove excess betanin and displaced citrate, the colloid was 

subjected to centrifugation for 10 min at 10000 g and the 

supernatant was discarded. The pellet was cleaned by filling 

the tube with 1 ml of nano-pure water and repeating the 

centrifugation step. It was then re-dispersed in nano-pure 

water for characterization. Assessment of changes in the 

surface coating was done by measuring zeta potential and 

obtaining a UV-Vis spectrum. 

 
2.5. Reactive Oxygen Species (ROS) quantification  
The procedure described by Yuan et al. [14] was used to 

evaluate intracellular ROS. BtnAgNPs were added into S. 

aureus ATCC 12600 bacterial cells (106 CFU/ml) cultures to 

attain previously determined MIC of 12.5 ppm [37] and 

without (control) then incubated for 12 h at 37 oC. The culture 

was then subjected to centrifugation at 300 g for 30 min in a 

cooled centrifuge (4 oC). The supernatant was discarded and 

100 μM of DCFH-DA was added to the wells and kept for 1 

h. The fluorometric product in the sample was detected at 

λex= 490 / λem = 520 nm and intensity used to indicate ROS 

levels. 

 

2.6. Sample Preparation for Antioxidant Enzyme 

Activities  
The lysate preparation for assessment of catalase and SOD 

activities was prepared as described by Martins et al. [39]. 

BtnAgNPs were added to give a final MIC concentration of 
12.5 ppm in 106 CFU/ml, 500 μl cultures of S. aureus ATCC 

12600 from the late exponential growth phase, then incubated 

for 24 h at 37°C. The supernatant was separated from the 

suspension by centrifugation at 3000 rpm for 5 min. After 

being rinsed twice with PBS, the pellet was resuspended in 

500 μl of cell lysate buffer (1 mM EDTA, 10 mM Tris-HCl, 

0.1% Triton-X-100, and 150 mM NaCl), then incubated for 1 

h at 37°C. Cells were lysed by sonication followed by 5 min 

centrifugation at 3000 rpm and the supernatant was drawn for 

the tests. 

 

2.7. Determination of Superoxide Dismutase 
The previously outlined procedure by Tsamo et al. [40] 

employing the Sigma kit (catalogue no. MAK379) was 

followed for the assay. The water-soluble tetrazolium salt 

working solution (200 μl) and 20 μl each of the enzyme 

solution, and the cell lysate were combined. Absorbance was 
examined at 450 nm using an Infinite® 200Pro (Tecan, 

Switzerland) plate reader after incubation for 20 min at 37°C 

in the dark. The percentage inhibition was computed as the 

protocol. One Unit of enzyme activity corresponded to 50% 

inhibition. Bicinchoninic acid protein assay kit was used to 

determine lysate protein and SOD activity expressed as 

unit/mg protein.  

 

2.8. Determination of Catalase Activity  
Catalase assay kit (Sigma catalogue no. MAK381) was used 

to measure catalase activity according to the procedure 

outlined by Tsamo et al. [40]. In summary, 25 μl of 50 mM 

H2O2, 10 μl of cell lysate, and 750 μl of assay buffer (50 mM) 

were combined and incubated for 5 min. The reaction was 

then ended by adding 900 μl of stop solution (15 mM sodium 

azide) and vigorously mixing the contents. The reaction 

mixture was then divided into 10 μl portions put in separate 
tubes along with 1 ml of the colour reagent (2 mM 3,5-
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dichloro-2-hydroxybenzenesulfonic acid and 0.25 mM 4-

aminoantipyrine) before being incubated for 15 min. A plate 

reader model Infinite® 200Pro (Tecan, Switzerland) set at 520 

nm was used to measure the absorbance and catalase activity 

computed in accordance with the protocol. 

 

2.9. Impact of varying concentrations of BtnAgNPs on S. 

aureus biofilm forming ability  
The broth microdilution technique was used for testing the 

effect of BtnAgNP on biofilm formation by S. aureus ATCC 

12600. Briefly, columns 1 to 7 of 96 well-flat bottom plates 
were filled with 50 μl aliquots of sterile MHB. 100 μl 

nanoparticle colloid containing 50 ppm silver was added into 

column 8 wells. Column 1 was set aside for the BtnAgNPs-

free negative control. Twofold serial dilutions of BtnAgNPs 

were performed between columns 2 and 7. A loop was used 

to obtain four typical colonies of S. aureus ATCC 12600 from 

an overnight MHA streak plate culture. The colonies were 

then homogenously distributed into 2 ml of MHB in a round-

bottomed sterile culture tube using a vortex mixer. The 

optical density of the bacterial suspension was set to between 

0.08 and 0.1 at 625 nm in disposable sterile plastic cuvettes. 

