
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

349

International Journal of Multidisciplinary Research and Growth Evaluation

ISSN: 2582-7138

Received: 17-09-2021; Accepted: 20-10-2021

www.allmultidisciplinaryjournal.com

Volume 2; Issue 6; November-December 2021; Page No. 349-363

Speech to multi-language text conversion

Dr. M Upendra Kumar

Professor of CSE MJCET OU Hyderabad, Telangana, India

Corresponding Author: Dr. M Upendra Kumar

DOI: https://doi.org/10.54660/.IJMRGE.2021.2.6.349-363

Abstract
Right from the beginning of previous century, researchers

have shown interest in areas like Automatic Speech

Recognition, Image Processing and Natural Language

Processing. The area of Automatic Speech Recognition

(ASR) has received attention over the past five decades due

to its application in both commercial and military. In the

recent times this can be attributed to the advancements in

Artificial Intelligence and Advanced Algorithms. ASR takes
speech as input and converts it in to text. ASR is employed in

electronic dictionaries, Customer Call Centers, Voice

Dictation and Query based Information Systems, Speech

Transcription, Avionics, Smart Houses and Access Systems

and many more areas. ASR can also be used to interact with

handicapped people. ASR enables human beings interact

with computers using speech rather than using keyboards &

mouse (Vimalaand Radha V., 2012). ASR aims to provide

natural machine interface where in speech acts input to the

machine.

Generally, ASR is based on two tasks viz. Identification of

Phoneme and Whole-Word Decoding. A relationship

between speech signal and speech segment that has dissimilar

physical or perceptual features usually termed as phones is

established in two steps. The first step deals with

dimensionality reduction and second step deals with the

estimation of likelihood of each phoneme. In the

dimensionality reduction phase, the volume of the speech

signal is decreased by extracting the relevant information

using task-specific knowledge. In the next phase, the system
recognizes the word sequence using a discriminative

program. Traditionally ASR systems preferred the Mel

frequency Cepstral coefficients (MFCC) for the first phase

and Discriminative techniques for the second phase. Over the

years ASR systems have evolved from being an integration

of multiple trained components to “end-to-end” Deep neural

architectures that link speech to text directly. The proposed

work implements an MLP with AdaBoost Classifier. The

MLP will be used to extract discriminative features from the

speech data. Later AdaBoost classifier will map these

features to the relevant set of words.

Keywords: Speech, multi-language, ASR

1. Introduction
Right from the beginning of previous century, researchers have shown interest in areas like Automatic Speech Recognition,

Image Processing and Natural Language Processing. The area of Automatic Speech Recognition (ASR) has received attention

over the past five decades due to its application in both commercial and military. In the recent times this can be attributed to the

advancements in Artificial Intelligence and Advanced Algorithms. ASR takes speech as input and converts it in to text. ASR is

employed in electronic dictionaries, Customer Call Centers, Voice Dictation and Query based Information Systems, Speech

Transcription, Avionics, Smart Houses and Access Systems and many more areas. ASR can also be used to interact with

handicapped people. ASR enables human beings interact with computers using speech rather than using keyboards & mouse

(Vimalaand Radha V., 2012). ASR aims to provide natural machine interface where in speech acts input to the machine.

Generally, ASR is based on two tasks viz. Identification of Phoneme and Whole-Word Decoding. A relationship between speech

signal and speech segment that has dissimilar physical or perceptual features usually termed as phones is established in two

steps. The first step deals with dimensionality reduction and second step deals with the estimation of likelihood of each phoneme.

In the dimensionality reduction phase, the volume of the speech signal is decreased by extracting the relevant information using

task-specific knowledge. In the next phase, the system recognizes the word sequence using a discriminative program.

