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1. Introduction

Solving ordinary differential equations is of great worth among scientist, researchers, and mathematicians due to their significant
applicability in modeling a physical phenomenon and scientific problems. Several numerical techniques are widely used to solve
differential equations arising from different fields of engineering, science, chemical kinetics, population model, physics, and
electrical networks, that are difficult or could not be solved analytically -4, The presence of a pole in the solution or discontinuity
in terms containing lower order derivative are specified as singular initial value problem. Generally, Taylor method and Runge-
kutta type methods and some linear multistep methods usually failed or very poor in performance near singularities because they
are based on polynomial approximation. While the performance of some methods based upon rational approach is much better
when solution passes through the singularity 1. A rational approximation whose denominator is of greater degree than its
numerator produces an L-stable method. More often L-stable type methods are non-linear methods 1. In this regard, in this
paper related with the development of a fifth order non-linear method based on rational approximation, to deal with various
types of initial value problems having singularities [**-*%1, The proposed method is found to be L-stable and will be utilized for
the numerical integration of the initial value problem represents (1). The method has been tested on a variety of 1\VPs of first
order ODEs. The comparison among the proposed method with some existing methods determines that the proposed method
gives more accurate outcomes as associated to them.

In next Section (i.e., section no. 2) the derivation of the L-stable method is given. The stability analysis is considered in Section
3 Local truncation error in section 4, error analysis is carried out in Section 5, finally, result discussion and conclusions put an
end to the manuscript.

2. Derivation of proposed method
Consider the first-order initial value problem (IVP)

d

= ft,y(t) = ¥ ®)
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Where y, f(t,y) € R, t € [a,b] S R.

We assume that the problem has a single and continuously differentiable solution. In other words it is a well-posed problem.
Here we express v, = y(t,), where v, is the approximate to the theoretical solution of y(t,) at nodal point t, = a + kh ; k=

0,1,2,... K where h :b_Ta is step-size. After the study of [ 3 where a one—step explicit rational method is proposed to get an

approximate solution of (1) resultantly, equation as follows to get fifth-order convergent method. It’s foist that the numerous
solution at t = ¢, is specific by

ag+Bich+yich? )

Viev1 = 1+wih+Ph2+nh3’

Where ay, Br, Vi, Wi, Yk, M are unknown constants fond with the help of Taylor series?

Vierr = [ar + (B — axwi)h + (Vi — ahy + (=B + agwi)w)h? + (=i + (=B + arwi )y + (=yi + iy +
WP — i) +((=Bi + axwi )Nk + (=i + ey + 0k — PRI Pr + (@i + YiBr — 20wy + WYk —
WP + D) w)h* + (Vi + QP + 0B — AN + (@ + YiBi — 2wy + WY — WP + DY +
(MieBr — 2Ny + WiV — iy — 2P wieBi + 3Parwi — wiyy + Wi — arwit) wy) R+ 0(h).

Equating with Taylor’s series of y, ,; about t = t,. The constants ay, Bk, Y, Wk, Wk, Ny are determined by equating coefficients
of above equation, with the coefficients of Taylor series up to h°.
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. After simplification, we get.
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Where 3 = (), Yiess = ¥(tira)s fie = £t yi) and), e = =L (6, 30,

4
ke = dtz (tk'YR) my = dt4(tk'3’k):

3. Local Truncation Error
Truncation error of the proposed method (3) can be obtained by considering the functional equation given below:
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Where, s(t) is a function defined over interval of integration and differentiable n times? The local truncation error of the above
method is obtained by the terms in power of h that are collected from Taylor series expended around t,
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(4)

This confirms that the proposed method has fifth order of accuracy. The above obtained local truncation error of the method is
of order sixth, where vy, v\, v, y,E"’), y,f”) represent the values to the first, second, third, fourth, fifth derivatives of y(t) at point

.

t respectively, provided that 24y, v’y + 3yi vk y,Ei —6(vy) y(”’) 4y(y"N: = 18(y)3 # 0
Hence, whenever the solution of the differential equation in (1) is a function of the following form. The described proposed
method is true:

_ ag+Brh+yih®
y(®) = Pt @h+y h2+nh’ ®)

Where ay, Br, Vi Pr» @r, Wi, e € R and these undetermined constants shall be selected so that both the numerator and
denominator of (5) should not be zero.