A 1:150 dilution was done to get about 1 × 106 CFU/ ml. The 

aliquots in column 1 and dilute BtnAgNPs in columns 2-7 

wells were then mixed with 50 μl of the bacterial suspensions 

to provide a 5 × 105 CFU/ml cell count in 100 μl of the final 

portion. This gave a final test range of 0.4 to 12.5 ppm. The 

plates were wrapped in Parafilm® and kept at 37 °C for 24 h. 

The evaluation of the degree of biofilm inhibition was done 
according to Manukumar et al. [41]. Each well was washed 

with 200 µl sterile saline solution. Methanol (150 µl/well) 

was applied for 20 min to fix the biofilm. Plates were allowed 

to dry at ambient temperature for 30 min. The wells were 

stained with crystal violet (0.5% w/v) for 15 min, drained, 

and rinsed thrice using 200 µl of sterile saline water. The 

microplates were air-dried again at ambient temperature. 

Each well was treated with 95% ethanol (150 µl) for 30 min 

to remove the cell-bound dye. Absorbance was measured at 

490 nm using an Infinite® 200Pro (Tecan, Switzerland) 

microplate reader for quantification. Biofilm inhibition trend 

was displayed by plotting the optical density against 

BtnAgNPs concentrations. 

 

2.10. Statistics 
The tests were repeated twice and performed in triplicates. 
Data analysis add-ins enabled Microsoft® Excel 2010 was 

used for statistical computations. Graphical presentations of 

means alongside standard deviation were done to 

demonstrate the trends. A two-tailed, paired sample t-test was 

used to compare the mean magnitudes of oxidative stress 

makers i.e. ROS, SOD and catalase in control and BtnAgNPs 

MIC treated samples. A p-value <0.05 was deemed 

statistically significant. 

 

3. Results and Discussion 

3.1. UV-Visible spectroscopy 
The tendency of AgNPs colloidal solution to exhibit a LSPR 

peak makes UV-Vis spectroscopy an effective technique to 

monitor their evolution. The purified CtAgNPs exhibited an 

LSPR peak λmax at 432 nm (Figure 1). Upon functionalization 

with betanin, the resulting BtnAgNPs displayed a slight 

LSPR λmax peak red shift to 437 nm from 432 nm. This is a 

common observation results from dialectic constant change 
in the medium encircling the nanoparticle, providing a quick 

technique for monitoring a change in capping on CtAgNPs 
[42-44]. The BtnAgNPs spectrum did not show any second 

plasmon band at a higher wavelength, indicating no 

nanoparticle aggregation. 

 

 
 

Fig 1: Absorption spectra of CtAgNPs (black dashed line) acquired before functionalization and BtnAgNPs (solid line) following ligand 

exchange with betanin 
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3.2. TEM, SAED, EDS, DLS and Zeta potential  
Nanoparticle size and shape can be directly deciphered by 

TEM [45]. Subsequently, image analysis is used to compute 

size distribution. The particles had a mono-modal distribution 

and were roughly spherical with a TEM mean diameter of 

37.9±8.6 nm (Figure 2(a)). Also shown in Figure 2(a) is the 

SAED image diffraction pattern analysis. The generated d 

space values of 2.365, 2.044, 1.457, and 1.225 Å were 

respectively indexed to (111), (200), (220), and (311) hkl 

lattice planes of face-centred cubic (fcc) structure of 

crystalline silver [46]. Additionally, EDS verified elemental 
silver presence (Figure 2(b). As shown in Figure 2(c), DLS 

analysis yielded a marginally bigger average diameter of 39.1 

±7.2 nm and a polydispersity index (PDI) of 0.6. When 

compared to TEM, DLS analysis has been noted to yield 

larger dimensions [47]. Nevertheless, both size determination 

techniques demonstrated a monomodal distribution. 

Employing Na3C6H5O7. 2H2O and C76H52O46 as reducing and 

stabilizing agents and strict adherence to synthesis protocol 

produces size- tuneable and loosely citrate electrostatic 

stabilized AgNPs that are easily functionalized [30, 45]. The 

ratio of reactants used was similar to the one applied by 

Bastús et al. [30]. They made CtAgNPs with a 36.9 ± 6.2 nm 

diameter, comparable to the 37.9 ± 8.6 nm achieved in this 

study. The CtAgNPs had a zeta potential of -32 mV, which 

was reduced to -28 mV upon capping change to yield 

BtnAgNPs. This served as a further confirmatory step for 

change in surface passivation and an indicator of the colloid 

stability. Dispersions are classified as moderately stable if 

their zeta potential is ± 20–30 mV [47]. Preferential 
displacement of citrate by betanin is hypothesized as the 

mechanism responsible for ligand exchange [37]. Betanin has 

all carboxyl groups deprotonated hence making it a tri-anion 

above neutral pH [33, 48]. There are two amine groups in 

betanin. Silver affinity for amine is higher than carboxyl 

groups [49, 50]. The amines were most likely oriented towards 

the nanoparticle surface, while the carboxyl groups conferred 

the overall negative charge on the shell. 

