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Abstract 
In this work the Conformable model, obtained from Fractional Neutron Point Kinetic-

model, is extended to consider six groups of delayed neutron precursors. The 

methodology to determine if the obtained solution is asymptotically stable or unstable 

of the Conformable model is developed. To show the effect of the functions on the 

two cases of study (abrupt change of reactivity and reactor start-up), numerical 

simulations are performed with different anomalous diffusion coefficient values. The 

results of the Conformable model are equivalent to the results of the classical model. 

However, the neutron density shows small oscillations around the results of the 

classical model. The stability analysis is performed through Theorem 1 that establishes 

the conditions to determine if the solution is asymptotically stable, likewise Theorem 
2 is used to determine if the solution is unstable. For both theorems are establish the 

corresponding inequalities that must be fulfilled.

 
Keywords: Reactor dynamics; Fractional neutron point kinetic equations; Anomalous diffusion exponent; Conformable 

derivative; Linear multi-term ordinal differential equation: six energy groups 

 

 

 

1. Introduction 
Espinosa-Paredes et al. (Espinosa-Paredes et al., 2011) [17] has derived the fractional neutron point kinetics model (FNPK-model) 

applying fractional order derivatives to retain the main dynamic characteristics of the neutron motion (Aboanber and Nahla, 

2016; Altahhan et al., 2016; Espinosa-Paredes and Cázares-Ramírez, 2016; Hamada, 2017) [2, 16, 1, 11]. The physical interpretation 
of the fractional order derivative is related with non-Fick effects of the neutron diffusion, as consequence of anomalous diffusion 

phenomena that occur because of the highly heterogeneous configuration in nuclear reactor core (Espinosa-Paredes and Polo-

Labarrios, 2012). Even the model considers a relaxation time for neutrons when they start their motion associated with a rapid 

variation in the neutron flux, due to the fast variation of reactivity. This relaxation time considers that the propagation velocity 

of neutrons is finite. The FNPK-model constitute a useful tool to provide important information on the dynamics of the reactor 

and it have been analyzed and applied in different works; e.g., (Cázares-Ramírez et al., 2017; Das et al., 2013; Nahla and 

Hemeda, 2017; Nowak et al., 2015, 2014a, 2014b; Patra and Saha Ray, 2015; Ray, 2015; Ray and Patra, 2013, 2012; Roul et 

al., 2019; Schramm et al., 2013; Vishwesh et al., 2017; Vyawahare et al., 2018; Vyawahare and Espinosa-Paredes, 2017; 

Vyawahare and Nataraj, 2013a, 2013b; Vyawaharea and Espinosa-Paredes, 2018) [3, 10]. 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1014 | P a g e  

 

To solve the FNPK-model, the authors represented their model as a multi-term high-order linear fractional differential equation, 

thus reduce the problem to a system of ordinary and fractional differential equations, and applied the numerical approximation 

proposed by Edwards et al. (Edwards et al., 2002).  

The detail description above physical interpretation of the FNPK-model is presented by Espinosa-Paredes et al., (Espinosa-

Paredes et al., 2008) and above its mathematical developed is in Espinosa-Paredes et. al. (Espinosa-Paredes et al., 2011) [14], 

Polo-Labarrios et al. (Polo-Labarrios et al., 2020), and Espinosa-Paredes et al. (Espinosa-Paredes et al., 2017) [3]. 

Recently, Fernández-Anaya et al. (Fernández-Anaya et al., 2021) investigated the solution of the FNPK-model considering the 

concept of local fractional order derivatives, and using conformable fractional derivative definition proposed by Khalil et al. 

(Khalil et al., 2014). They obtain the Conformable neutron point kinetics model (ConfNPK-model). Their methodology 

developed consider that there exist an   differentiable functions to able obtain its solution.  
The objective of this work is to present the mathematical methodology to perform stability tests to the solution of the ConfNPK-

model, considering multigroup of delayed precursors. In detail way considering six groups of delayed neutrons, for two transient 

cases: in abrupt reactivity changes, and during the dynamic of start-up of a PWR, in both cases two different functions are tested 

in the ConfNPK-model. The stability analysis is performed through Theorem 1 that establishes the conditions to determine if 

the solution is asymptotically stable, likewise Theorem 2 is used to determine if the solution is unstable, both theorems given by 

Chen and Yang (Chen and Yang, 2016). The neutron density obtained from the ConfNPK-model and the Classical neutron point 

kinetic model (Classical-model) is compared to show the effect of the proposed functions and the anomalous diffusion coefficient 
value, for two transient cases. The comparison shows that ConfNPK-model results are agree with the Classical-model, but 

oscillatory behavior is observed, it is depending in both function and anomalous diffusion value. 

