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Abstract 

The stability and deformation of a solid depends on the variability in its primary field 

variables, referred to as displacement field. Displacement, being the change in the 

position of particles at the atomic and sub-atomic levels within a solid; when, known, 

enables easier determination of the rate of deformation, and the force intensity within 

a solid. And the mathematical analysis of this cumbersome computational process has 

always being presented as a literature with little or no analytic details. Yes finite 

element analysis is a numeral method of solving a differential equation, a process 

where a solid of any shape is discretized into small coordinate locations in space called 

mesh, which contains nodes that represent the shape of the whole geometry. A 

structure may contain thirty thousand mesh, but its displacement field can only be 

determined by the computational analysis of a single mesh. The rest will be the 

assembling of the whole into a system. All these descriptions had always being in 

words. Here, we give a detailed mathematical analysis to this process by considering 

a unit tetra-shaped finite element mesh.
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1. Introduction 

Finite element method is a method of finding approximate solution to a wide range of problems spanning from engineering, 

biomechanical, stress distribution, and heat conduction capabilities of a solid. The analysis is usually achieved by discretizing 

the structural material into smaller geometric unit called mesh, which enables the determination of the field variable such as 

displacement, stress, strain and the general material response to load at unit bases. The generic applicability of finite element 

method to science and engineering makes it useful to scholars and researchers, who depend on it for solving complex partial 

differential equations generated from structural analyses. 

Notable publication in this area are [1], finite element analysis and light weight optimization design on main frame structure of 

large electrostatic precipitator [2]. Worked, on finite element analysis of two different dental implants; stress distribution in the 

prosthesis, abutment, implant, and supporting bones. Discussion on the evaluation of parameters of an osseo-integrated dental 

implants using finite element analysis, a two-dimensional comparative study, examining the effects of implant was carried out 

in [3]. While [4, 11] addressed, finite element stress analysis of dental prostheses supported by straight and angle implant. The 

influence of restoration type on stress distribution in bone around implants a three-dimensional finite analysis was solved in [5]. 

Also, three-dimensional finite element analysis of biomechanical behaviors of implants with different connections, lengths, and 

diameters placed in the maxillary was discussed in [6, 12, 13]. 

Even in civil and structural engineering, finite element analysis is used to determine the structural integrity before the foundations 

are laid [7, 8, 9, 10]. In all these applications of finite element analysis in different fields of studies, its fundamentals, still lies in the 

mathematical analysis of the unit element, whose details had not been reported in literature. Here, in this paper we give an 

explicit mathematical analysis of the finite element problem solving process by considering ‘’a tetra-shaped mesh’’ of a 

discretized solid under concentrated load. 
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2. Problem Formulation 

A cross-sectional area A, of a concrete wall is discretized into nth-thousand mesh of 𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 centimeter each. Suppose the 

wall is subjected to concentrated load 𝑞 , and is under the influence of body forces. As shown in Figure 1. Here, we wish to 

determine the mathematical computational principle of finite element analysis, in determining the primary field variable 

(displacement) of the wall. 

 

 
 

Fig 1: A discretized concrete wall 
 

3. Mathematical Formulations 

The deformation, and stationarity of a continuum is determined by the variation in the displacement field of its functional. The 

functional in the case of a solid body will be derived from its elastic property [14]. Mathematically defined as: 

 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝐸) =
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
  (1) 

 

where 

𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
=

𝐹

𝐴
  (2) 

and 

 

𝑆𝑡𝑟𝑎𝑖𝑛 =
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝐿𝑒𝑛𝑔𝑡ℎ
=

𝑒

𝑙
  (3) 

 

From equation (2) and (3), we can rewrite equation (1) analytically as: 

 

𝐸 =
𝐹𝑙

𝐴𝑒
  (4) 

 

𝐹𝑙 = 𝐴𝐸𝑒 = 𝐴𝐸
𝑑𝑢

𝑑𝑥
 (5) 

Where u is the displacement caused by the extension along the 𝑥, 𝑎𝑛𝑑 𝑦 − 𝑎𝑥𝑖𝑠 for a two dimensional body. Hence, the strain 

energy stored in a solid, is describe as a kinetic energy, due to the continuous displacement of it atomic and sub-atomic particles. 

This takes the form analytically [15] as 

 

𝐾. 𝑒 = 1 2⁄ 𝐴𝐸 (
𝑑𝑢

𝑑𝑥
)
2

  (6) 

and 

𝐾. 𝑒 = 1
2⁄ 𝐴𝐸 (

𝑑𝑢

𝑑𝑦
)
2

  (7) 

 

respectively for the 𝑥, 𝑎𝑛𝑑 𝑦 −directions for two dimensional bodies. 

If the body is subjected to external load 𝑞; then, the functional(F) of the continuum is equivalent to the strain energy plus the 

external load times displacement. That is, 

 

𝐹 = 1 2⁄ 𝐴𝐸 (
𝑑𝑢

𝑑𝑥
)
2

− 𝑞𝑢  (8) 

And 

 

𝐹 = 1 2⁄ 𝐴𝐸 (
𝑑𝑢

𝑑𝑦
)
2

− 𝑞𝑢  (9) 
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4. Condition for Extrema 

The necessary condition for a solid to deform or remain stationary, is equivalent to finding a differential equation that represents 

the functional (F). This condition is achieved by using calculus of variation to determine the displacement field of the functional. 

