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Abstract 
This article contains the algorithm and the program in Freefem++ for solving a 

problem of data completion on the edge of a square domain. The software is free and 

downloadable on the website freefem.org . It is a programming language that allows 

solving partial differential equations via the finite element method. After an 

introductory paragraph, the numerical scheme of the Kozlov-Maz'ya-Fomin is 

explained. The last section exposes the variables and the syntax necessary to program 

the reconstitution of the data via the resolution of two variational formulations. The 
code is finalized and functional. The results are presented in the form of numerical 

values and curves of the approximated functions. 
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1. Introduction 
The numerical study always constitutes the last stage of a study of a mathematically modeled phenomenon. The model studied 

in this article is represented by the system (1). It also exists as an application in the books [2] and [9]. For this reason, we will not 
delay on the modeling side. Indeed, the model can represent a phenomenon of the hydrogeology of coastal groundwater as in [2] 

or a phenomenon of particle transport in hemodynamics as in [9] and more generally, it represents a model of solute (particle) 

transported in a saturated porous medium by diffusion, convection and dispersion. The inverse problem makes it possible to 

reconstruct data on an edge of a square domain. The equation formulated represents the transport of a solute by diffusion and 

convection in a solvent, called by the diffusion-convection equation. The algorithm chosen for the reconstruction of the data is 

the Kozlov-Maz’ya-Fomin algorithm. We will recall this algorithm and program it on Freefem++. Before approaching the 

problem in transient mode, we adopt a quasi-stationary scheme i.e. we discretize the temporal term using the implicit Euler 

scheme. Thus, we bring ourselves back to studying a stationary case at each time step. As for the numerical method considered 

for the spatial approximation, we apply the finite element method. On the programming side, as mentioned above, we used the 

FreeFem++ software with [13] as reference. The Freefem++ software can only draw the level lines (isoclines). On the other hand, 

the curves are plotted on Scilab, using files saved thanks to the command of stream on Freefem++. 

 

2. Model 
We are now interested in the inverse problem 1 

 

   
 

 

 

 

(1) 
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In which Ω is a domaine, ∂ Ω = Γi ∪ Γm et T ∈ ℝ. 
In addition, ΩT = Ω x [0, T ], ∑m = Γm x [0, T ] and  

Σi = Γi ∪ [0, T ]. In all numerical tests, the velocity vector is 

fixed at 

 
In addition, the matrix of the global movement is denoted 

 
We try to approximate the flow and the shape of the curve C 

on Γi during the time interval [0, T]. 

 
 

3. Algorithm 
In the algorithm for processing the evolution equation, we use 

a quasi-stationary approach. Let nt ∈  N be. We put dt = T/nt 

the time discretization step and for i ∈  0,..., nt, we note Ci := 

C(., i ∗  dt). By applying the stable implicit Euler scheme, the 

sequence of systems to be solved is written : 
— We pose C0 = C0 ∈  H1(Ω). 
— For i ∈  0,..., nt, solve system (2) 

 
To solve this inverse problem, we use the same numerical 

scheme of the Kozlov-Maz’ya-Fomin algorithm. 
 

The scheme of the algorithm 
— We pose C0 = C0 ∈  H1(Ω). 

— For i ∈  0,,,,, nt 

— Given an initial approximation η0 ∈  H1/2(Γi) 

— For k ≥ 0 

— Solve system (3) 

  

 
— Solve 

  
 

 
 

 

 

 

 

 

 

 
 

 

  

4. Program 
//———————————————————–// 

// This program is to solve the problem 
// transient with Cauchy data : 

// c = ((y + 1)2)/6 + 2 ∗  x and Flux (dx(c), c, dy(c)) 

// The numerical scheme is explained above 

//———————————————————–// 

// construction of the domaine 

border gamma1(s = 0, 2 ∗  pi) {x = cos(s); y = sin(s); label = 1; } ; 

border gamma0(s = 0, 2 ∗  pi) {x = 0.6 ∗  cos(s); y = 0.6 ∗  sin(s); label = 2; } ; 

// construction of the mesh : 

mesh Th=buildmesh (gamma1(50) + gamma0(−50)) ; 

 
plot (T h, wait = 1) ; 
// construction of Lagrange polynomials on the mesh 
fespace V h(T h, P1) ; 

 
//Time data 
//T temps final , nt nbre de noeuds , dt= pas temporel  
real T = 2, nt = 8, dt, alpha ; 
dt = T/nt ; 
alpha = 1./dt ; 

 
// The elements of Vh 
Vh u1 , u2 , v1 , v2 , oldu1 , oldu2 ; 
//u1 solution of the problem where the Dirichlet condition is fixed on gamma1 ( connu ) 
//u2 solution of the problem where the Neumann condition is fixed on gamma1 ( connu ) 
//v1 , v2 tests functions . 