Traditionally ASR systems preferred the Mel frequency Cepstral coefficients (MFCC) for the first phase and Discriminative
techniques for the second phase. Over the years ASR systems have evolved from being an integration of multiple trained

components to “end-to-end” Deep neural architectures that link speech to text directly.

www.allmultidisciplinaryjournal.com
https://doi.org/10.54660/.IJMRGE.2021.2.6.349-363

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

350

The proposed work implements an MLP with AdaBoost

Classifier. The MLP will be used to extract discriminative

features from the speech data. Later AdaBoost classifier will

map these features to the relevant set of words.

1.1. Background
Over the years, the scale and complexity of investigations and

developments in ASR for a wide range of applications has

increased gradually. Around 1970s most ASR systems were

developed using isolated speech recognition methodology

(Baker. J 1975). They used Hidden Markov Models (HMMs)
and steadily improved the recognition accuracy (Baker. J

2009).

Around late 1980s the focus shifted to continuous speech

recognition methodology. Due to this the vocabulary size of

recognition increased by many folds. For example,

vocabulary size of in the Resource Management (RM) Task

had about 900 words which increased to 20,000 words in the

Wall Street Journal (WSJ) task (P. Douglas and J. M. Baker

1992). Current ASR Systems like voice-based search engines

require virtually unlimited vocabulary size (Bacchiani. M et

al. 2008). The difference between real time operating

conditions and standard laboratory conditions also impacted

the recognition accuracy of the ASR systems. Before 1995

testing and analysis of ASR systems were performed using

speech recorded in noiseless environment (C.H.Lee 1996).

These systems lost their accuracy as soon as they were

applied to real time applications because in real time ASR

Systems had to deal with noisy data. From this point on the
focus of research in ASR Systems shifted to recognition of

spontaneous and conversational speech in noisy

environments. Currently End-to-End Systems that perform

Acoustic Frame to Phone mapping in one go are being

developed. In these types of systems all the modules are

trained simultaneously using Advanced Machine Learning

algorithms. These models take raw speech as input and

generate phoneme class conditional probabilities as output.

Applications like Broadcast News Transcription, Telephone

Conversation Analytics gained from this new approach.

Recent Commercial ASR Systems have to tackle with

challenging tasks like voice search, short message dictation,

YouTube transcription, Multilingual Conversion and so on.

These systems work on data recorded from natural

conversations which do not follow any predefined data

collection procedures. Moreover, they have to operate in

diverse acoustic environments catering the needs of millions
of users. The ASRs have to adapt to these challenges and

provide the user accurate transcriptions. This adaptation can

be performed by feature-based methods or model-based

methods. In feature-based methods the feature vectors of test

data are normalized whereas in model-based methods

acoustic model attributes are modified to better model the

trail conditions.

1.2 Rationale of the study

What is the research issue?
Automatic Speech Recognition Systems have to deal with

challenges like acoustic diversity of speech data,

Environmental noise. Voices spoken by people of different

backgrounds, accents and differing styles contribute to

Acoustic Diversity. Channel Characteristic differences add

up to the variations in speech signals. Speech services for

global users require the ASR systems to have the ability to
adapt to both acoustic and channel diversity. These non-

speech diversities usually confuse the ASR system and

significantly degrade its recognition accuracy. To solve these

issues Adaptation techniques that can separate speech

diversity from non-speech diversities and then absorb these

non-speech diversities have to be developed.

1.3 Research Gap
Although there are many studies pertaining to Automatic

speech Recognition, there is little work present in the

literature that accurately recognizes the speech and converts

it into text of Multiple Languages by employing hierarchical
training for MLP and AdaBoost for testing.

There is still a need to develop models that are robust to

reverberation and variable Acoustics. This thesis will focus

on the model-based approach to address the issues of

reverberation and variable acoustics.

1.4. Purpose of Study
The purpose of the work presented in this thesis is to

contribute to the improvement of speech recognition. It aims

to deal with issues like acoustic diversity and environment

diversity. The objective is to build an ASR that reads speech

as input and gives text as output. The text generated can be

later translated in to other languages of the user’s choice. This

study will concentrate on model based acoustic adaptation

technique for speech recognition. The research question that

this thesis answers is

1. How to optimize the training time of MLP on speech

data?
2. Can AdaBoost improve the accuracy of an ASR system?