Calculus of variation deals primarily with finding maximum or minimum value of a definite integral involving a functional [16, 

17]. A simple example of a functional is the shortest distance of a curve through two points 𝑎(𝑥1, 𝑢𝑎) 𝑎𝑛𝑑 𝑏(𝑥2, 𝑢𝑏), which a 

displaced particle can travel within a solid shown in Figure 2 and mathematically represented by (10). 

 

 
 

Fig 2: Displacement Part-lines Travelled by Particle within a Solid 
 

𝐼[𝑢(𝑥)] = ∫ 𝐹 (𝑢,
𝑑𝑢

𝑑𝑥
, 𝑥) 𝑑𝑥 

𝑏

𝑎
  (10) 

 

𝑢̅(𝑥) = 𝑢(𝑥) + 𝜀  (11) 

 

where 𝜀 is a small parameter, and the difference between 𝑢̅(𝑥) 𝑎𝑛𝑑 𝑢(𝑥) is called the variation in the displacement field 𝑢(𝑥); 
denoted by, 

 

𝛿𝑢(𝑥) = 𝑢̅(𝑥) − 𝑢(𝑥)  (12) 

 

The difference between 𝑑𝑢 𝑎𝑛𝑑 𝛿𝑢 at a given point 𝑥: 
The variation 𝛿𝑢 refers to the difference between 𝑢̅(𝑥) 𝑎𝑛𝑑 𝑢(𝑥); while, 𝑑𝑢 refers to the incremental change in 𝑢(𝑥) 𝑎𝑠 𝑥 

changes to 𝑥 + 𝑑𝑥 

and we define 

 

𝛿(𝑢′) = 𝑢̅′(𝑥) − 𝑢′(𝑥) = [𝛿𝑢]′  (13) 

 

Where ( )′ denotes differentiation with respect to 𝑥. 

For a given 𝑥, as we move from 𝑢(𝑥) 𝑡𝑜 𝑢̅(𝑥); following figure 2, 

 

∆𝐹 = 𝐹(𝑢̅, 𝑢′̅, 𝑥) − 𝐹(𝑢, 𝑢′𝑥) = 𝐹(𝑢 + 𝛿𝑢, 𝑢′ + 𝛿𝑢′, 𝑥) − 𝐹(𝑢, 𝑢′𝑥)  (14) 

 

expanding the first term in equation (14) by Taylor series [18]; we get, 

 

𝐹(𝑢 + 𝛿𝑢, 𝑢′ + 𝛿𝑢′, 𝑥) = 𝐹(𝑢, 𝑢′𝑥) + (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′) 

 +
1

2!
(
𝜕2𝐹

𝜕𝑢2
𝛿𝑢2 + 2

𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′2
𝛿𝑢′2)  (15) 

hence 

∆𝐹 = (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′) +

1

2!
(
𝜕2𝐹

𝜕𝑢2
𝛿𝑢2 + 2

𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′2
𝛿𝑢′2)  (16)  

The first variation of F is defined as: 
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𝛿𝐹 =
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′ (17) 

and the second variation of F is: 

 

𝛿2𝐹 =
𝜕2𝐹

𝜕𝑢2
𝛿𝑢2 + 2

𝜕2𝐹

𝜕𝑢𝜕𝑢′
𝛿𝑢𝛿𝑢′ +

𝜕2𝐹

𝜕𝑢′
2 𝛿𝑢

′2  (18) 

 

So that,  

 

∆𝐹 = 𝛿𝐹 +
1

2!
𝛿2𝐹 +⋯+

1

𝑛!
𝛿𝑛𝐹  (19) 

 

Studying what happens to the variation 𝐼, in the neighbourhood of 𝑢(𝑥); that is, 

 

∆𝐼 = 𝐼(𝑢̅, 𝑢̅′, 𝑥) − 𝐼(𝑢, 𝑢′𝑥) = ∫ 𝐹(𝑢̅, 𝑢̅′, 𝑥)𝑑𝑥 − ∫ 𝐹(𝑢, 𝑢′𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
  (20) 

 

∫ ∆𝐹
𝑏

𝑎
𝑑𝑥 = ∫ (𝛿𝐹 +

1

2!
𝛿2𝐹 +⋯)

𝑏

𝑎
𝑑𝑥  (21) 

 

Then, the first variation of the functional within the solid is defined by: 

 

𝛿𝐼 = ∫ 𝛿𝐹
𝑏

𝑎
𝑑𝑥  (22) 

 

and the second variation is given as: 

 

𝛿2𝐼 = ∫ 𝛿2
𝑏

𝑎
𝐹𝑑𝑥  (23) 

 

So that 

∆𝐼 = 𝛿𝐼 +
1

2!
𝛿2𝐼  (24) 

 

If 𝐼 represents the total potential of the structure, and we are searching for a stable equilibrium configuration; then, we wish to 

find 𝑢(𝑥) that minimizes the variation 𝐼. Since 𝑢(𝑥), minimizes 𝐼; then, ∆𝐼 → 0,𝑤ℎ𝑒𝑛 𝑢̅(𝑥) = 𝑢(𝑥). Then 𝐼 attains a minimum 
[17]. 

