

The method of separation of variables in the resolution of PDEs

Yosra Annabi
Free Researcher, Street Cheikh Mohamed Hedi Belhadej, Romana, Tunisia
* Corresponding Author: Yosra Annabi

Article Info

ISSN (online): 2582-7138
Impact Factor: 5.307 (SJIF)
Volume: 05
Issue: 01
January-February 2024
Received: 09-12-2023;
Accepted: 12-01-2024
Page No: 655-658

Abstract

It is well known that there is no standard method in solving second-order partial differential equations. Thus, in this article we present a particular method: the separation of variables. As the name suggests, it is a question of assuming that the solution function is the sum or the product of functions that depend only on a single variable. In this case, the integration is simplified and the calculation of a solution is feasible. This method makes it possible to find a family of solutions or to calculate a particular solution which depends on boundary conditions and the initial values. The construction of a possible solution allow, on the one hand, to verify a formal calculation and, on the other hand, to test a reasoning numerically before or during a computer programming.

Keywords: PDE, variables, solutions, elliptical, parabolic, hyperbolic

1. Introduction

The one-variable second-order partial differential equations are written in the form

$$
A \frac{\partial^{2} u}{\partial t^{2}}+B \frac{\partial^{2} u}{\partial t \partial x}+C \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial u}{\partial t}+E \frac{\partial u}{\partial x}+F u=0
$$

Thanks to the theory of characteristics, they are classified into three categories
If $B^{2}-4 A C=0$, the equation is called parabolic.
If $B^{2}-4 A C>0$, the equation is called hyperbolic.
If $B^{2}-4 A C<0$, the equation is called elliptic.
In this article, we will apply the method to particular equations of each category: heat equation, wave equation and Laplace equation.

2. The parabolic PDEs

We will solve a special case of the one-dimensional heat equation. Let's first note the domain represented by $[0, L]$ with L a fixed real. Then, we define the time interval: $t \in[0,+\infty$. Finally, we define the working domain $Q=] 0, T[\times] 0,+\infty[$. Let's consider the problem.

$$
\begin{cases}u \in \mathscr{C}(\bar{Q}) & , u \in \mathscr{C}_{1}^{2}(\bar{Q}) \tag{1}\\ \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 & ,(t, x) \in Q\end{cases}
$$

With $C_{l}{ }^{2}$ is the space of functions that can be derived twice in space and once in time.
Theorem 1 The method of separating the variables makes it possible to build a family of possible solutions of class C^{∞} on Q of the problem 1 .
Demonstration 2 (Theorem 1) The idea of the method is to look for a solution of the form
$u(x, t)=f(x) g(t)$

Then the heat equation in 1 is equivalent to
$f(x) g^{\prime}(t)=f^{\prime \prime}(x) g(t)$
For any (x, t) in Q . Suppose that f and g are not identically zero on Q then,

$$
\begin{equation*}
\frac{f^{\prime \prime}(x)}{f(x)}=\frac{g^{\prime}(t)}{g(t)}, \quad \forall(x, t) \in Q \tag{4}
\end{equation*}
$$

Therefore, both members of this equation are equal to a certain constant $\lambda \in \mathbb{R}$. We have

$$
\begin{cases}f^{\prime \prime}(x)=\lambda f(x) & , \quad \forall x \in] 0, L[\tag{5}\\ g^{\prime}(t)=\lambda g(t) & , \quad \forall t \in] 0,+\infty[\end{cases}
$$

Three cases arise

1. If $\lambda>0$, then $\exists \mathrm{A}, \mathrm{B} \in \mathbb{R}$ such that
$\left\{\begin{array}{l}f(x)=A e^{\sqrt{\lambda x}}+B e^{-\sqrt{\lambda y}} \\ g(t)=g(0) e^{\lambda t}\end{array}\right.$
2. If $\lambda=0$ then $\exists A, b, c \in \mathbb{R}$ such that
$\left\{\begin{array}{l}f(x)=A x+b \\ g(t)=c\end{array}\right.$
3. If $\lambda<0$, we put ξ a root of $-\lambda$, then
$\left\{\begin{array}{l}f(x)=A \cos (\xi x)+B \sin (\xi x) \\ g(t)=g(0) e^{-\xi^{2} t}\end{array}\right.$

Nevertheless, it is not certain that one of these solutions verifies the equality (4) of the system 1.

3. The hyperbolic PDEs

We will solve a special case of the three-dimensional wave equation. Let us first note the spatial domain by the parallelogram $R=] 0, a[x] 0, b[x] 0, c[$ avec a, b, c three real ones fixed. Then, we define the time interval: $t \in[0,+\infty[$. Finally, we define the field of work $\mathrm{Q}=\mathrm{R} \times] 0,+\infty[$. Let's consider the problem

$$
\left\{\begin{array}{l}
u \in \mathscr{C}(\bar{Q}) \quad, \quad u \in \mathscr{C}^{2}(\bar{Q}) \tag{9}\\
\frac{\partial^{2} u}{\partial r^{2}}
\end{array}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \quad, t>0 \quad,(x, y, z) \in R\right.
$$

Theorem 3 The method of separating the variables makes it possible to build a family of possible class solutions C^{∞} on Q of the problem 9 .