1.5. Report Outline
This thesis is divided in to six chapters. First chapter

introduces the topic, explains the background of the problem

and outlines the research issues. It also discusses the purpose

and objectives of this study. The second chapter conducts a

detailed review of available literature related to Automatic

Speech Recognition Systems. It also highlights the

achievements and pitfalls of the existing works in this area.

The third chapter will throw light on the software required to

answer the research questions raised. The programming

language, packages and necessary libraries that are required

to conduct this research is discussed broadly. Model Design,

Experimental Setup and Test strategies implemented for

achieving accurate results in emotion classification is

explained in the fourth chapter of this thesis. The fifth chapter
gives a detailed analysis of results obtained. It performs a

comparative analysis of the proposed technique with existing

techniques present in the literature. The final chapter draws

meaningful conclusions from the result analysis and suggests

how this study can be further improved.

2. Literature Review

2.1 Investigation
Kuldip K. Paliwal and et al in the year 2004 had discussed

that without being affected by their popularity for front end

parameter in speech recognition, the cepstral coefficients

which had been obtained from linear prediction analysis is

sensitive to noise. Here, the use of spectral sub band centroids

had been discussed by them for robust speech recognition.

They discussed that performance of recognition can be

achieved if the centroids are selected properly as in

comparison with MFCC. to construct a dynamic centroid
feature vector a procedure had been proposed which

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

351

essentially includes the information of transitional spectral

information (Jingdong Chen, 2004).

Esfandier Zavarehei and et al in the year 2005, studied that a

time-frequency estimator for enhancement of noisy speech

signal in DFT domain is introduced. It is based on low order

auto regressive process which is used for modeling. The time-

varying trajectory of DFT component in speech which has

been formed in Kalman filter state equation. For restarting

Kalman filter, a method has been formed to make alteration

on the onsets of speech. The performance of this method was

compared with parametric spectral subtraction and MMSE
estimator for the increment of noisy speech. The resultant of

the proposed method is that residual noise is reduced and

quality of speech in improved using Kalman filters (Hakan

Erdogan, 2005).

Ibrahim Patel and et al in the year 2010, had discussed that

frequency spectral information with mel frequency is used to

present as an approach in the recognition of speech for

improvement of speech, based on recognition approach

which is represented in HMM. This approach of Mel

frequency utilizes the frequency observation in speech within

a given resolution resulting in the overlapping of resolution

feature which results in the limit of recognition. In speech

recognition system which is based on HMM, resolution

decomposition is used with a mapping approach in a

separating frequency. The result of the study is that there is

an improvement in quality metrics of speech recognition with

respect to the computational time and learning accuracy in

speech recognition system (Ibrahim Patel, 2010).
Kavita Sharma and Prateek Hakar in the year 2012 has

represented recognition of speech in a broader solution. It

refers to the technology that will recognize the speech

without being targeted at single speaker. Variability in speech

pattern, in speech recognition is the main problem. Speaker

characteristics which include accent, noise and co-

articulation are the most challenging sources in the variation

of speech. In speech recognition system, the function of

basilar membrane is copied in the front-end of the filter bank.

To obtain better recognition results it is believed that the band

subdivision is closer to the human perception. In speech

recognition system the filter which is constructed for speech

recognition is estimated of noise and clean speech (Kavita

Sharma, 2012).

2.2. Proposed Idea
There is a gap is found after analyzing the previous works in
speech recognition. The speech recognition can be done in

two steps. In this project the same is proposed. In this project

first the audio is converted in to text then in the text the

keywords are searched. The audio files can be easily

converted into to text using python speech recognition library

function. Once the audio file is converted in to text then it is

easy to search the keywords in the files.

3. System Analysis & Feasibility Study
This chapter includes, existing system, proposed system,

methologies (or) algorithms, software development life

cycle, feasibility study.