From equation (17) and (22); we have, 

 

𝛿𝐼 = ∫ (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′)

𝑏

𝑎
𝑑𝑥 (25) 

 

Recall from equation (13); that is, 

 

𝛿(𝑢′) = (𝛿𝑢′) =
𝑑

𝑑𝑥
𝛿𝑢  (26) 

 

Substituting for the second term in equation (25) with equation (26); we have, 

 

𝛿𝐼 = ∫ (
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′

𝑑

𝑑𝑥
𝛿𝑢)

𝑏

𝑎
𝑑𝑥  (27) 

 

 

We then isolate the second term in equation (27) for further analysis. 

 

∫
𝜕𝐹

𝜕𝑢′

𝑑

𝑑𝑥

𝑏

𝑎
𝛿𝑢𝑑𝑥 = ∫

𝜕𝐹

𝜕𝑢′
𝑑(𝛿𝑢)

𝑏

𝑎
  (28) 

 

Performing integration by part on the second term of equation (28); we get, 

 

∫
𝜕𝐹

𝜕𝑢′
𝑑(𝛿𝑢)

𝑏

𝑎
= [

𝜕𝐹

𝜕𝑢′
𝛿𝑢]

𝑎

𝑏

− ∫ (𝛿𝑢)
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) 𝑑𝑥 

𝑏

𝑎
  (29) 

 

Considering the boundary values 𝛿𝑢(𝑎) = 𝛿𝑢(𝑏) = 0, since the end-points are usually fixed. Leaving equation (29) as, 

 

∫
𝜕𝐹

𝜕𝑢′
𝑑(𝛿𝑢)

𝑏

𝑎
= −∫ (𝛿𝑢)

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) 𝑑𝑥

𝑏

𝑎
  (30) 

 

Hence, replacing the second term of equation (27) with the second term of equation (30); we have, 
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𝛿𝐼 = ∫ (
𝜕𝐹

𝜕𝑢
𝛿𝑢𝑑𝑥 − (𝛿𝑢)

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) 𝑑𝑥)

𝑏

𝑎
  (31) 

 

Factoring out the common terms from equation (31); gives, 

 

𝛿𝐼 = ∫ (
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
)) 𝛿𝑢𝑑𝑥 

𝑏

𝑎
  (32) 

 

𝑢(𝑥) minimizes 𝐼 when 𝑢̅(𝑥) = 𝑢(𝑥);  implying, 𝛿𝐼 = 0. Making equation (32) 

 
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) = 0  (33) 

  

Equation (33) is the famous Euler-Lagrange equation of solid mechanics [15]. Which is the necessary condition for a continuum 

to be stationary. 

The principle of stationary total potential (PSTP), describing the equilibrium configuration of a solid states, that the problem of 

finding 𝑢(𝑥), that makes 𝐼 stationary with respect to small variation in 𝑢(𝑥), is equivalent to the problem of finding 𝑢(𝑥) that 

satisfies the governing differential equation for the problem [15 ] Hence we use equation (33) to convert the functional equation 

(equation (8)) into a governing differential equation as follows: 

Differentiating the functional equation 𝐹 =
1

2
𝐴𝐸 (

𝑑𝑢′

𝑑𝑥
)
2

− 𝑞𝑢, with respect to u; that is, 

 
𝜕𝐹

𝜕𝑢
= −𝑞  (34) 

 

also, differentiating the functional equation 𝐹 =
1

2
𝐴𝐸 (

𝑑𝑢

𝑑𝑥
)
2

− 𝑞𝑢, with respect to 𝑢′; we have, 

 
𝜕𝐹

𝜕𝑢′
= 𝐴𝐸

𝑑𝑢

𝑑𝑥
  (35) 

 

Substituting equation (34) and (35) into 
𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢′
) = 0, to obtain the differential equation of the functional equivalence as: 

 

−𝑞 −
𝑑

𝑑𝑥
(𝐴𝐸

𝑑𝑢

𝑑𝑥
) = 0 

 

resulting to, 

 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞 = 0  (36) 

 

and by a similar procedure; we have, 

𝐴𝐸
𝑑2𝑢

𝑑𝑦2
+ 𝑞 = 0  (37) 

 

Equation (36) and (37) is a 1-dimensional governing differential equation representing the functional in 𝑥 and 𝑦 directions while 

the 2-dimensional case is obtained by summing equation (36) and (37). That is, 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
+ 𝑞 + 𝐴𝐸

𝑑2𝑢

𝑑𝑦2
− 𝑞 = 0 

 

Leading to a Laplace equation of the form;  

 

𝐴𝐸 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) = 0  (38) 

 

5. Finite Element Method 

For computational purpose, let the displacement 𝑢(𝑥, 𝑦) be denoted by 𝜓(𝑥, 𝑦). 
So that equation (38) can be rewritten as;  

 

𝐴𝐸 (
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
) = 0  (39) 

 

and the weak form of equation (39) becomes 

 

𝐴𝐸∬𝑊 (
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
) 𝑑𝐴 = 0  (40) 
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by integration by parts, the first term in the bracket becomes, 