 
//Cauchy data defined on gamma1 
func c = ((y + 1)2)/6 + 2 ∗  x ; 
func dcx = 2 ; 
func dcy = (y + 1)/3 ; 

(2) 

(3) 

(4) 
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macro cc(s)((T ∗  (s ∗  dt)) + c)// 
macro dccx(s)(dcx)// 
macro dccy(s)(dcy)// 
 

// coefficients of the matrix D 
real alpha1 = 30, alpha2 = 3 ; 
 

// initialization 
int k = 0 ;// counter number of iterations 
real err = 1 ; 
oldu1 = T + c ; // time initialization 
oldu2 = T + c ; 
 

//Resolution 
for (ints = 1; s < 9; s + +) 
{ 
 

// definition of the variational problem u1 : 
problem FV 1(u1, v1, solver = LU, eps = ∗ 1.0e ∗  6) = int2d (T h)(al pha ∗  u1 ∗  v1) - int2d(T h)((−al pha1 ∗  dx(u1) + u1) ∗  

dx(v1) − al pha2 ∗  dy(u1) ∗  dy(v1)) + on(1, u1 = cc(s)) + int1d(T h, 2)(((−al pha1 ∗  dx(u2) + u2) ∗  N.x − al pha2 ∗  dy(u2) 

∗  N.y) ∗  v1) - int2d(T h)(al pha ∗  oldu1 ∗  v1) ; 
 
// definition of the variational problem u2 : 

problem FV2(u2, v2, solver = LU, eps = ∗ 1.0e ∗  6) = int2d (T h)(al pha ∗  u2 ∗  v2) - int2d(T h)((−al pha1 ∗  dx(u2) + u2) ∗  

dx(v2) − alpha2 ∗  dy(u2) ∗  dy(v2)) + int1d(T h, 1)(((−alpha1 ∗  dccx(s) + cc(s)) ∗  N.x − alpha2 ∗  dccy(s) ∗  N.y) ∗  v2) + 

on(2, u2 = u1) - int2d(T h)(al pha ∗  oldu2 ∗  v2) ; 

 

// initialization problem 

problem FV(u2, v2, solver = LU) = int2d (Th) (alpha ∗  u2 ∗  v2) - int2d(T h)((−alpha1 ∗  dx(u2) + u2) ∗  dx(v2) − alpha2 ∗  

dy(u2) ∗  dy(v2)) + on(2, u2 = 0) + int1d(T h, 1)(((∗ alpha1 ∗  dccx(s) + cc(s)) ∗  N.x − alpha2 ∗  dccy(s) ∗  N.y) ∗  v2) − int2d(T 

h)(alpha ∗  oldu2 ∗  v2) ; 

FV ; 

while (err > 1e − 5) 

{ 

FV1 ; 
 

// erreur 

err = (int1d(T h, 2)(u1 − u2) ∧  2)/(int1d(T h, 2)(u2 ∧  2)) ; 

FV2 ; 

k = k + 1 ; 

} 

oldu1 = u1 ; 

oldu2 = u2 ; 

err = 1 ; 

} 

 

// storing the results in a file 

int ni = 10000 ; //number of points on gamma0 . 

real [int] xx(ni + 1), yu1(ni + 1), yu2(ni + 1), yu(ni + 1), 

yderivu1(ni + 1), yderivu2(ni + 1), yderivT (ni + 1) ; 

int f = 8 ; //at the final moment 

 
for (int i = 0; i < ni + 1; i + +) 

{ 

xx[i] = i ∗  (2 ∗  pi)/ni ; / / discretization of gamma0 

 

// evaluation of u1, u2 and c in these points 

yu1[i] = u1(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) ; 

yu2[i] = u2(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) ; 

yu[i] = cc( f )(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) ; 

 

// evaluation of the outgoing flow. 

yderivu1[i] = (- alpha1(u1)(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i]))+u1(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i]))) ∗  cos(xx[i]) - al pha2 ∗  
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dy(u1)(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) ∗  sin(xx[i]) ; 
 

yderivu2[i] = (- al pha1 ∗  dx(u2)(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) + u2(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i]))) ∗  cos(xx[i]) 

- al pha2(u2)(0.6 ∗  cos(xx[i]), 0.6 ∗  sin(xx[i])) ∗  sin(xx[i]) ; 

 

yderivT [i] = (- al pha1∗ dcx+cc( f )(0.6∗ cos(xx[i]), 0.6∗ sin(xx[i])))∗ cos(xx[i]) - al pha2∗ dccy( f )(0.6∗ cos(xx[i]), 0.6 ∗  

sin(xx[i])) ∗  sin(xx[i]) ; 

} 

 

// registration 

ofstream fichier (”valeurs.gp”) ; 
for ( int i =0 ; i< ni +1 ; i++) 