3.1. Existing System
 Existing System did not used any Machine Learning

Techniques

 Previous Systems are not efficient

 The Systems are developed for One-to-One Language

Conversion

 The behavior of the System is not user friendly

3.2. Disadvantages of Existing System
 Lack of Accuracy and Misinterpretation

 Time Costs and Productivity

 Accents and Speech Recognition

 Background Noise interference

3.3. Proposed System
 There is a gap is found after analyzing the previous

works in speech recognition. The speech recognition can

be done efficiently by using machine-learning technique.

The machine learning techniques increase the efficiency

and accuracy of the model.

 In this project, we are proposing a novel technique of

speech recognition based on Machine learning.

 In this project the Audio data set is collected from the

kaggle repository and the audio file are used for training

the model. Adaboost algorithm is used in this project.

Then the audio file, which we want, is fed to the model

then the audio file will be translated to English text. Then

after using the google translator, the text will be

converted in to any other recognized language.

 By removing the noise and for smoothening of the

speech while converting the Speech to Text Conversion
we use AdaBoost Algorithm

3.3.1. Advantages Of Proposed System
 Accurate Speech to Text Conversion

 User friendly Interface

 Speed in Conversion

4. Methodologies (Or) Algorithms

4.1. Adaboost Algorithm
AdaBoost algorithm, short for Adaptive Boosting, is a

Boosting technique that is used as an Ensemble Method in

Machine Learning. It is called Adaptive Boosting as the

weights are re-assigned to each instance, with higher weights

to incorrectly classified instances. Boosting is used to reduce

bias as well as the variance for supervised learning. It works

on the principle where learners are grown sequentially.

Except for the first, each subsequent learner is grown from
previously grown learners. In simple words, weak learners

are converted into strong ones. Adaboost algorithm also

works on the same principle as boosting, but there is a slight

difference in working. Let’s discuss the difference in detail.

Working
First, let us discuss the working of boosting. It makes n

number of decision trees during the training period of data.

As the first decision tree/model is made, the record which is

incorrectly classified during the first model is given more

priority. Only these records are sent as input for the second

model. The process will go on until we specify a number of

base learners we want to create. Remember, the repetition of

records is allowed with all boosting techniques.

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

352

Fig 1: Working of Adaboost Algorithm

This figure shows that when the first model is made and the

errors from the first model are noted by the algorithm, the

record which is incorrectly classified is given as the input for
the next model. This process is repeated until the specified

condition is met. As you can see in the figure, there are n

number of models made by taking the errors from the

previous model. This is how boosting works. The models 1,2,

3, N are individual models that can be known as decision

trees. All types of boosting models work on the same

principle.

Since we know the boosting principle, it will be easy to

understand the AdaBoost algorithm. Let’s deep dive into the

working of Adaboost. When the random forest is used, the

algorithm makes n number of trees. It makes proper trees that

consist of a start node with several leaves nodes. Some trees

might be bigger than others, but there is no fixed depth in a

random forest. But with Adaboost, that’s not the case. In

AdaBoost, the algorithm only makes a node with two leaves,

and this is known as Stump.

Fig 2

The figure here represents the stump. It can be seen clearly

that it has only one node with only two leaves. These stumps

are weak learners, and boosting techniques prefer this. The

order of stumps is very important in AdaBoost. The error of

the first stump influences how the other stump is made. Let’s

understand this with an example.

Table 1

Here I have created a sample dataset that consists of only

three features, and the output is in categorical form. The

image shows the actual representation of the dataset. As the

output is in binary/categorical form, it becomes a

classification problem. In real life, the dataset can have any

number of records and features in it. Let us consider 5

datasets for explanation purposes. The output is in categorical

form and, here it’s Yes or No. All these records will get a
sample weight. To assign some sample weight, the formula

used is, W=1/N where N is the number of records. In this

dataset, there are only 5 records, so the sample weight

becomes 1/5 initially. Every record gets the same weight. In

this case, it’s 1/5.

