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Article Info Abstract
The stability and deformation of a solid depends on the variability in its primary field
R ) variables, referred to as displacement field. Displacement, being the change in the
ISSN (orﬂlne). 2582-7138 position of particles at the atomic and sub-atomic levels within a solid; when, known,
Volume: 05 enables easier determination of the rate of deformation, and the force intensity within
Issue: 02 a solid. And the mathematical analysis of this cumbersome computational process has
March-ApriI 2024 always being presented as a literature with little or no analytic details. Yes finite
Received: 08-02-2024: element analysis is a numeral method of solving a differential equation, a process
) N ' where a solid of any shape is discretized into small coordinate locations in space called
Acceptec_i. 11-03-2024 mesh, which contains nodes that represent the shape of the whole geometry. A
Page No: 482-493 structure may contain thirty thousand mesh, but its displacement field can only be

determined by the computational analysis of a single mesh. The rest will be the
assembling of the whole into a system. All these descriptions had always being in
words. Here, we give a detailed mathematical analysis to this process by considering
a unit tetra-shaped finite element mesh.
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1. Introduction

Finite element method is a method of finding approximate solution to a wide range of problems spanning from engineering,
biomechanical, stress distribution, and heat conduction capabilities of a solid. The analysis is usually achieved by discretizing
the structural material into smaller geometric unit called mesh, which enables the determination of the field variable such as
displacement, stress, strain and the general material response to load at unit bases. The generic applicability of finite element
method to science and engineering makes it useful to scholars and researchers, who depend on it for solving complex partial
differential equations generated from structural analyses.

Notable publication in this area are [, finite element analysis and light weight optimization design on main frame structure of
large electrostatic precipitator 1. Worked, on finite element analysis of two different dental implants; stress distribution in the
prosthesis, abutment, implant, and supporting bones. Discussion on the evaluation of parameters of an osseo-integrated dental
implants using finite element analysis, a two-dimensional comparative study, examining the effects of implant was carried out
in Bl While 1 1 addressed, finite element stress analysis of dental prostheses supported by straight and angle implant. The
influence of restoration type on stress distribution in bone around implants a three-dimensional finite analysis was solved in I,
Also, three-dimensional finite element analysis of biomechanical behaviors of implants with different connections, lengths, and
diameters placed in the maxillary was discussed in [6:12 23],

Even in civil and structural engineering, finite element analysis is used to determine the structural integrity before the foundations
are laid I8 919 |n all these applications of finite element analysis in different fields of studies, its fundamentals, still lies in the
mathematical analysis of the unit element, whose details had not been reported in literature. Here, in this paper we give an
explicit mathematical analysis of the finite element problem solving process by considering ‘’a tetra-shaped mesh’’ of a
discretized solid under concentrated load.
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2. Problem Formulation
A cross-sectional area A, of a concrete wall is discretized into nth-thousand mesh of [ squared centimeter each. Suppose the
wall is subjected to concentrated load g , and is under the influence of body forces. As shown in Figure 1. Here, we wish to
determine the mathematical computational principle of finite element analysis, in determining the primary field variable
(displacement) of the wall.

Beam End

L oading Plate

Supporting
Reaction

Fig 1: A discretized concrete wall

3. Mathematical Formulations
The deformation, and stationarity of a continuum is determined by the variation in the displacement field of its functional. The
functional in the case of a solid body will be derived from its elastic property [14]. Mathematically defined as:

.. Stress

Elasticity(E) = Strain @)
where

Stress =2 =L (2)

Area A

and

Strain = Extension — e (3)

Length l

From equation (2) and (3), we can rewrite equation (1) analytically as:

Fl
E= “)
Fl = ke = A8 (5

Where u is the displacement caused by the extension along the x, and y — axis for a two dimensional body. Hence, the strain
energy stored in a solid, is describe as a kinetic energy, due to the continuous displacement of it atomic and sub-atomic particles.
This takes the form analytically [15] as