 

2. ConfNPK-model for six group of delayed precursor neutron 
Espinosa-Paredes et al. (Espinosa-Paredes et al., 2011) [14] modified the Classical-model based on the Cattaneo´s laws. They 

have extended the application of these laws by applying a fractional constitutive law. The goal of this model is describing the 

diffusion processes that do not follow the Fick´s diffusion law observed in many natural systems. Their model obtained is knows 

as Fractional Neutron Point Kinetic-model (Espinosa-Paredes et al., 2011, 2008; Hamada, 2017; Polo-Labarrios et al., 2020) [16, 

14]. Recently, Fernandez-Anaya et al. (Fernández-Anaya et al., 2021) applied the conformable definition to obtain the following 

model: 
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where t is the time,  f t  is an  differentiable functions used to obtain a stable solution,  N t  is the neutron density, 
NLP  is 

the neutron non-leakage probability,  t  is the reactivity,   is one generation average lifetime of instantaneous neutron,   is 

the decay constant of delayed neutrons precursors,  C t  is the delayed neutrons precursors density,   is the total fraction of 

delayed neutrons precursors, defined as 

 

1

m

i

i

 



  (2) 

 

  is the order of the differential operator known as the anomalous diffusion coefficient (for sub-diffusion process: 0 1;   

while for super-diffusion process: 1 2  ).   is the anomalous relaxation time, and it is defined as (Espinosa-Paredes et al., 

2008): 

 

1 3

tr

D


 
 


 (3) 

 

Where   is the neutron velocity, 
tr  is the transport cross-section, and D  is the diffusion coefficient. Other way, differential 

equation of delayed neutron precursors is:  
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 
   i i

i i
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
 (4) 

 

The Eqs. (1) and (4) are a couple of stiff second order nonlinear ordinary integer order differential equations. The goal of that 

model is analyzing the effects of sub-diffusion processes (0 1  ) due the anomalous diffusion exponent and the relaxation 

time, applying conformable definition using different function. The Classical-model of the point kinetic equations is obtained 

directly from Eq. (1) when 0  . 

 

3. ConfNPK-model stability behavior for six group of delayed precursor neutron 
This section presents the development of the ConfNPK-model considering six groups of delayed precursor neutrons. Rewriting 
the Eqs. (1) and (4) in terms of a systems of differential equations of third order 
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Simply the system (5) 

 

 
 

 
   

 
 

 
 

   

 
   

1

1

1

1 2

1

1 1NL

m

NL i i

i

m

i i i

i

i i
i i

dN t
M t

dt

P tdM
f t M t

dt

d t tP
f t N t

dt

f t C t

dC t
N t C t

dt







 


    


  
















        
  

  
    
     

  
 

 






 (6) 

 

The system (6) has the following representation for six groups: 
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Where 
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Now, this work considers an initially critical reactor that has been operating at steady state, at 0t   a constant change of 

reactivity is inserted, it is: 
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where pi are the coefficients of the polynomial with adequate units and 


 represents a frequency. Substituting Eq. (9) into (8), 
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Simply the equations system (10),  
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When the concept of local fractional derivatives is used, the properties of ordinary derivatives are keeping, and thus obtaining 

the ConfNPK-model. Whose solution needs an   differentiable functions. Is needed guaranteed the existences of that function. 

In this section a methodology to determinates the constraint conditions that the function must fulfill.  