Step 1: Creating First Base Learner
Now it’s time to create the first base learner. The algorithm

takes the first feature, i.e., feature 1, and creates the first

stump f1. It will create the same number of stumps as the

number of features. Here, it will create 3 stumps as there are

only 3 features in this dataset. From all these stumps it will

create three decision trees and can be called stumps base

learner model. Out of these 3 models, the algorithm selects

only one. For selecting a base learner, there are two

properties, those are, Gini and Entropy. We must calculate

Gini or Entropy the same way it is calculated for decision

trees. The stump that has the least value will be the first base
learner. In the below figure, all the 3 stumps can be made with

3 features. The number below the leaves represents the

correctly and incorrectly classified records. By using these

records, the Gini or entropy index is calculated. The stump

that has the least entropy or Gini will be selected for the base

learner. Let’s assume that the entropy index is the least for

stump 1. So, let’s take stump 1, i.e., feature 1 as our first base

learner.

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

353

Fig 3

Table 2

Here, feature (f1) has classified 2 records correctly and 1

incorrectly. The row in the figure that is marked red is

incorrectly classified. For this, we will be calculating the total
error.

Step 2: Calculating the Total Error (TE)
The total error is the sum of all the errors in the classified

record for sample weights. In our case, there is only 1 error,

so Total Error (TE) = 1/5.

Step 3: Calculating Performance of Stump
Formula for calculating Performance of Stump is:

Where, ln is natural log and TE is Total Error.

In our case, TE is 1/5. By putting the value of total error in

the above formula and after solving, we get the value for the

performance of Stump as 0.693. You must be wondering why

it’s necessary to calculate the TE and performance of stump?

The answer is, we must update the sample weight before

proceeding for the next model or stage because if the same

weight is applied, we receive the output from the first model.

In boosting, only the wrong records/incorrectly classified

records got more preference than the correctly classified

records. Thus, only the wrong records from the decision

tree/stump are passed on to another stump. While in

AdaBoost, both records were allowed to pass, the wrong

records are repeated more than the correct ones. We must

increase the weight for the wrongly classified records and

decrease the weight for the correctly classified records. In the

next step, we will be updating the weights based on the

performance of the stump.

Step 4: Updating Weights
For incorrectly classified records the formula is:

New Sample Weight = Sample Weight * e^(Performance)

In our case Sample weight = 1/5 so, 1/5 * e^ (0.693) = 0.399

And for correctly classified records, we use the same formula

with a negative sign with performance, so that the weight for

correctly classified records will reduce compared to the

incorrect classified ones. The formula is:

New Sample Weight = Sample Weight * e^-

(Performance)

Putting the values, 1/5 * e^-(0.693) = 0.100

Table 3

Table 4

The updated weight for all the records can be seen in the

figure. As is known, the total sum of all the weights should

be 1. But in this case, one can see that the total updated weight

of all the records is not 1, it’s 0.799. To make the total sum

1, one must divide every updated weight by the total sum of

updated weight. For example, if our updated weight is 0.399

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

354

and we divide this by 0.799, i.e., 0.399/0.799=0.50.

0.50 can be known as the normalized weight. In the below

figure, we can see all the normalized weight and their sum is

approximately 1.

Step 5: Creating New Dataset
Now, it’s time to create a new dataset from our previous one.

In the new dataset, the frequency of incorrectly classified

records will be more than the correct ones. While considering

these normalized weights, we have to create a new dataset

and that dataset is based on normalized weights. It will

probably select the wrong records for training purposes. That

will be the second decision tree/stump. To make a new

dataset based on normalized weight, the algorithm will divide

it into buckets.

Table 5

So, our first bucket is from 0 – 0.13, second will be from 0.13

– 0.63(0.13+0.50), third will be from 0.63 – 0.76(0.63+0.13),

and so on. After this the algorithm will run 5 iterations to

select different-different records from the older dataset.

Suppose, in 1st iteration, the algorithm will take a random

value 0.46, then it will go and see in which bucket that value

falls and selects those records in the new dataset, then again

it will select a random value and see in which bucket it is and

select that record for the new dataset and the same process is

repeated for 5 times.