4. Linear stability Analysis
The Dahlquist’s test is applied to the proposed method (3) to determine its stability as below:

y' ' =2AhRe() <0, (6)
From this we obtained the difference equations as follows:

_ 3(—20y(x)—16y(x)hA+8y(x)Ah+4A%h?y(x)—4A%h?y(x)—2%h?y(x)
Yier1 = —60y(x)+12Ahy (x)+24y (x)Ah—312h2y (x)—642h2y (x)+y(x)A3h3 ~ T’
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Taking y(x) common from above equation, we get

_ 3(-20-16hA+8Ah+4A%h?—4A%h%-12n?
Yi+1 = T 1aany+24An—322h7—6A2h2 44313 VK-

Establishing z = Ah then the stability function defined as follows

() = (L“;Z‘“Z)_ @)

—60+36z-9z2+z3

Following figure is showing the stability region inside the closed curve for the proposed method.
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Fig 1: Showing the stability region inside the closed curve for the proposed method

The figure shows the method is satisfying the A-stability condition and contains the left half complex plane in the region of its
absolute convergence. Further, the condition.

lim 0(z) =0

Z—>—00
Satisfies which prove that the method is L-stable.

5. Numerical test problem

To check the numerical result of proposed method (3), few numerical methods of fifth-order are used for comparison.
Particularly, the Taylor’s series method and RKS are chosen for comparison method. Numerical outcome has been considered
in term of max error, absolute error and average error. The MATLAB setting of version 8.3.0832 (R2014a) has been utilized for
the proposed method. Consider first example from non-liner ordinary differential equation and second example from application

problem of population model. Nature of third problem is autonomous and the last example is non-autonomous type of initial
value problem.

Probleml. Here we have solved a non-linear initial value problem.

1
y'() = -2y(t)%y(-2) = Tim2<t<2
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Fig2

Whose theoretical Solution is given by: y(t) = ﬁ
Table 1
No. Of steps
Method\N 62 128 756 512

6.935%-11 2.1909e-12 6.7724e-14 7.1054e-15
Taylor 2.2277e-10 9.8167e-12 4.3031e-13 7.0729-14
2.0310e-11 6.3669e-13 2.0278e-14 2.4369e-15
5.0662e-03 2.5410e-03 1.2725e-03 6.3673e-04
Rk5 1.4280e-02 9.9621e-03 6.9962e-03 4.9300e-03
1.1025e-03 5.4717e-04 2.7256e-04 1.3603e-04
5.5831e-12 1.8807e-13 1.9540e-14 4.5075e-14
Proposed 3.3347e-11 1.5279e-12 9.4275e-14 3.8454e-13
3.7446e-12 1.2108e-13 4.9040e-15 1.1947e-14

First row is showing absolute error at: t = 2. While maximum absolute error is shown in second row for —2 < t < 2 and third
row is showing average error of each described method for example 1.

Proplem2. Consider the application problem of population model

y' = ky, k = 1, where k is proportionality constant.

Whose theoretical solution is y(x) = e**.