2
K.e =1/, AE (‘;—’;) (6)
and

K.e=1/,AE (Z—;‘)z ™

respectively for the x, and y —directions for two dimensional bodies.
If the body is subjected to external load g; then, the functional(F) of the continuum is equivalent to the strain energy plus the
external load times displacement. That is,

2
F=1/,4E(%) - qu (8)
And

F=1/,4E (2—3)2 ~ qu )
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4. Condition for Extrema

The necessary condition for a solid to deform or remain stationary, is equivalent to finding a differential equation that represents
the functional (F). This condition is achieved by using calculus of variation to determine the displacement field of the functional.
Calculus of variation deals primarily with finding maximum or minimum value of a definite integral involving a functional 16
71, A simple example of a functional is the shortest distance of a curve through two points a(x;,u,) and b(x,,u;), which a
displaced particle can travel within a solid shown in Figure 2 and mathematically represented by (10).

u(x) A

Up

Fig 2: Displacement Part-lines Travelled by Particle within a Solid
b d
Mu@] = [ F (u,ﬁ,x) dx (10)

ulx) =ulx) +¢ (11)

where ¢ is a small parameter, and the difference between % (x) and u(x) is called the variation in the displacement field u(x);
denoted by,

ou(x) = ulx) —ulx) (12)
The difference between du and du at a given point x:
The variation Su refers to the difference between #(x) and u(x); while, du refers to the incremental change in u(x) as x
changes to x + dx
and we define

S =u'(x) —u'(x) = [6u]’ (13)

Where ()’ denotes differentiation with respect to x.
For a given x, as we move from u(x) to #(x); following figure 2,

AF = F(m,u,x) = Flu,u'x) = F(u + du,u’ + 8u’,x) — F(u,u'x) (14)

expanding the first term in equation (14) by Taylor series [18]; we get,

oF oF
F(u+du,u' +déu',x) = Flu,u'x) + (— ou + 6u’)

) ) ) u ou’
1 (0°F ¢ 2 o°F 1, O°F o 12
+ 2! (6u2 6u” +2 oudur dudu’ + dur? ou ) (15)
hence
__ (OF oF o , 1 (9%F o 5 9%F y, 0%F o
AF—(a6u+ﬁ6u)+z(ﬁ6u +2-2 " sudu’ + 2 6u ) (16)

The first variation of F is defined as:
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oF oF
OF = a—é‘u + Fé‘u (17)
and the second variation of F is:

8%F = 5 2 (18)

So that,

AF = 6F + - 62F +ot— (5”F (19)
Studying what happens to the variation I, in the neighbourhood of u(x); that is,

Al = 1,0, x) — I(u,u'x) = f;F(ﬁ,ﬁ’,x)dx - f:F(u,u’x)dx (20)

[7AF dx = [ (8F + 2 62F + - ) dx (1)
Then, the first variation of the functional within the solid is defined by:

81 = [V 6F dx (22)
and the second variation is given as:

821 = [’ 6% Fdx (23)
So that

Al = 681 +%521 (24)

If I represents the total potential of the structure, and we are searching for a stable equilibrium configuration; then, we wish to

find u(x) that minimizes the variation I. Since u(x), minimizes I; then, Al - 0, when u(x) = u(x). Then I attains a minimum
[17]

From equation (17) and (22); we have,
51 = [ (Ebu+2Zsu')dx (25)
Recall from equation (13); that is,
§@) = (6u') = +-6u (26)
Substituting for the second term in equation (25) with equation (26); we have,

81 = [} (5 6u + 25 5u) dx @7)

We then isolate the second term in equation (27) for further analysis.

b OF

[725 2 sudx = [ 2= d(su) (28)

a gu' dx

Performing integration by part on the second term of equation (28); we get,

22 deow) = [ ou]” - 26w % (L) ax (29)
Considering the boundary values éu(a) = du(b) = 0, since the end-points are usually fixed. Leaving equation (29) as,

b OF

[y aod(dw) = — J; (o) - (5-) dx (30)