There is a high probability for the wrong records to get

selected several times. This will be the new dataset. It can be

seen in the below image that row number 2 has been selected

multiple times from the older dataset as that row is incorrectly

classified in the previous dataset.

Table 6

Based on this new dataset, the algorithm will again create a

new decision tree/stump and it will repeat the same process

from step 1 till it sequentially passes through all stumps and

finds that there is less error when compared with normalized

weight that we had in the initial stage.

Deciding Output
Suppose with the above dataset, the algorithm constructed 3

decision trees or stumps, the test dataset will pass through all

the stumps which have been constructed by the algorithm.

While passing through the 1st stump, it gives the output as 1,

passing through 2nd stump it again gives the output as 1, and

while passing through 3rd stump it gives the output as 0. So,

in AdaBoost algorithm also, the majority of votes take place

between the stumps, the same as in random trees. And in this

case, the final output will be 1. This is how the output with

test data is decided.

Coding AdaBoost in Python

In Python, it is easy with only 3-4 lines of code for AdaBoost

algorithm. We must import the AdaBoost classifier from the

sci-kit learn library. Before applying AdaBoost to any

dataset, one should split the data into train and test. After

splitting the data into train and test, the training data is ready

to train the AdaBoost model. This data has both the input as

well as output. After training the train data, our algorithm will

try to predict the result on the test data. Test data only consists

of the inputs. The output of test data is not known by the

model. So, test data is given to the model. One can check the

accuracy by comparing the actual output of the test data and

the predicted output by the model. This can help us conclude

how our model is performing. How much accuracy can be

considered depends on the problem statement. If it’s a

medical problem, then accuracy should be above 90%.

Usually, 70% accuracy is considered good. Accuracy also

depends on more factors apart from the type of model. The
below figure shows the code to implement AdaBoost.

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

355

Fig 4: Code for AdaBoost in Python

At last, I would like to conclude that Adaptive Boosting is a

good ensemble technique and can be used for both

Classification and Regression problems. But in most cases, it

is used for classification problems. It is better than any other

model as it improves model accuracy, one can check this by

going in sequence. First try decision trees and then go for the

random forest, next apply to boost and finally go for

AdaBoost. We can see that the accuracy keeps increasing as

we follow the above sequence. The weight assigning

technique after every iteration makes AdaBoost algorithm

different from all other boosting algorithms. And that’s the

best thing about the AdaBoost algorithm.

System Requirements

Software Requirements

Design

System design

Fig 5: Speech to Multilingual Text System Architecture

The design of the project is described as, the user has the

predefined data set which contains all the information related

to audio files. Later, Python libraries are imported for the data

set. The libraries include NumPy, Panda, Sklearn, Matpoltlib.

Pandas is an open-source, Python library providing high-

performance, easy-to-use data structures and data analysis

tools for the Python programming language. Python with

Pandas is used in a wide range of fields including academic

and commercial domains including finance, economics,

Statistics, analytics, etc.

NumPy, which stands for Numerical Python, is a library
consisting of multidimensional array objects and a collection

of routines for processing those arrays. Using NumPy,

mathematical and logical operations on arrays can be

performed. This tutorial explains the basics of NumPy such

as its architecture and environment. It also discusses the

various array functions, types of indexing, etc. An

introduction to Matplotlib is also provided. All this is

explained with the help of examples for better understanding.

Implementation

Introduction
This chapter explains the implementation of the proposed

system. Setting up the environment, selection of dataset,

preprocessing of dataset, modeling and conclusions are

included with appropriate code snippets and output screen

shots. Besides this chapter focus on explanation of functions

which are used in various stages of implementation.

This chapter reviews the hierarchy components required to

design an Automatic Speech to Multilingual Text Convertor.
The goal of this model is to convert speech into text

automatically.

This project uses a workflow model to develop the proposed

model. This model offers a robust solution for the problem of

building software models from initiation to completion. The

work flow model is a pipeline of various phases that are to be

executed for developing a software project.