∫ 𝑊
𝑑2𝜓

𝑑𝑥2

𝑥𝑢
𝑥𝑙

𝑑𝑥 = (𝑊
𝑑𝜓

𝑑𝑥
)
𝑥𝑙

𝑥𝑢
− ∫

𝑑𝑊

𝑑𝑥

𝑥𝑢
𝑥𝑙

𝑑𝜓

𝑑𝑥
𝑑𝑥  (41) 

 

On a similar lines, we write (using the Green Gauss Theorem) 

 

∬𝑊
𝜕2𝜓

𝜕𝑥2
𝑑𝐴 = ∫ (𝑊

𝜕𝜓

𝜕𝑥
)
𝑥𝑙

𝑥𝑢𝑦𝑢
𝑦𝑙

𝑑𝑦 −∬
𝜕𝑊

𝜕𝑥

𝜕𝜓

𝜕𝑥
𝑑𝐴  (42) 

 

The general interpretation of 𝑥𝑙 , 𝑥𝑢 , 𝑎𝑛𝑑 𝑦𝑙 , 𝑦𝑢; [15] .Therefore,  

 

𝑑𝑦 = ±𝑙𝑥𝑑𝑠  (43) 

 

where 𝑙𝑥 is the direction cosine of the out-ward normal 𝑛 ⃗⃗  ⃗ , 𝑎𝑛𝑑 ± is introduced to take care of both ends. 

 

∫ (𝑊
𝜕𝜓

𝜕𝑥
)
𝑥𝑙

𝑥𝑢
𝑑𝑦 = ∮𝑊

𝜕𝜓

𝜕𝑥
𝑙𝑥𝑑𝑠 

𝑦𝑢
𝑦𝑙

  

 (44) 

Replacing the second term of equation (42) with equation (44); we get, 

 

∬𝑊
𝜕2𝜓

𝜕𝑥2
𝑑𝐴 = −∬

𝜕𝑊

𝜕𝑥

𝜕𝜓

𝜕𝑥
𝑑𝐴 + ∮𝑊

𝜕𝜓

𝜕𝑥
𝑙𝑥𝑑𝑠  (45) 

 

and by a similar procedure; we have, 

 

∬𝑊
𝜕2𝜓

𝜕𝑦2
𝑑𝐴 = −∬

𝜕𝑊

𝜕𝑦

𝜕𝜓

𝜕𝑦
𝑑𝐴 + ∮𝑊

𝜕𝜓

𝜕𝑦
𝑙𝑦𝑑𝑠  (46) 

hence 

 

𝐴𝐸∬𝑊(
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
)𝑑𝐴 = 𝐴𝐸 [−∬(

𝜕𝑊

𝜕𝑥

𝜕𝜓

𝜕𝑥
+
𝜕𝑊

𝜕𝑦

𝜕𝜓

𝜕𝑦
) 𝑑𝐴 + ∮𝑊

𝜕𝜓

𝜕𝑥
𝑙𝑥𝑑𝑠 + ∮𝑊

𝜕𝜓

𝜕𝑦
𝑙𝑦𝑑𝑠 ] = 0 

Therefore 

𝐴𝐸∬(
𝜕𝑊

𝜕𝑥

𝜕𝜓

𝜕𝑥
+
𝜕𝑊

𝜕𝑦

𝜕𝜓

𝜕𝑦
) 𝑑𝐴 = 𝐴𝐸∮𝑊 (

𝜕𝜓

𝜕𝑥
𝑙𝑥 +

𝜕𝜓

𝜕𝑦
𝑙𝑦) 𝑑𝑠 = 𝐴𝐸∮𝑊 (

𝜕𝜓

𝜕𝑛
) 𝑑𝑠  

 

 

𝐴𝐸∬(
𝜕𝑊

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝑊

𝜕𝑦

𝜕𝜓

𝜕𝑦
) 𝑑𝐴 = 𝐴𝐸 ∮𝑊 (

𝜕𝜓

𝜕𝑛
) 𝑑𝑠  (47) 

 

(𝐴𝐸∬[𝐵]𝑇 [𝐵]𝑑𝐴){𝜓} = 𝐴𝐸 ∮[𝑁]𝑇 (
𝜕𝜓

𝜕𝑛
) 𝑑𝑠  (48) 

 
[𝑘]{𝜓} = {𝑓}  (49) 

 

Where the stiffness matrix, 

 

[𝑘] = 𝐴𝐸∬[𝐵]𝑇 [𝐵]𝑑𝐴 

 

and the loading force, 

 

{𝑓} = 𝐴𝐸∮[𝑁]𝑇 (
𝜕𝜓

𝜕𝑛
) 𝑑𝑠 

 

Then, for the entire finite element mesh; we have, 

 

𝐴𝐸 ∑ (∬[𝐵]𝑇 [𝐵]𝑑𝐴)𝑁𝐸𝐿𝐸𝑀
1 {𝜓} = 𝐴𝐸 ∑ ∮[𝑁]𝑇 (

𝜕𝜓

𝜕𝑛
) 𝑑𝑠𝑁𝐸𝐿𝐸𝑀

1   (50) 

 

where [N] and [𝑁]𝑇 are the shape function matrix and its transpose respectively. [B] and [𝐵]𝑇 are the derivatives of the shape 

function while {𝜓} is the displacement vector. 