Now, based on Theorem 2 of Chen and Yang (Chen and Yang, 2016), sufficient condition is established to have asymptotic 

stability, with  f t  non-periodic. The condition is as follows 
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Where λmax is the maximum value of the eigenvalue, and  ig t  are given by 
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Notice that: 
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To obtain the result of the equation system (14), first convert the system matrix function  A t  into the following equivalent 

form: 

 

   
8

0

i i

i

A t B g t



  (15) 

 

Where  ig t  for 0, ,8i   are functions given by Eq. (13), they satisfying   0ig t   for 0t t . And iB  are constant 

matrices given by: 

 

1
1

2
2

3
3

0
4

4

5
5

6
6

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0 0 0

B



















 
 
 
  
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 

 (16) 

 

For the matrix 8 8B   with elements 1, 1jb   for 1...8j  , for example: 
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1,

1,

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
; for 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

j

j

b

B j

 
 
 
 
 
 

  
 
 
 
 
 
 

 (17) 

 

Thus, to satisfy Eq. (12) the maximum eigenvalues are: 

 

1. 
 0 max 0 0

TB B    
,  

2. 
 1 max 1 1 2TB B   

,  

3. 
 max 1, for 2, ,8T

i i iB B i    
 

 

Where   depends on the numerical values   and   . 

 

3.1. Asymptotically stable of ConfNPK-model 
This section presents the methodology to determine whether ConfNPK-model solution is stable from the proposed function.  

For solve the equivalent form of  A t  in Eq. (15), the Theorem 1 proposed by Chen and Yang (Chen and Yang, 2016) is used. 

It says that the system of Eqs. (14) with equivalent form of  A t  given in Eq. (15), is asymptotically stable if  

 

   

0

0 1 1 8 8

t

g t g t dt  



        (18) 

 

where  *
maxj jB  ,    * T

j j jB B t B t  , for 0,1, , 8j   and with  0 1g t  ,    1 1g t M t , 

   1 2 , for 1, ,6i ig t M t i    and    8 8g t M t . 

 

The following condition guarantees asymptotic stability 

 

 
 

  

 
 

1 0 1

6
1 2

1

11 01
2 1

6
1 01

1

1 1
2

( 2

n t
NL n

i i

i

n n tNL n n
n

n t
ni i

i

P p t p t p e
f t

f t

P p p pp
t np t p t p e

p t p t p e
f t













 

 

   

 










 







        
         


 



    
            

     

    
  
  
 





0t

dt












 





 
 
 
 

  (19) 

 

From Eq. (19) are taken the following definitions for a subsequent analysis of the Eq (14), 
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 
 6

1 0

1

2

n t
n

i

i

p t p t p e
P t






 







     
     
  
   


L

,   and (20) 

 

 1 0

11 01
2 1

6 6

2

1 1

1 1
( ) 2

( 2

n t
NL n

n n tNL n n
n

i i
i

i i

P p t p t p e
T t

P p p pp
t np t p t p e








   

 




 

 

       
    
  
 

    
            

     


 

 (21) 

 

In this way Eq. (19) is divided into two integrals: one of them is an integral that factorizes the terms multiplied by  
1

f t

 , 

and another integral that groups the rest of the terms. Then the Eq. (19) remains as: 

 

 

0 0

1
( ) ( )

t t

P t f t dt T t dt


 

      (22) 

 

Some possibilities to fulfill the condition given by Eq. (22) are presented below: 

1. If the following condition is satisfying:  

 

6 6

2

1 1

1
2 0NL i i

i

i i

P   
 

 

  
    

  
   (23) 

It is possible to satisfy the condition (22) taking   , 0 , 0 ,atf t e a     or   1f t t    , with 1a   and 

(0,1)  , when t  . Note that condition (23) does not depend on the reactivity  t . 

In the case when  t  is a constant 0p  the inequality (23) is now 

 

 
6 6

0 2

1 1

1 1
2 0

NL i i
i

i i

P p   
 

 

   
    

  
   (24) 

 

Where 0   and the same previous definitions (20) and (21). 

2. In the case when 

 

6 6

2

1 1

1
2 0NL i i

i

i i

P   
 

 

  
    

  
   (25) 

 

It is possible to satisfy the condition (22) taking   , 0 ,atf t e a     or   1f t t   , with 0a   and (0,1)   

and 
6

1

2 0i

i






   


, when t  . Note that condition (25) does not depend on the reactivity  t . 