{ 

fichier << xx[i] << ”” << yu1[i] << ”” << yu2[i] << ”” << yu[i] << endl ; 

} 

ofstream fichier1 (" derivnor . gp " ) ; 

for (inti = 0; i < ni + 1; i + +) 

{ 

fichier1 << xx[i] << ”” << yderivu1[i] << ”” << yderivu2[i] << ”” << yderivT [i] << endl ; 

} 

 

5. Results 
With this program, we carry out two tests on a crown and a  

square. So, we approximate the solution of the inverse 

problem by giving Cauchy data (5) and (7) fixed on ∑m. For 

the first test, thedata are 

 

  (5) 

 
The coefficients of the matrix D are: 

 

                                                     (6) 

 

For the second test, the following data are considered: 

 

 (7) 
 

and the coefficients of the matrix D: 

 

 (8) 

 

In the examples tested, the final instant T is equal to 2. 

In addition, the stopping criterion is realized when a 

stationarity of the sequence ηk is reached. That is, when the 

relative error defined by (9): 

 

 (9) 
is smaller than a certain fixed constant in advance. In all 

numerical tests, we set to 1e−05. However, the tests carried out 

below have shown that experimentally the stopping criterion 

is applicable only in the case of a crown. Indeed, we do not  

obtain a good approximation with this criterion in the case of 

a square. For this reason, we make an automatic stop after a 

hundred iterations, at each time step. 

The results of the first test carried out on a crown, and 

obtained at different times are summarized in the table (1) 

and the curves are plotted in the figures (1). For the second 

test, it is necessary to consult the table (2) and the figure (2). 

 
Table 1: Analysis of the program for a crown: test 1. 

t = 
Number of 

iterations 

Relative 

Error 
CPU time 

0.5 24 1.59533e−06 8.31 

1 40 1.46176e−06 8.841 

1.5 54 8.15392e−06 8.516 

2 68 4.48832e−06 8.08 

 
Table 2: Analysis of the program for a crown: test 2. 

 

t = Number of 

iterations 

Relative 

Error 

CPU time 

0.5 12 2.81838e−06 7.462 

1 20 3.05951e−06 8.471 

1.5 28 3.14228e−06 7.445 

2 36 2.32936e−06 7.372 

 

Interpretation 1 The results of tests 1 and 2 show that we 

obtain a good convergence when the domain is a crown. The 

change of the matrix D does not taint the results. In addition, 

the two tests require 36 iterations with an error of the order 

of 10−6. 

 

 

We use the same test functions as for a crown but we 
only change the domain to a square. So we start with the 
data 5 and 6. The results obtained for four different 
instants are in the table 3. The curves are plotted in the 

figure 4. In the second test, we consider the data 7 and 
8. The curves plotted on Scilab are in the figure 5. The 
numerical results are in the table 4. 
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Table 3: Analysis of the program for a square: test 1. 

 

t = 
Number of 

iterations 

Relative 

Error 
CPU time 

0.5 100 1.54886e−18 61.804 

1 100 1.49199e−18 100.95 

1.5 100 1.47461e−18 136.469 

2 100 1.45261e−18 176.202 

 
Table 4: Analysis of the program for a square: test 2. 

 

t = 
Number of 

iterations 

Relative 

Error 
CPU time 

0.5 100 1.34578e−28 61.822 

1 100 4.98735e−28 98.545 

1.5 100 1.40005e−27 143.954 

2 100 3.66783e−27 178.261 

 

Interpretation 2 In the case of a square, the first test reveals 

that 100 iterations are satisfactory to obtain a good 

convergence except in the first test at time 0.5 as indicated in 

the figure 4. On the other hand, in the second test, although 

the reconstruction of the concentration is convincing, that of 

the flow is far from the exact solution; moreover, the even 

sequence and the odd sequence do not coincide. 
 

Table 5: Comparison calculation time: test 1. 
 

 t = Number of iterations Relative Error CPU time 

Crown 2 100 7.77186e−33 19.344 

Square 2 100 1.45261e−18 176.202 

 
 
 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 



 International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    668 | P a g e  

 

 

 
 

 

 
 



 International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    669 | P a g e  

Interpretation 3 
Our first observation concerns the choice of the stopping 

criterion. Indeed, we note that in the case of a corona it 

suffices that the relative error is smaller than a certain value 

fixed in advance to obtain a good convergence, which is not 

the case for a square domain. For this, we have chosen to 

make a sudden stop at 100 iterations, in the stationary case 

this condition is sufficient on the other hand in the transient 

case this is not always valid as in test 1 at time 0.5. This may 

be due to the regularity of the domain which is smoother in a 

crown than in a square. 
A second observation which supports the effect of the choice 

of the domain is the irregularity of the curves, both for the 

reconstruction of the concentration and for the total flux, 

noticed in the case of the square domain. We conclude, 

therefore, that the angles present in a square delay the 

convergence of the algorithm. This confirms the remark 

quoted in [14], concerning the regularity of the domain: the 

more regular the domain, the faster the convergence. 