Note: In the Galerkin formulation, we use the same shape function as the weight function (𝑊 = 𝑁) [15]. 
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6. Computation of Shape Function 

 

 
 

Fig 3: Displacement Distribution in Rectangular Mesh. 
 

Let the axial and transverse displacement in the quadrilateral be represented by 𝑢 𝑎𝑛𝑑 𝑣 respectively. 

Here, the unknown field variables vary independently along two directions. Hence, we assume that the displacement field over 

the mesh is given by: 

 

𝑢(𝑥, 𝑦) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑥𝑦  (51) 

 

and 

𝑣(𝑥, 𝑦) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑥𝑦  (52) 

 

Thus, for the rectangular element of size (𝑙 × ℎ). On computation; we have, 

𝑢1 = 𝐶0  (53) 

 

𝑢2 = 𝐶0 + 𝐶1𝑙  (54) 

 

𝑢3 = 𝐶0 + 𝐶1𝑙 + 𝐶2ℎ + 𝐶3𝑙ℎ  (55) 

 

𝑢4 = 𝐶0 + 𝐶4ℎ  (56) 

 

Solving for, 𝐶𝑜, 𝐶1,  𝐶2, 𝑎𝑛𝑑 𝐶3; we have, 

 

𝐶0 = 𝑢1  (57) 

 

𝐶1 =
𝑢2−𝑢1

𝑙
  (58) 

 

𝐶2 =
𝑢4−𝑢1

ℎ
  (59) 

 

𝐶3 =
𝑢3+𝑢1−𝑢2−𝑢4

𝑙ℎ
  (60) 

 

Substituting for, 𝐶𝑜, 𝐶1,  𝐶2, 𝑎𝑛𝑑 𝐶3; in equation (51); we have, 

 

𝑢(𝑥, 𝑦) = 𝑢1 + (
𝑢2−𝑢1

𝑙
) 𝑥 + (

𝑢4−𝑢1

ℎ
) 𝑦 + (

𝑢3+𝑢1−𝑢2−𝑢4

𝑙ℎ
) 𝑥𝑦  (61) 

 

by expanding and grouping like terms; we have, 

 

𝑢(𝑥, 𝑦) = (1 −
𝑥

𝑙
−

𝑦

ℎ
+

𝑥𝑦

𝑙ℎ
) 𝑢1 + (

𝑥

𝑙
−

𝑥𝑦

𝑙ℎ
) 𝑢2 + (

𝑥𝑦

𝑙ℎ
) 𝑢3 + (

𝑦

ℎ
−

𝑥𝑦

𝑙ℎ
) 𝑢4  (62) 

 

In standard finite element notation equation (62) is written as: 

 

𝑢(𝑥, 𝑦) = [𝑁1, 𝑁2, 𝑁3, 𝑁4] {

𝑢1
𝑢2
𝑢3
𝑢4

}  (63) 
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By a similar procedure; we have 

𝑣(𝑥, 𝑦) = [𝑁1, 𝑁2, 𝑁3, 𝑁4] {

𝑣1
𝑣2
𝑣3
𝑣4

}  (64) 

where 

𝑁1 = 1 −
𝑥

𝑙
−
𝑦

ℎ
+
𝑥𝑦

𝑙ℎ
 

 

𝑁2 =
𝑥

𝑙
−
𝑥𝑦

𝑙ℎ
 

 

𝑁3 =
𝑥𝑦

𝑙ℎ
 

 

𝑁4 =
𝑦

ℎ
−
𝑥𝑦

𝑙ℎ
 

 

Hence, 𝑁𝑖 is the shape function, describing the uniform distribution of the displacement field. Since Figure 1; is used to model 

structural mechanics problems, each node will have two degrees of freedom viz: 𝑢 𝑎𝑛𝑑 𝑣; hence, we can write the displacement 

field, using the shape functions derived in equation (63) and (64) as: 

 

[𝑁𝑖]{𝜓} = [𝑁𝑖] {
𝑢𝑖
𝑣𝑖
} = [

𝑁1 
0

0 
𝑁1

𝑁2 
0

0 
𝑁2

𝑁3 
0

0 
𝑁3

𝑁4 
0

0
𝑁4
]

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

  (65) 

 

And 

[
 
 
 
𝑑𝑁𝑖
𝑑𝑥
𝑑𝑁𝑖
𝑑𝑦 ]

 
 
 

= [𝐵] =

[
 
 
 
𝑑𝑁1
𝑑𝑥

 0 
𝑑𝑁2
𝑑𝑥

 0 
𝑑𝑁3
𝑑𝑥

 0 
𝑑𝑁4
𝑑𝑥

 0

0 
𝑑𝑁1
𝑑𝑦

 0 
𝑑𝑁2
𝑑𝑦

 0 
𝑑𝑁3
𝑑𝑦

 0 
𝑑𝑁4
𝑑𝑦 ]

 
 
 

 

 

then;  