Demonstration 4 (Theorem 3) We are looking for a solution in the form

$$
\begin{equation*}
u(x, y, z, t)=X(x) Y(y) Z(z) T(t) \tag{10}
\end{equation*}
$$

The equation will therefore be written

$$
\begin{equation*}
X Y Z T^{\prime \prime}=X^{\prime \prime} Y Z T+X Y^{\prime \prime} Z T+X Y Z^{\prime \prime} T \tag{11}
\end{equation*}
$$

Dividing the two members by XYZT $\neq 0$ we get

$$
\begin{equation*}
\frac{T^{\prime \prime}}{T}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z} \tag{12}
\end{equation*}
$$

Since the variables are independent, there is a real constant k such that

$$
\begin{equation*}
\frac{T^{\prime \prime}}{T}=k \tag{13}
\end{equation*}
$$

Therefore, ${ }^{k}=\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\frac{Z^{\prime \prime}}{Z}$
and for the same reason, there are constants $\alpha, \beta, \gamma \in \mathbb{R}$
$\left\{\begin{array}{l}\frac{X^{\prime \prime}}{X}=\alpha \\ \frac{Y^{\prime \prime}}{Y}=\beta \\ \frac{Z^{\prime \prime}}{Z}=\gamma\end{array}\right.$

Let's solve the equation by X

$\frac{X^{\prime \prime}}{X}=\alpha \quad \Rightarrow \quad X^{\prime \prime}-\alpha X=0$
Its characteristic equation is $r 2=\alpha$.

- If $\alpha>0$, then $\exists \mathrm{A}, \mathrm{B} \in \mathbb{R}$ such that
$X(x)=A e^{\sqrt{\alpha} x}+B e^{-\sqrt{\alpha} x}$
- If $\alpha=0$ then $\exists \mathrm{A}, \mathrm{b} \in \mathrm{R}$ such that $\mathrm{X}(\mathrm{x})=\mathrm{Ax}+\mathrm{b}$.
- If $\alpha<0$ then $r= \pm i \sqrt{ }-\alpha$ where $i^{2}=-1$ and $\exists C_{1}, C_{2} \in \mathbb{R}$ such that we have
$\mathrm{X}(\mathrm{x})=\mathrm{C} 1 \cos (\mathrm{x} \sqrt{ }-\alpha)+\mathrm{C} 2 \sin (\mathrm{x} \sqrt{ }-\alpha)$

Let's solve the equation by Y

In the same way, we have the family of solutions of the equation in Y :

- If $\beta>0$, then $\exists \mathrm{A}, \mathrm{B} \in \mathbb{R}$ such that
$Y(y)=A e^{\sqrt{\beta} y}+B e^{-\sqrt{\beta} y}$

If $\beta=0$ then $\exists A, b \in \mathbb{R}$ such that $Y(y)=A y+b$.

- If $\beta<0$ v $r= \pm i \sqrt{-\beta}$ where $i^{2}=-1$ and $\exists C_{1}, C_{2} \in \mathbb{R}$
such that we have,

$$
Y(y)=C_{1} \cos (y \sqrt{-\beta})+C_{2} \sin (y \sqrt{-\beta})
$$

Let's solve the equation by Z

Also, by a similar reasoning, the family of solutions of the equation in Z is:

- If $\gamma>0$, then $\exists \mathrm{A}, \mathrm{B} \in \mathbb{R}$ such that
$Z(z)=A e^{\sqrt{\gamma} z}+B e^{-\sqrt{\gamma} z}$
- If $\gamma=0$ then $\exists A, b \in \mathbb{R}$ such that $Z(z)=A z+b$.
If $\gamma<0$ then $r= \pm i \sqrt{-\beta}$ where $i^{2}=-1$ and $\exists C_{1}, C_{2} \in \mathbb{R}$
such that we have

$$
Z(z)=C_{1} \cos (z \sqrt{-\beta})+C_{2} \sin (z \sqrt{-\beta})
$$

Let's solve the equation by T

The solution of the equation 13 , in T , is done in the same way:
$T^{\prime \prime}=k T$

But taking into consideration the hypothesis
$k=\alpha+\beta+\gamma$

Form of the solution \boldsymbol{U}

Finally, according to the sign of the constants α, β, γ and k , we can find the general form of a class of possible solutions of the problem 9 :
$u(x, y, z, t)=X(x) Y(y) Z(z) T(t)$

4, The elliptical PDE

We will solve the one-dimensional Laplace equation. Let us first note the spatial domain by $[0, \mathrm{~L}]$ with L a real fixed. Then, we define the time interval: $t \in[0,+\infty[$. Finally, we define the domain of work $\mathrm{Q}=] 0, \mathrm{~L}[\times] 0,+\infty[$. Let's consider the problem
$\left\{\begin{array}{ll}u \in \mathscr{C}(\bar{Q}) \\ \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0 \quad, \quad(t, x) \in \mathscr{C}_{1}^{2}(\bar{Q}),\end{array}\right.$,