 

 
 

Fig 2: (a) Citrate-capped silver nanoparticles TEM photo. Inset: Top right-hand corner nanoparticles size distribution histogram (37.9 ± 8.6 

nm average diameter) and bottom right-hand corner, SAED pattern depicting representative spots indexed to (111), (200), (220), and (311) 

hkl lattice planes of crystalline silver fcc structure (b) Ag peak at 3 keV on EDS spectrum (c) Size distribution bar graph of DLS analysis 

(average diameter 39.1 ± 7.2 nm) on a logarithmic x-axis, included is a solid line graph shows the passing cumulative per cent. PDI was 0.6. 

 

3.3. Oxidative stress makers 
The treatment of S. aureus with BtnAgNPs at 12.5 ppm 

increased the intracellular generation of ROS by 50% based 

on the comparative relative fluorescence intensity of the 

treated sample (577.0 ± 40.0) against the control (374.3 ± 

27.3) (Figure 3). Exposure to BtnAgNPs led to reduced SOD 

production (26.1 ±3.3 U/mg) compared to the control (73.6 ± 

5.3 U/mg) by S. aureus (Figure 4). Additionally, as shown in 

Figure 5, the catalase activity decreased from 11505.0 ± 

231.8 U/mg to 2863.2 ±194.5 U/mg following a MIC 

BtnAgNPs treatment. Collectively the BtnAgNPs at the MIC 

significantly perturbed the redox physiological balance in S. 

aureus as part of their antimicrobial effects. The 

accumulation of ROS and depression of SOD and catalase 

production, important enzymes associated with oxidative 
stress attenuation in cellular systems demonstrate this. 

Similarly, Yuan et al. [14] observed an increase in ROS and 

down-regulation of both SOD and catalase in S. aureus 

isolates from mastitis-infected goats exposed to a MIC of 

quercetin synthesized AgNPs mean diameter of 20nm (size 

range 10-50 nm). Using fluorescence microscopy, 

biosynthesized AgNPs made using culture supernatants of 

corresponding test bacterial species were also demonstrated 

to increase the expression of ROS in S. aureus [51]. The 

immune system responds to infections with inflammation, 

followed by an oxidative burst leading to the production of 

ROS, which are bactericidal [52]. To counteract this oxidative 

attack, pathogenic bacteria such as S. aureus have developed 

an array of enzymatic and non-enzymatic antioxidant 

mechanisms [53]. Disabling these defences by antimicrobial 

agents leads to ROS's overwhelming of pathogen cells and 

death [10]. In addition to direct microbicidal activity, AgNPs 
have been shown to synergize the efficacy of antibiotics on 

pathogenic microbes [54]. 
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Fig 3: Effect of BtnAgNPs on ROS generation on S. aureus ATCC 12600. S. aureus cultures were incubated with a MIC of BtnAgNPs for 

12 h. DCFH-DA was used to assess ROS generation. Results are means of tests conducted in triplicates and repeated twice. Standard 

deviation is shown by the error bars. Different letter labels denote statistically significant results (p<0.05) 
 

 
 

Fig 4: Effect of BtnAgNPs on SOD activity in S. aureus ATCC 12600. Bacterial cells were subjected to BtAgNPs MIC concentration for 24 

h. Results are means of tests conducted in triplicates and repeated twice. Standard deviation is shown by the error bars. Different letter labels 

denote statistically significant results (p<0.05) 
 

 
 

Fig 5: Effect of BtnAgNPs on catalase activity in S. aureus ATCC 12600. Bacterial cells were subjected to BtAgNPs MIC concentration for 
24 h. Results are means of tests conducted in triplicates and repeated twice. Standard deviation is shown by the error bars. Different letter 

labels denote statistically significant results (p<0.05) 
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3.4. Anti-biofilm activity of the AgNPs 
The SubMIC of BtnAgNPs decreased biofilm formation, as 

indicated in Figure 6. The highest level of inhibition 

corresponded with the MIC of 12.5 ppm. This translates to 

the nanoparticles' ability to disrupt this important virulent 

characteristic of S. aureus. Biofilm formation by S. aureus 

shields the pathogen from immune defence mechanisms and 

antimicrobial agents [55]. The concentration-dependent 

reduction in biofilm formation by BtnAgNPs observed in 

present studies has also been witnessed by other investigators 

using AgNPs of differing dimensions passivated by other 
biomolecules. AgNPs synthesized with beetroot extract 

whose betanin is the main betalain significantly reduced 

biofilm formation by clinical isolates of S. aureus [34]. 