Hence, replacing the second term of equation (27) with the second term of equation (30); we have,

485|Page



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

51 = [’ (Z—Z Sudx — (5u) L ("—F) dx) (31)

dx \ous

Factoring out the common terms from equation (31); gives,

b (0F d (0F
ol = fa (a - E (a)) dudx (32)
u(x) minimizes I when #(x) = u(x); implying, 51 = 0. Making equation (32)
OF d (0F
2~ () =0 (33)

Equation (33) is the famous Euler-Lagrange equation of solid mechanics [15]. Which is the necessary condition for a continuum
to be stationary.

The principle of stationary total potential (PSTP), describing the equilibrium configuration of a solid states, that the problem of
finding u(x), that makes I stationary with respect to small variation in u(x), is equivalent to the problem of finding u(x) that
satisfies the governing differential equation for the problem [15 ] Hence we use equation (33) to convert the functional equation
(equation (8)) into a governing differential equation as follows:

! 2 . -
Differentiating the functional equation F = %AE (‘%) — qu, with respect to u; that is,
oF

2
also, differentiating the functional equation F = %AE (Z—D — qu, with respect to u’; we have,

OF du
o= AE — (35)

Substituting equation (34) and (35) into Z—i — % (%) = 0, to obtain the differential equation of the functional equivalence as:

d (AE du) _
q dx dx/

d?u
ﬁ + q= 0 (36)

and by a similar procedure; we have,
d?u
AE W + q= 0 (37)

Equation (36) and (37) is a 1-dimensional governing differential equation representing the functional in x and y directions while

the 2-dimensional case is obtained by summing equation (36) and (37). That is,
2 2

Py Y o S
axz 4 dy? 1=

Leading to a Laplace equation of the form;

AE (az—“ + 227’;) -0 (38)

dx?

5. Finite Element Method
For computational purpose, let the displacement u(x, y) be denoted by 1y (x, y).
So that equation (38) can be rewritten as;

9%y | %Y\ _
A8 (5 + 55%) = (39)
and the weak form of equation (39) becomes

92 92
AE[fW(%+%)dA=O (40)
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by integration by parts, the first term in the bracket becomes,
X
fow S = (w )" — [t
X1 x

dx? dx X; dx dx

On a similar lines, we write (using the Green Gauss Theorem)

Jwitaa= (w2 ™ ay - [f22% 44

0x/ % dx 0x

The general interpretation of x;, x,,, and y;, y,; [15] .Therefore,

dy = tl.ds

www.allmultidisciplinaryjournal.com

(41)

(42)

(43)

where [, is the direction cosine of the out-ward normal m", and = is introduced to take care of both ends.

Yu (g W\ o0y
Lr(wss), dv=$wlids

Replacing the second term of equation (42) with equation (44); we get,

ffw"’ Laa=—[[22%dA + $w L Lds
and by a similar procedure; we have,

ffWa Va4 = —ffaW"”’dA +gﬁwa¢z ds
hence

AEff <—+—>dA AE j G_W% O_W% dA +

0x 6x dy ay
Therefore

9x Ox dy dy a

AB [ (55 + 5 5) dA = AE§w (57) ds

(AE [[[B]" [BldA)(} = AE $[N]" (2£) ds
(K1} = (£}
Where the stiffness matrix,
[k] = AE f f [B]” [B]dA
and the loading force,
(1) = 48 I (52) ds
Then, for the entire finite element mesh; we have,

AE ZJIVELEM(ﬂ[B]T [B]dA) {y} = AE ZIIVELEM ﬁ[N]T (%) ds

(44)

(45)

(46)

fW—ld +j€W—l ds]—O

ff awa¢ awa¢)dA AEf (%l+al£l>ds:AEj€W<an

(47)

(48)

(49)

(50)

where [N] and [N]T are the shape function matrix and its transpose respectively. [B] and [B]” are the derivatives of the shape

function while {1} is the displacement vector.