With $\mathrm{C}_{1} 2$ is the space of functions that can be derived twice in space and once in time.
Theorem 5 The method of separating the variables makes it possible to build a family of possible solutions of class C^{∞} on Q of the problem 23.
Demonstration 6 (Theorem 5) We will build a family of possible solutions of the PDE 23. For this, we pose

$$
\begin{equation*}
u(t, x)=T(t) \cdot X(x) \tag{24}
\end{equation*}
$$

This method makes it possible to construct an explicit solution of the Laplace equation. By replacing $u(t, x)$ with its expression in 24 , the equality 23 becomes

$$
\begin{equation*}
T^{\prime \prime}(t)+X^{\prime \prime}(x)=0 \tag{25}
\end{equation*}
$$

Hence the equality

$$
\begin{equation*}
X^{\prime \prime}(x)=-T^{\prime \prime}(t) \tag{26}
\end{equation*}
$$

Therefore, there is a constant k such that

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)=k \tag{27}\\
T^{\prime \prime}(t)=-k
\end{array}\right.
$$

It is clear that a primitive of the second derivative function $\mathrm{X}^{\prime \prime}(\mathrm{x})$ has a polynomial form

$$
\begin{equation*}
X(x)=\frac{k}{2} x^{2}+X^{\prime}(0) x \tag{28}
\end{equation*}
$$

To verify this, it is enough to integrate the equality 27 twice,

$$
\begin{array}{ll}
\int_{0}^{x} X^{\prime \prime}(s) d s & =\int_{0}^{x} k d s \\
X^{\prime}(x)-X^{\prime}(0) & =k x \tag{29}
\end{array}
$$

Then, we integrate a second time,

$$
\begin{align*}
\int_{0}^{x} X^{\prime}(s) d s & =\int_{0}^{x}\left(k s+X^{\prime}(0)\right) d s \\
& =\left[\frac{k}{2} s^{2}\right]_{0}^{x}+X^{\prime}(0)[s]_{0}^{x} \\
& =\frac{k}{2} x^{2}+X^{\prime}(0) x \tag{30}
\end{align*}
$$

By a similar work,

$$
\begin{equation*}
T(t)=-\frac{k}{2} t^{2}+T^{\prime}(0) t \tag{31}
\end{equation*}
$$

By superposition, we have

$$
\begin{align*}
u(t, x) & =X(x) \cdot T(t) \\
& =\left(\frac{k}{2} x^{2}+X^{\prime}(0) x\right) \cdot\left(-\frac{k}{2} t^{2}+T^{\prime}(0) t\right) \tag{32}
\end{align*}
$$

This work gives a family of possible solutions explicitly

$$
\begin{equation*}
u(t, x)=-\frac{k^{2}}{4} x^{2} t^{2} \tag{33}
\end{equation*}
$$

The constant k depends on the boundary conditions of the domain of study. This paragraph allows a simple reconstruction of a solution that can be used, for example, in a numerical verification.

5. Conclusion

The study of partial differential equations or ordinary differential equations does not have a strict method. In this article, we have presented a classical method with application to three examples of equations of different types.

Thus, the method of separation of variables makes it possible to build a family of possible solutions based on the theory of second-order differential equations. Depending on the boundary conditions and the initial temporal conditions, a refinement calculation makes it possible to select the solution of a well posed problem.

6. References

1. B Ycart, Système différentiels, Systèmes itératifs, Book, Centre de publication universitaire, 2002, ISBN: 9973-37-077-5.
2. Y Annabi, Introduction aux équations aux dérivées partielles, Book, Editions Universitaires Euro- péennes, 2016, ISBN: 978-3-639-50779-9.
3. A Samarski, V. Andreev, Methodes aux differences pour equations elliptiques, Editions de Moscou, 1978.
4. R. Dautray, J. L. Lions, Analyse mathematique et calcul numerique pour les sciences et les tech- niques, Tome 3, Serie scientifique, Edition Masson, 1985.
5. M. Gisclon, A propos de l'equation de la chaleur et de l'analyse de Fourier, Le journal de maths des eleves, 1 1998, 4. https://www-fourier.ujf-grenoble.fr/~edumas/ GisclonJME4.pdf,
6. T. Ourmieres-Bonafos, Transformee de Fourier et equation de la chaleur. 2020, https://i2m. univ-amu.fr/perso/thomas.ourmieres-bonafos/chaleur.pdf,
7. A. Laurent, equation de la chaleur, adrienlaurent.net/Agregation/Liste_DVP/ Equation_chaleur.pdf,
8. M. Hadamard, Les problemes aux limites dans la theorie des équations aux dérivées partielles, Thesis, 1907. theses.fr