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

356

Fig 6: Proposed System Architecture

This model design contains five phases namely, data

Collection, data preprocessing, data analysis, feature

selection, speech recognition, speech to text conversion and

text-to-text conversion. The workflow model is depicted in

figure 6.1.

Installation required
 Python Speech Recognition module: pip install

speechrecognition Speech Input Using a Microphone

and Translation of Speech to Text

 Allow Adjusting for Ambient Noise: Since the

surrounding noise varies, we must allow the program a

second or too to adjust the energy threshold of recording

so it is adjusted according to the external noise level.

 Speech to text translation: This is done with the help of

Google Speech Recognition. This requires an active
internet connection to work. However, there are certain

offline Recognition systems such as PocketSphinx, but

have a very rigorous installation process that requires

several dependencies. Google Speech Recognition is one

of the easiest to use.

Data Collection and Preprocessing
Data is very important in any project. Data plays a major role

in drawing the correct results. The collection and data

preprocessing are discussed in the chapter 3. The audio file is

read using a function rate, data = wavfile.read(audio file

path).

Generally. Wav format audio files are accepted in the

instruction. If the audio file is not in. Wav format is should

be converted then its path is given as parameter for the

function. The noise can be removed from the audio files by

using filters. The filters can be designed to eliminate the
noise. Noise is removed using function removenoise () which

is supported by librosa.

Data Analysis
The data analysis can be used to study the data type and

patterns. After analyzing, the data if required changing of

data types is applied for the parameters, which are not

suitable for processing. If the data type is objects or character

then the data is converted to suitable formats.

The amplitude, frequency and pitch of the audio data is

analyzed using ‘wave’ library functions.

To analyze the amplitude of the audio the function

‘np.fromstring(soundInfo, np.int16)’ is used.

Speech Recognition
Speech recognition is one more important phase in this

project. This is done with the help of Speech Recognition

library. The speech recognition can be done using Recognizer

function.

Import speech recognition as sr

From guessing_game.py import

recognize_speech_from_mic r = sr.Recognizer()

Audio to text conversion
Audio to text conversion is last and crux of the thesis. In this
phase the audio file is given as input. That audio file is read

using a function AudioFile() which is a predefined function

present in the Speech Recognition library. After Reading the

file that audio is recorded using function record(). The audio

file is converted to text data using a function

recognize_google(audio_data). This function returns the text

for the given audio file. The code snippet for conversion of

speech to text is given in the figure 6.6.

Fig 7: Speech to Text Conversion Code

Text To Text Conversion
In Text-to-text conversion phase the text translation in to

other languages is done. This is language translation phase.

The language translation can be done using ‘googletrans’

library. In googletrans library supports a function to translate

the text from one language to other language. The language

form which the text to convert is known as source language.

The language to which that text has to be translated is known

as destination language. The function translate(‘text”,

src='la1', dest='la2') is used to convert the text from one

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

357

language to other language.

Results

Introduction
In this chapter the results projected using appropriate

visualization diagrams. The results are compared with the

systems which are existed.

The main aim of this thesis is to convert the speech to text

and language translation. The speech to text converting is

done using speech recognition supporting library functions.

Text translation is done using google translator library

functions.

Results Discussion
The Audio analysis results are given in the figure 7.2.1 and

7.2.2

Fig 8: Pitch of the given audio

The Figure 7.2.1 shows the pitch of the audio file, which we

want to convert in to text in amplitude domain. By observing

the figure we can say that pitch of the audio file not constant.

Fig 9: Amplitude of the given audio

The Figure 7.2.2 shows the volume of the audio file, which

we want to convert in to text in amplitude domain and in

terms of Decibels also. By observing the figure we can say

that volume of the audio file not constant.

Speech to Text Conversion Result

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

358

For speech conversion recognizer function is used, the

function recognizer is available in speech recognition library.