A third observation, emphasizes the same trait, the 

calculation time for a crown is much less than that of the 

square, as indicated by the table 5. Although the CPU 

calculation time depends on the power of the machine, this 

finding is a motivation for studying the complexity of the 

algorithm. In addition, this can confirm the dependence of 

this algorithm on the thickness of the studied domain. 

In the case of the crown, it only takes a few iterations, 

between 2 and 4, to obtain a relative error of the order of 10−6; 

and even when we extend to 100 iterations in the case of a 
square, we obtain a relative error which varies between 10−26 

and 10−23. This does not contradict the slowness of the 

Kozlov-Mazy’à-Fomin algorithm because the test functions 

considered are polynomial. 

In addition, we note that the choice of the matrix D, and 

consequently the choice of the operator, does not affect the 

convergence of the algorithm, nor the quality of the results 

obtained. We also notice that we cannot predict the variations 

of the relative error and the CPU time when we provide the 

Cauchy data or when the program constructs them itself. 

Since we are studying a transient case, we have applied a 

quasi-stationary scheme. We note that the accumulation of 

errors at each time step does not alter the convergence of the 

algorithm at the final instant, as illustrated in the figures of 

the first test with a square domain (4). On the other hand, in 

the second test, although the concentration curve is 

reconstructed in the figure (5), that of the flow is poorly 
approximated as shown in the figure. 

 

6. Conclusion 
Finally, this article presents a program on the Frefem++ 

software, for the numerical resolution of an inverse problem. 

Thus, theoretically, we applied the Kozlov-Maz’ya-Fomin 

algorithm to the presented data completion problem. In 

practice, we have varied different parameters: the domains, 

the Cauchy data and the coefficients of the diffusion-

dispersion matrix. We have shown that the stationarity of the 

relative error is not a valid stopping condition for the two 

domains: crown and square. In addition, we numerically 

show the importance of the regularity of the domain as well 
as its thickness. In addition, we find that the choice of the 

matrix does not affect the results. 

 

7. References 
1. M Kern. Problèmes Inverses, 2002-2003. http://www-

rocq.inria.fr/~kern/ Teaching/ESILV/inverse.pdf 

2. Y Annabi. Introduction aux mathématiques appliquées, 

Editions Universitaires Européennes, 2012, ISBN: 978-

3-8417-8154-3. 

3. MI Edouard, ML Doris, BB Paulin. Modélisation 

physique et mathématique de l’écoule- ment 

sanguindans l’anevrisme de l’aorte abdominale, 

International Journal of Innovation and Scien- tific 

Reasearch, 2016, 26(1). 

4. Y Annabi. Hemodynamics: Macroscopic and 

Microscopic Modeling, International Journal of 

Innovation in Science and Mathematics, 2022, 10(4). 

5. J Happel, et H. Brenner. Low Reynolds number 
hydrodynamics, Martinus Nijhoff Publishers, 1983. 

6. G ADDE0 Méthodes de Traitement d’Image Appliquées 

au Problème Inverse en Magnéto- Electro-

Encéphalographie, École nationale des ponts et 

chaussées, 2005. 

7. Jishan Fan, Michele Di Cristo, Yu Jiang, Gen Nakamura, 

Inverse viscosity problem for the NavierS- tokes 

equation, Journal of Mathematical Analysis and 

Applications. 2010; 365(2):750-757. 

8. M Bonnet. Problèmes inverses, 2008. 

9. Y Annabi. Introduction aux écoulements en 

canalisations et milieux poreux, Editions Univer- sitaires 

Européennes, 2022, ISBN: 978-620-3-43992-2. 

10. Y Annabi. Introduction aux opérateurs linéaires et aux 

opérateurs non linéaires, Book, Editions Universitaires 

Européennes, 2016, ISBN: 978-3-639-50779-9. 

11. Y Annabi. Introduction à la modélisation multi-échelle, 
Editions Universitaires Européennes, 2022, ISBN: 978-

6-139-50445-9. 



 International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    670 | P a g e  

12. Y Annabi. Introduction à l’hémodynamie, Editions 

Universitaires Européennes, 2022, ISBN: 978-620-3-

43779-9. 

13. F Hecht. Freefem++, 2010. 

http://www.freefem.org/ff++/ftp/freefem++doc. pdf 

14. M Farah. Problèmes inverses de sources et lien avec 

l’électro-encéphalo-graphie. PhD thesis, Université de 

technologie de Compiègne, 2007. 

 

 

 