In the case when  t  is a constant 0p  the inequality (25) is now 
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 
6 6

0 2

1 1

1 1
2 0

NL i i
i

i i

P p   
 

 

   
    

  
   (26) 

 

Where 0  , with 
6

0

1

2 0i

i

p 




 
    

 


 the condition when 0   and the same previous definitions (20) and (21). 

 

3.2. Instability of ConfNPK-model   
On the other hand, to know if the system is Unstable, the following condition established by Wu's Theorem 2 (Wu, 1982) 

guarantees instability for any 0t t  

 

 

0

tr

t

A t dt



  (27) 

 

The above condition (27) is true, if the following condition is satisfied. 

 

 
 

0

6
1 0 1

1

1 1n t
NL n

i

it

P p t p t p e
f t dt






 

 





       
     
  
 

  (28) 

 

It is possible to meet this condition (28) by taking: 

 

 

0

1
0

t

f t dt





  and

6

1

1
0NL

i

i

P
Z






 
  

    (29) 

 

Which is achieved for example with   atf t e , with 0  , 0a  . Also taking   1 af t t    and with 1a  , 

(0,1)  , when t  . Note that condition (29) does not depend on the reactivity  t .  

In the case when  t  is a constant 0p  the inequality (29) is now 

 

 

0

1
0

t

f t dt





 and

 
6

0

1

1 1
0

NL
i

i

P p
Z






  
  

   (30) 

 

Where 0   and the same previous condition (30). It is clear, that more cases are possible. 

 

4. Numerical simulation considering six-groups delayed neutron 
The behavior of the neutron density is studied in two cases: abrupt change of reactivity and start-up dynamics of a PWR reactor, 

in both cases the reactivity insertion is constant. To determine if the solution obtained with the ConfNPK-model is stable, the 

methodology developed in this work is applied. Two functions are selected to solve this model: 

 

Function i)   ,atf t e  (31) 

Function ii) 
  1 ,a af t t 

 (32) 
 

Where the system (6) is solved using the finite difference numerical method in implicit scheme (Chapra and Canale, 2009). The 

physic parameters used to numerical simulation are presented in Table 1. 
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Table 1: Physical parameters (Hamada, 2017) [16]. 
 

Parameter Value Units 

D  0.0921  
cm2 s-1 

  2200  
m/s 

3D 
 

41.256 10  
s 

  0 1   
— 

NLP
 

0.975  — 

 

4.1. Abrupt reactivity changes 

Considers the case of step reactivity value at 0t   a constant change. The experiments consider the insertion of reactivity step 

0.002   to perturb the system. The neutron density behavior is studied by using the values of the anomalous diffusion 

coefficient  0.99, 0.98, 0.97, 0.95, 0.93, 0.91, 0.90, 0.00005 s   and for the decay constant of delayed neutron precursor 

i  and the total fraction of delayed neutron i  used in this work are presented in Table 2. 

 
Table 2: Neutron delayed fractions and decay constants, for six precursor group parameters (Chao and Attard, 1985; Hamada, 2015; 

Nobrega, 1971) [17]. 
 

i λi (s-1) βi 

1 0.0124 0.00021 

2 0.0305 0.00141 

3 0.1110 0.00127 

4 0.3010 0.00255 

5 1.1300 0.00074 

6 3.0000 0.00027 

 

The initial equilibrium conditions for neutron density is 0 1n   and for six-group of delayed neutrons density are 

,0 0i i iC n   . 

With reactivity value 0.002  , the Figure 1 and 2 present the results using the functions   atf t e  and   1 a af t t  , 

repectively, both with 1a  . It can see, all cases the behavior of neutron density diverge. In both cases, it can be seen that the 

value of the anomalous diffusion coefficient has no effect on the behavior of the precursors delayed neutron density (Figures 
1b and 2b). 

 

  
A  B 

 

Fig 1: a) Neutron density and b) Precursor density behavior; both using ConfNPK-model for using six-groups of delayed precursors density. 

For different anomalous diffusion constant   0.10 to 0.99, with constant reactivity value 0.002   and   atf t e  with 1a  . 
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A B 

 

Fig 2: a) Neutron density and b) Precursor density behavior; both using ConfNPK-model for using six-groups of delayed precursors density. 

For different anomalous diffusion constant  0.90 to 0.99, with constant reactivity value 0.002   and   1 a af t t   with 1a  . 