[𝐵]𝑇[𝐵] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑁1
𝑑𝑥

0

0
𝑑𝑁1
𝑑𝑦

𝑑𝑁2
𝑑𝑥

0

0
𝑑𝑁2
𝑑𝑦

𝑑𝑁3
𝑑𝑥

0

0
𝑑𝑁3
𝑑𝑦

𝑑𝑁4
𝑑𝑥

0

0
𝑑𝑁4
𝑑𝑦 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
𝑑𝑁1
𝑑𝑥

 0 
𝑑𝑁2
𝑑𝑥

 0 
𝑑𝑁3
𝑑𝑥

 0 
𝑑𝑁4
𝑑𝑥

 0

0 
𝑑𝑁1
𝑑𝑦

 0 
𝑑𝑁2
𝑑𝑦

 0 
𝑑𝑁3
𝑑𝑦

 0 
𝑑𝑁4
𝑑𝑦 ]
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 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑁1

𝑑𝑥

𝑑𝑁1

𝑑𝑥
0

𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
0

𝑑𝑁1

𝑑𝑥

𝑑𝑁3

𝑑𝑥
0

𝑑𝑁1

𝑑𝑥

𝑑𝑁4

𝑑𝑥
 0

 0  
𝑑𝑁1

𝑑𝑦

𝑑𝑁1

𝑑𝑦
0

𝑑𝑁1

𝑑𝑦

𝑑𝑁2

𝑑𝑦
0

𝑑𝑁1

𝑑𝑦

𝑑𝑁3

𝑑𝑦
0

𝑑𝑁1

𝑑𝑦

𝑑𝑁4

𝑑𝑦

 
𝑑𝑁2

𝑑𝑥

𝑑𝑁1

𝑑𝑥
0

𝑑𝑁2

𝑑𝑥

𝑑𝑁2

𝑑𝑥
0

𝑑𝑁2

𝑑𝑥

𝑑𝑁3

𝑑𝑥
0

𝑑𝑁2

𝑑𝑥

𝑑𝑁4

𝑑𝑥
0

 0
𝑑𝑁2

𝑑𝑦

𝑑𝑁1

𝑑𝑦
0

𝑑𝑁2

𝑑𝑦

𝑑𝑁2

𝑑𝑦
0

𝑑𝑁2

𝑑𝑦

𝑑𝑁3

𝑑𝑦
0  

𝑑𝑁2

𝑑𝑦

𝑑𝑁4

𝑑𝑦

 
𝑑𝑁3

𝑑𝑥

𝑑𝑁1

𝑑𝑥
0

𝑑𝑁3

𝑑𝑥

𝑑𝑁2

𝑑𝑥
0

𝑑𝑁3

𝑑𝑥

𝑑𝑁3

𝑑𝑥
0

𝑑𝑁3

𝑑𝑥

𝑑𝑁4

𝑑𝑥
 0

 0
𝑑𝑁3

𝑑𝑦

𝑑𝑁1

𝑑𝑦
0

𝑑𝑁3

𝑑𝑦

𝑑𝑁2

𝑑𝑦
0

𝑑𝑁3

𝑑𝑦

𝑑𝑁3

𝑑𝑦
0

𝑑𝑁3

𝑑𝑦

𝑑𝑁4

𝑑𝑦

𝑑𝑁4

𝑑𝑥

𝑑𝑁1

𝑑𝑥
0

𝑑𝑁4

𝑑𝑥

𝑑𝑁2

𝑑𝑥
0

𝑑𝑁4

𝑑𝑥

𝑑𝑁3

𝑑𝑥
0

𝑑𝑁4

𝑑𝑥

𝑑𝑁4

𝑑𝑥
0

 0
𝑑𝑁4

𝑑𝑦

𝑑𝑁1

𝑑𝑦
0

𝑑𝑁4

𝑑𝑦

𝑑𝑁2

𝑑𝑦
0

𝑑𝑁4

𝑑𝑦

𝑑𝑁3

𝑑𝑦
0

𝑑𝑁4

𝑑𝑦

𝑑𝑁4

𝑑𝑦

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 

  (66) 

Where  
𝑑𝑁1
𝑑𝑥

=
𝑦

𝑙2
−
1

𝑙
,
𝑑𝑁2
𝑑𝑥

=
1

𝑙
−
𝑦

𝑙2
,
𝑑𝑁3
𝑑𝑥

=
𝑦

𝑙2
,
𝑑𝑁4
𝑑𝑥

=
𝑦

𝑙2
 

And 
𝑑𝑁1
𝑑𝑦

=
𝑥

𝑙2
−
1

𝑙
,
𝑑𝑁2
𝑑𝑦

= −
𝑥

𝑙
,
𝑑𝑁3
𝑑𝑦

=
𝑥

𝑙2
,
𝑑𝑁4
𝑑𝑦

=
1

𝑙
−
𝑥

𝑙2
 

Then, 

𝑑𝑁1
𝑑𝑥

.
𝑑𝑁1
𝑑𝑥

= (
𝑦

𝑙2
−
1

𝑙
) (
𝑦

𝑙2
−
1

𝑙
) =

𝑦2

𝑙4
−
2𝑦

𝑙3
+
1

𝑙2
 

Hence, for ∫ ∫ [𝐵]𝑇[𝐵]𝑑𝑥𝑑𝑦
1

0

𝑙

0
, compute for each component in matrix in equation (68) as follows: 