Note: In the Galerkin formulation, we use the same shape function as the weight function (W = N) 3],
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6. Computation of Shape Function

JIY
3 2
h
P = (u,v)
0 < I LYl
0 >
X

Fig 3: Displacement Distribution in Rectangular Mesh.

Let the axial and transverse displacement in the quadrilateral be represented by u and v respectively.
Here, the unknown field variables vary independently along two directions. Hence, we assume that the displacement field over
the mesh is given by:

u(x,y) = Cy + C;x + C,y + C3xy (51)
and

v(x,y) = Cy + Cyx + C,y + C3xy (52)
Thus, for the rectangular element of size (I x h). On computation; we have,

u =Gy (53)

uZ = Co + Cll (54)

u3 = Co+C1l+C2h+C3lh (55)

u4, = CO + C4,h (56)

Solving for, C,, C;, C,, and C5; we have,

Co=uy (57)
¢ == (58)
Cp ="t (59)
C, = ettt (60)

lh

Substituting for, C,, C;, C,, and C5; in equation (51); we have,

) =+ (252) g (228 (o) =

by expanding and grouping like terms; we have,
=(1-X_Y, % x_xw 24 y_x
ulx,y) = (1 TRt lh)ul + (z lh)uz + (lh)u3 + (h lh)u4 (62)
In standard finite element notation equation (62) is written as:
Uy
Uz

Us
Uy

u(x,y) = [Ny, Ny, N3, Ny] (63)
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By a similar procedure; we have

U1
%
v(x,y) = [Ny, N2, N3, N4] vz (64)
Uy
where
X y Xy
N=1—--—=4-"2
! [ rh ' Th
X Xy
N [
271 In
Xy
N3_m
_Y_w
*“h I

Hence, N; is the shape function, describing the uniform distribution of the displacement field. Since Figure 1; is used to model
structural mechanics problems, each node will have two degrees of freedom viz: u and v; hence, we can write the displacement
field, using the shape functions derived in equation (63) and (64) as:

Uy
V1
U,
— ul_N10N20N30N40 UZ
VI = N () = [0 n G, o s o Nl s [ (65)
U3
Uy
2
And
gy aNg dNs o dN,
dx | _ [B] = dx dx dx dx
dn;| — - 0 dN, 0 dN, 0 dNs 0 dN,
ldyJ l dy dy dy dyJ
then;
Ele
dx
dy
dN,
dx
dN,| rdN, dN dN dN,
d_z [420 ) &2 ) @5 ) 4N ]
[B]"[B] = V|| dx dx dx dx
aNy gy dn an, i
= NS "o "y ol
dN,
dy
an,
dx
dy |
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Where

- dN; dNy
“dx dx
dNy dNy
day ay
dN, dNy
dx dx
dNy dNy
_ day dy
dN3 dNq
dx dx
dN3 dNq
day dy
dN, dNy
dx dx
dN, dNq
day dy

dN, y 1dN, 1
dx l

ax 21
And

dN;, x 1 dN,  x dNj

G CE Ty

Then,

dN; dN, 0 dNq dN3 0 dNy dNy

“dx dx “dx dx “dx dx
dN;p dN; dNy dN3 dNy dNy
dy dy dy dy dy dy

dN, dN, dN;, dN3 dNy dNy

dx dx dx dx “dx dx
dNy dN, dN, dN3 dN3 dNy
ay dy dy dy dy dy

dN3 dN, dN3 dN3 dN3 dN,

dx dx “dx dx dx dx
dNgdN ) dNsdNy g dN3dN
dy dy dy dy dy dy

dNgdNy () dNydN3 g dNgdNs

dx dx dx dx dx dx
ANy dNz ( dNadNs o dNadNg
dy dy dy dy dy dy |

XdN3_y dN, vy

2 dx 2 dx 12

_x dN, 1 «x
U'dy 127dy | 1I2

2

dN; dN; (y 1) (y 1) Yyt 2y

dx dx \I2

e~ 7))~ Bt

www.allmultidisciplinaryjournal.com

(66)