 

Now, the Figure 2a shows a zoom to see the neutron density behavior around 5 s using   1 a af t t  . As the value of the 

anomalous diffusion coefficient decreases, the curves move away from the solution of the Classical-model. 

 

4.1.1. Analysis of stability behavior based in the results 
Based on Theorem 1 and the Tables 1 and 2, we cannot conclude an asymptotic stable dynamic. The Eq. (26) is positive 

 

 
6 6

0 2

1 1

1 1
2 2536.4>0

NL i i
i

i i

P p   
 

 

   
   

  
   (33) 

 

But the following inequality, makes impossible conclude asymptotic stability of the Theorem 1 

 

6

0

1

2 102.58 0i

i

p 




 
     

 
   (34) 

 
Similarly, of the Tables 2, with values given in Tables 3, 4, presented by the authors Kinard and Allen (Kinard and Allen, 2004) 

and Quintero-Leyva (Quintero-Leyva, 2008), respectively, we cannot conclude an asymptotic stable dynamic. Notice that the 

last result is independent of the value of  .  

 
Table 3: Neutron delayed fractions and decay constants, for six precursor group parameters (Kinard and Allen, 2004). 

 

i λi (s-1) βi 

1 0.0127 0.000266 

2 0.0317 0.001491 

3 0.1150 0.001316 

4 0.3110 0.002849 

5 1.400 0.000896 

6 3.8700 0.000182 

 
Table 4: Neutron delayed fractions and decay constants, for six precursor group parameters (Quintero-Leyva, 2008). 

 

i λi (s-1) βi 

1 0.0124 0.000215 

2 0.0305 0.001424 

3 0.1110 0.001274 

4 0.3010 0.002568 

5 1.1400 0.000748 

6 3.0100 0.000273 

 

Now, based on Theorem 2 and with the values present in Tables 1 to 4, in the following three cases we have an unstable 

dynamic. 

Taking 0.002  and the Table 1 with either   tf t e   or   6 5f t t   with 0.5  .  

Using the Table 2 and inequality (30), we obtain 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1024 | P a g e  

 

 
6

0

1

1 1
890.51 0

NL
i

i

P p
Z






  
   

   (35) 

 

Using the Table 3 and inequality of Eq. (30), we obtain 
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1 1
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NL
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P p
Z
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Using the Table 4 and inequality of Eq. (30), we obtain 
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6

0

1

1 1
888.93 0

NL
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i

P p
Z






  
   

   (37) 

 

4.2. Dynamics of start-up of PWR nuclear reactor  

The case of neutron multiplication during start-up of PWR, is a process where is assumed that during the i -th step of control 
rod withdrawal the way of reactivity insertion is step, the neutron source strength was defines as a constant in terms of a known 

initial stable sub-criticality and the neutron signal from a steady state condition (Duderstadt and Hamilton, 1976; Espinosa-

Paredes and Polo-Labarrios, 2012; Li et al., 2010). 

The representative FNPK-model for this case correspond with Eq. (1), with six-group of neutrons delayed precursors and 

considering an external source q, is represented by: 
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 (38) 

 

where q  is the strength neutron source density emitted per second. When the rector power is reaches steady-state, all time 

derivatives are equal to zero, so 0  is a subcritical reactivity initial value.  

The nuclear parameters used in this case the values from Table 3 are used for   and  , 410  s   and 

8 31 10  neutrons m sq   , they correspond to a PWR with 235U as fissile material (Li et al., 2010). It is assumed that, before 

the sudden change in reactivity occurred at 
1 0t  , the initial count of neutron detector is equal to the initial value of neutron 

density (
0n ). Then the initial sub-critical value is 

0 100mk   , it is used to obtain the initial value to density and delayed neutron 

precursor density from 
0 0q n     and 

0 0 ,C n    respectively. When withdraw control rod at different time the sub-critical 

values added are presented in Table 5. 

 
Table 5: Sub-critical values added when withdraw the control rod. 