∫ ∫
𝑑𝑁1
𝑑𝑥

.
𝑑𝑁1
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
−
2𝑦

𝑙3
+
1

𝑙2
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑥

.
𝑑𝑁1
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
2𝑦

𝑙3
−
1

𝑙2
+
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑥

.
𝑑𝑁1
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
−
𝑦

𝑙3
)

1

0

𝑑𝑥𝑑𝑦 = −0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑥

.
𝑑𝑁1
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
−
𝑦

𝑙3
)

1

0

𝑑𝑥𝑑𝑦 = −0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑦

.
𝑑𝑁1
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥2

𝑙4
−
2𝑥

𝑙3
+
1

𝑙2
)

1

0

𝑑𝑦𝑑𝑥 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑦

.
𝑑𝑁1
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥2

𝑙3
+
𝑥

𝑙2
)

1

0

𝑑𝑦𝑑𝑥 = 0.2
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑦

.
𝑑𝑁1
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥2

𝑙4
−
𝑥

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑦

.
𝑑𝑁1
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
2𝑥

𝑙2
−
1

𝑙2
−
𝑥2

𝑙4
)

1

0

𝑑𝑦𝑑𝑥 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑥

.
𝑑𝑁2
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
2𝑦

𝑙3
−
1

𝑙2
−
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = −0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑥

.
𝑑𝑁2
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
1

𝑙2
−
2𝑦

𝑙3
−
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑥

.
𝑑𝑁2
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦

𝑙3
−
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑥

.
𝑑𝑁2
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦

𝑙3
−
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑦

.
𝑑𝑁2
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥2

𝑙3
+
𝑥

𝑙2
)

1

0

𝑑𝑦𝑑𝑥 = 0.2
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑦

.
𝑑𝑁2
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥2

𝑙2
)

1

0

𝑑𝑦𝑑𝑥 = 0.3𝑙
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑦

.
𝑑𝑁2
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥2

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = −0.3
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑦

.
𝑑𝑁2
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥

𝑙2
+
𝑥2

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = −0.2
𝑙

0
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∫ ∫
𝑑𝑁1
𝑑𝑥

.
𝑑𝑁3
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
−
𝑦

𝑙3
)

1

0

𝑑𝑥𝑑𝑦 = −0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑥

.
𝑑𝑁3
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦

𝑙3
−
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑥

.
𝑑𝑁3
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑥

.
𝑑𝑁3
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑦

.
𝑑𝑁3
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥2

𝑙4
−
𝑥

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑦

.
𝑑𝑁3
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥2

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = −0.3
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑦

.
𝑑𝑁3
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥2

𝑙4
)

1

0

𝑑𝑦𝑑𝑥 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑦

.
𝑑𝑁3
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥

𝑙3
−
𝑥2

𝑙4
)

1

0

𝑑𝑦𝑑𝑥 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑥

.
𝑑𝑁4
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
−
𝑦

𝑙3
)

1

0

𝑑𝑥𝑑𝑦 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑥

.
𝑑𝑁4
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦

𝑙3
−
𝑦2

𝑦4
)

1

0

𝑑𝑥𝑑𝑦 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑥

.
𝑑𝑁4
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑥

.
𝑑𝑁4
𝑑𝑥

1

0

𝑑𝑥𝑑𝑦
𝑙

0

= ∫ ∫ (
𝑦2

𝑙4
)

1

0

𝑑𝑥𝑑𝑦 = 0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁1
𝑑𝑦

.
𝑑𝑁4
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
2𝑥

𝑙3
−
1

𝑙4
−
𝑥2

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = −0.3𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁2
𝑑𝑦

.
𝑑𝑁4
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (−
𝑥

𝑙2
+
𝑥2

𝑙3
)

1

0

𝑑𝑦𝑑𝑥 = −0.2
𝑙

0

 

∫ ∫
𝑑𝑁3
𝑑𝑦

.
𝑑𝑁4
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
𝑥

𝑙3
−
𝑥2

𝑙4
)

1

0

𝑑𝑦𝑑𝑥 = 0.2𝑙−1
𝑙

0

 

∫ ∫
𝑑𝑁4
𝑑𝑦

.
𝑑𝑁4
𝑑𝑦

1

0

𝑑𝑦𝑑𝑥
𝑙

0

= ∫ ∫ (
1

𝑙2
−
2𝑥

𝑙3
+
𝑥2

𝑙4
)

1

0

𝑑𝑦𝑑𝑥 = 0.3𝑙−1
𝑙

0

 

So that, 

∫ ∫ [𝐵]𝑇
1

0

[𝐵]𝑑𝑥𝑑𝑦
𝑙

0

=

[
 
 
 
 
 
 
 
 
0.3𝑙−1  0 −0.3𝑙−1 0 −0.2𝑙−1 0 0.2𝑙−1 0
 0  0.3𝑙−1 0 0.2 0 0.2𝑙−1 0 −0.3𝑙−1

0.3𝑙−1 0 0.3𝑙−1 0 0.2𝑙−1 0 0.2𝑙−1 0
0  0.2 0 0.3𝑙−1 0 −0.3 0 −0.2

−0.2𝑙−1 0 0.2𝑙−1 0 0.3𝑙−1 0 0.3𝑙−1 0
0  0.2𝑙−1 0 −0.3 0 0.3𝑙−1 0 0.2𝑙−1

−0.2𝑙−1 0 0.2𝑙−1 0 0.3𝑙−1 0 0.3𝑙−1 0
0 0.3𝑙−1 0 −0.2 0 0.2𝑙−1 0 0.3𝑙−1 ]