Hence, for fl fl[B]T[B]dxdy, compute for each component in matrix in equation (68) as follows:

ffldN dN,
ffldN led p _flf

T dx ey = o Jo
flfldN led p fljl

——dxdy =
0o Jo dx 0 Jo
flfl . dN;
0 Jo dx " dx
flfldN dN,
0o Jo dy dy
flfldN dN,
0o Jo dy " dy
fl YdN; dN,
o Jo 'dy
flfldM dN,
0 Jo 'dy
flflle dn,
0 Jo " dx
flflsz dn,
0 Jo " dx
flfldN3 dN,
0 Jo " dx
flfldm dn,
0 Jo " dx
fl 1 sz
o Jo 'dy

flfldN dN,
0 Jo dy

T dx dxdy =

[[%

N; dN,
N

d
tg
=

2y 1 y?
—y——+y>dxdy—03l d

Y _ X) dxdy = —0.21"1

- l%) dxdy = —0.217!
2x 1
—+ l_2> dydx = 031!

x
- 12 dydx = 0.2

X -1
e dydx = 0.2l
x 1 x?

Z T l4>dydx—03l 1

(
(
(
(
(
(
A
dxdy = J(l—Z—l—z—}l;)dxdy_—ogll
(
(
(
(
(
(
(

L r1 1 Zy yZ

dxdy = OJO l_z_l_3_l4>dxdy_03l 1
L r1 2

dxdy = J > y—4>dxdy— 0.21°
Ol 01 : lZ

dxdy = J > y—4>dxdy— 0.21°
0 Jo \I3 1
l r1 x2 x

dydx=fofo _l_3+l_2 dydx = 0.2
l r1 x2

dydx =f f —2> dydx = 0.3l
0 Y0 l
Ll 42

dydx =f f ——3> dydx = —0.3
0 Y0 l
Lrl/ x y2

dydx=fof0 —l—2+l—3>dydx=—02
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.—dxd

[ @

ff <l———)dxdy——021 L

1dIV dN3 y Yy 1
[ 3 W‘““”‘M(zs Tty =0
IdN dN3 L r1 y2
— = —_ 1
ff T dxdy LJ;(H)dxdy 0.317
IdN dN A 1 2
ff * 22 =ff <y—4)dxdy=0.3l‘1
dx o Jo \!I
f IdN s 1yd flfl(xz x)dd 0.2
—  —dydx = —— = x = 0.
0 7o dy Y o Jo \I* P Y
flflsz dns | flf( 2>d 4 03
— X = X = —
o Jo dy Y o Jo N Y
flflsz‘ N5 d flf(xz)dd 0311
——dydx = — | dydx = 0.
o Jo dy o Yo 14
flfldN“ Ns fljl(x xz)dd 0.201
——dydx = = =77 |dydx = 0.
01 01 dy Oz 01 132 I
— - dxdy = Z —Z )dxdy = 02171
fofo dx XY LL(H JE) et
! 1dzv dN Lt ’
ff 2.—4dxdy=ff <Xg y—)dxdy—0211
0l 01 dx 0l 01 12 y
dN; dN.
ff 3.—‘*dxdy=ff <y—4)dd = 03171
0l 01 dx 0l 01 12
dN
ff—4.—4dxdy= f<y—4)dxdy=0.3l‘1
0 Jo dx 0 Jo \!
flflle dN4d 4 _flfl 2x 1 «x? dvd 0.31-1
o Jo .dyyx_oo B 13 yer=
flflsz s tya flf( . 2>dd 02
——dydx = -+t x =—0.
0 Jo dy Y 0’0 2T )Y
flfldN N vd fljl(x xz)dd 0.2
o Jo dy o Jo B
flfldN sty = ljl L2 ) yax = 0300
0Jo dy dyyx_ool2 & I Y=
So that,
03171 0 —030"* 0 —020"! 0 (2!
0 03" 0 02 0 0207t o —03t
030" 0 03I"* 0 0207' 0 020! 0
l 1 _
0 02 0 03" 0 —03 0 —02
B]T [Bldxdy = _ -
fofo[] Bldxdy =1 o211 0 020" 0 03" 0 03 o
0 020 0 —-03 0 03I"' ¢ 020
—-020"1 0 021" 0 03I 0 031! o
0 031" 0 —02 0 020" o 03!
03 0 —-03 0 —02 0 02 01
0 03 0 02/ 0 02 0 —03
. 03 0 03 0 02 0 02 0
AE{0 02l 0 03 0 —-03l 0 —0.2I
T _ o= . .
AEfOfO[B] [BldA=—1"_02 0 02 0 03 0 03 0
0 02 0 —03L 0 03 0 02
—02 0 02 0 03 0 03 0
0 03 0 —02l 0 02 0 03 -