 

Time (s) Reactivity (mk) 

t1 = 0 ρ1 = -10.00 

t2 = 100 ρ2 = -5.00 

t3 = 200 ρ3 = -2.50 

t4 = 305 ρ4 = -1.25 

t5 = 425 ρ5 = -1.00 

t6 = 605 ρ6 = -0.75 

 

The results using the Eq. (38) are shown in Figures 3, it presented both neutron density and delayed precursors density behaviors, 

using different anomalous diffusion coefficient values (   0.795 to 0.990) and with   1 a af t t    with 1a  : also, different 

zooms to show the behavior of the neutron density obtained when reactivity perturbations is inserted are presented. In this case 

the first function,   atf t e  , have not any effect on neutron density behavior during start-up nuclear reactor, even neither the 
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anomalous diffusion coefficient value. It means, the function selected neutralized the anomalous diffusion coefficient effect on 

neutron density behavior. 

 

  
A  B 

 

Fig 3: Neutron density behavior after inserting step reactivity into a sub-critical core. Using ConfNPK-model for six grups of delayed 

precursor neutrons, for different anomalous diffusion coefficient values    0.795 to 0.990 and   1 a af t t    with 1a  : a) Neutron 

density behavior in full range of the simulation time: its shown a zoom in the simulation range from 100 s to 100.04 s; and a zoom in the 

simulation range from 605 s to 605.4 s. b) Delayed precursors density behavior in full range of the simulation time, for all anomalous 
diffusion coefficient values. 

 

4.2.1. Analysis of stability behavior based in the results 
To determinate the dynamics of start-up of PWR nuclear reactor for stability behavior based in the results, in the Table 6 we use 

Theorem 1 criteria 1) inequality (24), for the first three columns. In the fourth column we use criterion 2) of Theorem 1 

inequality (26). 

 

Table 6: Stability for function   atf t e   with the values of the Tables 2 to 4. 

 

Reactivity (mk) Table 2 Table 3 Table 4 

ρ1 = -10.00 Stable Stable Stable 

ρ2 = -5.00 Stable Stable Stable 

ρ3 = -2.50 Stable Stable Stable 

ρ4 = -1.25 Stable Stable Stable 

ρ5 = -1.00 Stable Stable Stable 

ρ6 = -0.75 Stable Stable Stable 

 

It can see that the neutron density behavior calculated by ConfNPK-model with six-groups of delayed neutrons are agrees with 

Classical-models results. The results shown, Figure 3, that at time of the sub-critical values is added, when withdraw the control 

rod, the neutron density present a oscillatory behavior, whose duration increase in each time. Also, the oscillation increases when 

the anomalous diffusion coefficient decreases. For anomalous diffusion coefficient value less than 0.795, the ConfNPK-model 

solution is unstable.  

Recently, Polo-Labarriosa et. al. (Polo-Labarrios et al., 2022) and Fernández-Anaya et. al. (Fernández-Anaya et al., 2021) 

developed both analytical–numerical solution and ConfNPK-model, respectively. Their results, obtained with other methods, 

are agreed with obtained in this work. In the first work the authors found the numerical simulations describe inertia effects 

observed as a growth in neutron density up to reaching a peak and then a gradual decrease followed by a series of oscillations 
until reaching a steady state. This behavior is accentuated as the fractional order decreases. While, in second work the authors 

found that in ConfNPK-model results an oscillatory behavior is observed, the authors mention that this depending in both  

differentiable function and anomalous diffusion value used in the solution. 

 

5. Conclusion 
In this work the conformable model, obtained from the fractional model considering the concept of fractional order local 

derivative, was extended to consider groups of delayed neutrons, specifically six. That model was called conformable neutron 

point kinetic model, i.e., ConfNPK-model. 

A methodology to determine the stability of the solution obtained from the ConfNPK-model was developed and tested for two 

transient cases of study: abrupt change of reactivity and start-up dynamics of a PWR, where the inserting reactivity is a linear 

through the reactor start-up time and a constant after that. In both cases two different functions were used and the value of the 

anomalous diffusion coefficient was varied. The stability analysis shows that with both functions the start-up dynamics of the 

PWR is stable. 

Additionally, a comparison of the ConfNPK-model and Classical-model results is performed to show the effect of the anomalous 

diffusion coefficient. The comparison shows that the results of both models are equivalent, except in small regions where the 

ConfNPK-model results show small oscillations with respect to the Classical-model results. These oscillations increase in 

amplitude and duration as the value of the anomalous diffusion coefficient decreases. 
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