The given input audio file: 4.wav The output text:

Fig 10: MFCC

Fig 11: Pitch

Fig 12: Spectrogram

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

359

Fig 13: ZeroCR

Fig 14: English to Hindi

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

360

Fig 15: English to Chinese

The given input audio file: 5.wav

The output text:

Fig 16: MFCC

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

361

Fig 17: Pitch

Fig 18: Spectrogram

Fig 19: ZeroCR

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

362

Fig 20: English to Chinese

Fig 21: English to Hindi

Text to Text Conversion
In text-to-text conversion google translator is used. The

function translator consists of three parameters one those are

1. Text: the text which is to be translated is specified

2. SRC: this is the source language

3. DST: this is destination language The text is converted

English to Telegu:

Fig 22: English to Telugu

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

363

 The text is converted English to Irish:

Fig 23: English to Irish

Conclusion and future work

Conclusion
In this project, we have implemented Speech to text

conversion. In this project the Google API used to convert

speech to text using the microphone in English audio file.

This can be useful in natural language processing projects for
handling audio files and transcripts as well.

The purpose of the project is achieved with expected results

and the speech to text conversion is also done in efficient

manner.

Future Work
This project is mainly concentrated in converting the English

audio files to other recognized languages. This project can be

extended to convert any audio file to any text. This project

can be implemented using other techniques like deep learning

and Multilayer perceptron’s etc.

One more important extension for this project is instead of

audio to text conversion, this con be extended for converting

video file to text file.

References
1. Vimala C, Radha V. A Review on Speech Recognition

Challenges and Approaches. World of Computer
Science and Information Technology Journal (WCSIT).

2012; 2(1):1-7. 2221-0741.

2. J Baker. The DRAGON system–An overview. IEEE

Transactions on Acoustics, Speech, and Signal

Processing. 1975; 23(1):24-29.

3. J Baker, L Deng, J Glass, S Khudanpur, CH Lee, N

Morgan, D O’Shaughnessy. Developments and

directions in speech recognition and understanding.

IEEE Signal Processing Magazine. 2009; 26(3):75-80.

4. P Douglas, JM Baker. The design for the Wall Street

Journal-based CSR corpus. In Proceedings of the

Workshop on Speech and Natural Language, 1992, 357-

362.

5. M Bacchiani, F Beaufays, J Schalkwyk, M Schuster, B

Strope. Deploying goog411: early lessons in data,

measurement, and testing. In Proceedings of ICASSP.

2008, 5260-5263.

6. CH Lee, FK Soong, KK Paliwal. Automatic speech and

speaker recognition: advanced topics. Springer, 1996.

7. N Sharma, S Sardana. "A real time speech to text
conversion system using bidirectional Kalman filter in

Matlab," 2016 International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), Jaipur, 2016, 2353-2357, doi:

10.1109/ICACCI.2016.7732406.

8. https://www.analyticsvidhya.com/blog/2019/07/learn-

build-first-speech-to-text-model-python/

9. Vlado Delić, et al. “Speech Technology Progress Based

on New Machine Learning Paradigm” Volume

Computational Intelligence and Neuroscience, 2019.

10. Ahad A, Fayyaz A, Mehmood T. Speech recognition

using multilayer perceptron. 2002; 103-109:1.

10.1109/ISCON.2002.1215948.

11. https://heartbeat.fritz.ai/a-2019-guide-for-automatic-

speech-recognition-f1e1129a141c

12. MA Anusuya, SK Katti. Speech Recognition by

Machine: A Review (IJCSIS) International Journal of

Computer Science and Information Security, 2009, 6(3).
13. R Sultana, R Palit. A survey on Bengali speech-to-text

recognition techniques, 2014 9th International Forum on

Strategic Technology (IFOST), Cox's Bazar, 2014, 26-

29, doi: 10.1109/IFOST.2014.6991064.

14. K Nguyen, T Ng, L Nguyen. Adaptive boosting features

for automatic speech recognition, 2012 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Kyoto, 2012, 4733-4736,

doi: 10.1109/ICASSP.2012.6288976.

www.allmultidisciplinaryjournal.com