Also, specified in the form of ‘g’ per unit length be address in similar manner by performing the integration [[N]”

0

www.allmultidisciplinaryjournal.com

qdx and

obtain {f}; thus, for a uniformly distributed force g, we can write the equivalent nodal force vector as:
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(41 — 37

4
41 -3

4
2l—-1

4
2l-1

{fic= J: J:[Ni]quxdy =q

-PIH-PI»—*-PI»—*-PIH-P‘

Now for body forces or gravity loading which is a typical body force is given bypg per-volume or pAg per- unit length, where
p is the mass density of the continuum. The equivalent nodal force vector for the distributed body force can be obtained as:

{f1= fv [N:]"lpgdxdy = jo | fo 1[M]Tlpgdxdy

That is;
r41 — 37

4
41 -3

4
2l-1

4
2l-1

l 1
{1z = f f [N;]"lpgdxdy = Ipg
0 Y0

->|H->|H->|H->|H->‘

Hence, the numerical equivalence of equation (49); that is, [k]{y} = {f} on a unit cell bases is:

r4l—3 4131

4 4

aal o

03 0 —-03 0 —02 0 02 07 (% 4 4

0 03 0 020 0 02 0 —-03 (”1} e Y

03 0 03 0 02 0 02 0 || ] I P

4610 021 0 03 0 -03lL 0 -—0.20|)Jv2( _ 4 4
7| =02 0 02 0 03 0 03 0 |Jus{ =PI 1|*9 1 (69)

0 02 0 —-031 0 03 0 02 [|Vs B :

—02 0 02 0 03 0 03 0 ||us : :

0 03 0 —020 0 02 0 03 1) 1 1

4 4

1 1

| 5 | 7

Where, the first term in equation (69) represents the stiffness matrix of the solid, the second term represents the axial and
transverse displacement vector, the third term represents body forces, and the fifth term represents concentrated load or live load.

7. Conclusion

Despite the discretization of a solid into finite element mesh. The field variables like displacement, stress, and strain can only
be determine by numerical computation from a single finite element mesh. This complex engineering problem is first formulated
as a functional, whose partial differential equivalence is obtained by a clumsy mathematical process. Then, the approximate
numerical solution of the differential equation is sort using shape functions. All these analysis is done with a single tetra-shaped
mesh; then, the assemblage into a system level is carried-out for the whole structure. Hence, any structure of any size can be
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analyze for its field variable as demonstrated here. Equation (69) is the numeral representation of Laplace equation. Simplifying
the partial differential equation into a linear equation at unit level, whose assemblage, will give a system of equation representing
the whole; making it, easier for the numerical determination of displacement if parameters like: Young modulus (E), Areas (A),
Density (p), Length (1), and the concentrated load (q) are given.
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