Thymol-loaded chitosan silver nanoparticles 28.94 nm in 

size, were shown to reduce methicillin-resistant S. aureus 090 

biofilm formation in a dose-based pattern [56]. Both Zataria 

multiflora-derived AgNPs and commercial AgNPs were 

observed to reduce biofilm formation, with the plant extract 

biosynthesized AgNPs demonstrating better inhibitory 

properties [23]. In addition to inducing ROS, biogenic AgNPs 

synthesized using Desertifilum sp. were also shown to inhibit 

biofilm formation in MRSA [57]. Silver nanoparticles of 28 

nm average size synthesized using Convolvulus arvensis 

leaves extract inhibited biofilm formation with a minimum 

biofilm eradication concentration of 20 ppm against S. aureus 
[58]. At a pH of 9, Foeniculum vulgare seeds extract mediated 

AgNPs with a 49.62 nm hydrodynamic diameter and a MIC 

of 8 ppm against S. aureus (ATCC 25923) and several 

pathogenic isolates of S. aureus, inhibited biofilm formation 

at SubMICs in differing magnitudes based on strain type [28]. 

Other pathogenic bacteria have also witnessed biofilm 

formation attenuation by green synthesised AgNPs. 

Penicillium chrysogenum-derived AgNPs with a 48.2 nm 

mean hydrodynamic diameter exhibited strain-dependent 

biofilm inhibitory action against both Acinetobacter 

baumannii pathogenic isolates and A. baumannii (ATCC 

19606) [59]. Varying the extract can have a differential impact 
on biofilm inhibition. For instance, Lagerstroemia indica 

extract synthesized AgNPs had higher biofilm inhibitory 

properties on S. aureus compared to Alstonia scholaris and 

Aglaonema multifolium-derived AgNPs [60]. Overall, the 

studies indicate the promising potential application of 

biomolecules stabilized AgNPs in controlling pathogenic 

bacteria. 

The biological activity of metallic nanoparticles on different 

organisms is tied to the elemental nature of the nanoparticle, 

surface charge, size range, structure, and surface chemistry [2, 

61]. This multiplicity effect was also demonstrated by size 

distribution variance, a higher expression of ROS, lethality 

and selectivity on cancerous cells by Ocimum tenuiflorum 

extract stabilized gold nanoparticles compared to citrate-

capped gold nanoparticles [62]. 

 

 

 
 

Fig 6: Reduction trend of bio-film formation by S. aureus ATCC 12600 upon exposure to SubMICs to MIC of BtnAgNPs. Values represent 

the mean absorbance (λabs =490nm) of the crystal violet-stained biofilms. Results are means of tests conducted in triplicates and repeated 

twice. The error bars indicate the standard deviation 

 

4. Conclusion 
AgNPs functionalized with biomolecules are an evolving tool 

that can provide alternative antimicrobial agents to fight 

pathogenic microbes. However, despite being ecologically 

friendly and very effective in controlling microbial growth, 

green synthesis systems yield AgNPs with a broad size range 

and complex surface capping, making comparative 

antimicrobial experiments challenging.  

In this study, we introduced the aspect of post-synthesis 

functionalization of weakly passivated CtAgNP with betanin 

to yield BtnAgNPs. The MIC of BtnAgNPs was shown to 

upset the redox balance in standard S. aureus ATCC 12600 

via accumulation of ROS and conversely reducing SOD and 

catalase activity. SubMICs of BtnAgNPs inhibited biofilm 
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formation in a concentration-dependent pattern. The findings 

support the perturbation of cellular antioxidant defence 

systems and disruption of biofilm formation as some of the 

key mechanisms that AgNPs target for bacteriostatic and 

bactericidal effects on S. aureus. Additionally, because it is 

well documented that variations in AgNP size, capping and 

synthesis techniques influence the overall efficacy of AgNPs, 

our results indicate it would be desirable to explore synthesis 

protocols that yield determinate sizes followed by appropriate 

biomolecule functionalization for easier cross-comparison of 

the effect of surface capping on antimicrobial properties. 
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