 
 
 
 
 
 
 
 

 

 

 

𝐴𝐸∫ ∫ [𝐵]𝑇
1

0

[𝐵]𝑑𝐴
𝑙

0

=
𝐴𝐸

𝑙

[
 
 
 
 
 
 
 

 

0.3  0 −0.3 0 −0.2 0 0.2 0
 0  0.3 0 0.2𝑙 0 0.2 0  −0.3
0.3 0 0.3 0 0.2 0 0.2  0

0  0.2𝑙 0 0.3 0 −0.3𝑙 0 −0.2𝑙
−0.2 0 0.2 0 0.3 0 0.3 0
0  0.2 0 −0.3𝑙 0 0.3 0 0.2
−0.2 0 0.2 0 0.3 0 0.3  0
0 0.3 0 −0.2𝑙 0 0.2 0  0.3 ]

 
 
 
 
 
 
 

 

 

Also, specified in the form of ‘𝑞’ per unit length be address in similar manner by performing the integration ∫[𝑁]𝑇 𝑞𝑑𝑥 and 

obtain {𝑓}; thus, for a uniformly distributed force 𝑞, we can write the equivalent nodal force vector as: 
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{𝑓}𝐶 = ∫ ∫ [𝑁𝑖]
𝑇𝑞𝑑𝑥𝑑𝑦 = 𝑞

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4𝑙 − 3

4
4𝑙 − 3

4
2𝑙 − 1

4
2𝑙 − 1

4
1

4
1

4
1

4
1

4 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

0

𝑙

0

 

 

Now for body forces or gravity loading which is a typical body force is given by𝜌𝑔 per-volume or 𝜌𝐴𝑔 per- unit length, where 

𝜌 is the mass density of the continuum. The equivalent nodal force vector for the distributed body force can be obtained as: 

{𝑓} = ∫ [𝑁𝑖]
𝑇𝑙𝜌𝑔𝑑𝑥𝑑𝑦 = ∫ ∫ [𝑁𝑖]

𝑇𝑙𝜌𝑔𝑑𝑥𝑑𝑦
1

0

𝑙

0𝑣

 

That is;  

{𝑓}𝐵 = ∫ ∫ [𝑁𝑖]
𝑇𝑙𝜌𝑔𝑑𝑥𝑑𝑦

1

0

𝑙

0

= 𝑙𝜌𝑔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4𝑙 − 3

4
4𝑙 − 3

4
2𝑙 − 1

4
2𝑙 − 1

4
1

4
1

4
1

4
1

4 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Hence, the numerical equivalence of equation (49); that is, [𝑘]{𝜓} = {𝑓} on a unit cell bases is: 

 

𝐴𝐸

𝑙

[
 
 
 
 
 
 
 

 

0.3  0 −0.3 0 −0.2 0 0.2 0
 0  0.3 0 0.2𝑙 0 0.2 0  −0.3
0.3 0 0.3 0 0.2 0 0.2  0

0  0.2𝑙 0 0.3 0 −0.3𝑙 0 −0.2𝑙
−0.2 0 0.2 0 0.3 0 0.3 0
0  0.2 0 −0.3𝑙 0 0.3 0 0.2
−0.2 0 0.2 0 0.3 0 0.3  0
0 0.3 0 −0.2𝑙 0 0.2 0  0.3 ]

 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

= 𝑙𝜌𝑔

[
 
 
 
 
 
 
 
 
 
 
 
 
4𝑙−3

4
4𝑙−3

4
2𝑙−1

4
2𝑙−1

4
1

4
1

4
1

4
1

4 ]
 
 
 
 
 
 
 
 
 
 
 
 

+ 𝑞

[
 
 
 
 
 
 
 
 
 
 
 
 
4𝑙−3

4
4𝑙−3

4
2𝑙−1

4
2𝑙−1

4
1

4
1

4
1

4
1

4 ]
 
 
 
 
 
 
 
 
 
 
 
 

  (69) 

 

Where, the first term in equation (69) represents the stiffness matrix of the solid, the second term represents the axial and 

transverse displacement vector, the third term represents body forces, and the fifth term represents concentrated load or live load. 

 

7. Conclusion 

Despite the discretization of a solid into finite element mesh. The field variables like displacement, stress, and strain can only 

be determine by numerical computation from a single finite element mesh. This complex engineering problem is first formulated 

as a functional, whose partial differential equivalence is obtained by a clumsy mathematical process. Then, the approximate 

numerical solution of the differential equation is sort using shape functions. All these analysis is done with a single tetra-shaped 

mesh; then, the assemblage into a system level is carried-out for the whole structure. Hence, any structure of any size can be 
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analyze for its field variable as demonstrated here. Equation (69) is the numeral representation of Laplace equation. Simplifying 

the partial differential equation into a linear equation at unit level, whose assemblage, will give a system of equation representing 

the whole; making it, easier for the numerical determination of displacement if parameters like: Young modulus (E), Areas (A), 

Density (𝜌), Length (𝑙), and the concentrated load (𝑞) are given. 
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