Table 2
No. Of steps

Method 64 128 256 512
3.0409e-07 9.4356e-09 3.1307e-10 8.3844e-12
Proposed 7.3004e-07 3.1298e-08 1.4553e-09 6.7277e-11
5.0362e-08 1.5374e-09 5.1067e-11 1.9469e-12
2.8054e-06 9.0651e-08 2.8807e-09 9.0523e-11
Taylor 6.7351e-06 3.0071e-07 1.3356e-08 5.9004e-10
4.6462e-07 1.4770e-08 4.6552e-10 1.4564e-11
3.0340e+01 1.6136e+01 8.3290e+00 4.2324e+00
RK5 7.3433e+01 5.3761e+01 3.8704e+01 2.7619e+01
5.1065e+00 2.6514e+00 1.3518e+00 6.8262e-01

First row is showing absolute error at: t = 1. While maximum absolute error is shown in second row for 0 < t < 1 and third
row is showing average error of
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Fig 3: Absolut error for Taylor series method, RK5 method and proposed method for problem?2.

Problem3.Consider autonomous problem
1
y’=1+y2y(0)=10StS§

Theoretical solution is y(t) = tan(t +7)

Table 3
No. of steps
Method 62 128 56 512
4.5453e-12 5.7576e-12 1.033%-11 1.2409e-11
Proposed 4.5453e-12 1.4459e-11 4.7131e-11 5.7299e-11
6.5604e-13 6.1489e-13 1.3362e-12 1.4782e-12
1.1997e-08 3.8966e-10 1.2427e-11 4.0323e-13
Taylor 2.3400e-08 1.0330e-09 4.5665e-11 2.0881e-12
1.3904e-09 4.3692e-11 1.3719e-12 4.6267e-14
1.0076e-01 5.2068e-02 2.6480e-02 1.3354e-02
Rk5 2.7289%e-01 1.9475e-01 1.3836e-01 9.8070e-02
2.2205e-02 1.1255e-02 5.6667e-03 2.8433e-03
#  Proposed
-+ Taylor
10* | > Rk5
10°
10° |
pe
w0 >
s 2 bt
th_l 10° -
£ * * * *
107 | 4+
+
107 |
10° |
10_-.:._ 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fig 4: Absolut error for Taylor series method, RK5 method and proposed method for problem3.
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First row is showing absolute error at: t = 0.5. While maximum absolute error is shown in second row for 0 < t < 0.5 and
(Third row) is showing average error of each described method for example

Problem4. Consider the Non-autonomous of initial value problem

Yy =tyy(0)=10<t<1

t2
Exact solution is y(t) = e2

Table 4
No. Of steps
Method\N 61 128 256 512
6.935%-11 2.1909e-12 6.7724e-14 7.1054e-15
Taylor 2.2277e-10 9.8167e-12 4.3031e-13 7.072%-14
2.0310e-11 6.3669e-13 2.0278e-14 2.4369e-15
5.0662e-03 2.5410e-03 1.2725e-03 6.3673e-04
Rk5 1.4280e-02 9.9621e-03 6.9962e-03 4.9300e-03
1.1025e-03 5.4717e-04 2.7256e-04 1.3603e-04
5.5831e-12 1.8807e-13 1.9540e-14 4.5075e-14
Proposed 3.3347e-11 1.5279e-12 9.4275e-14 3.8454e-13
3.7446e-12 1.2108e-13 4.9040e-15 1.1947e-14
10° F
++++++++++++
+++++++++
Gyttt
10° b L+t
++++
n
+
- +
107 |
= +
E h- ¥  proposd
10 b ¥ Taylor
+ RK5
X
0 xxxxxxxxxxxxxxxxxxxx
L 3
1 XXxxii;;ixXX*******************%***%
Xii****
*—* . . . . . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 5: Absolut error for Taylor series method, RK5 method and proposed method for problem4

First row is showing absolute error at: t = 1. While maximum absolute error is shown in second row for 0 <t < 1 and third
row is showing average error of each described method for example 4

Result and Discussion

The IVPs of ODEs can be solved easily by using new proposed one-step explicit method (3). Four numerical problems have
been solve to check the accuracy level and computional time of the proposed method (3) and compared with two standard
numerical methods (Taylor and Rk-5) taken from relevent literature. Approximate result obtained by different step-size are
shown using the result analysis table 1-4, and computed absulte error, max error, average error at the final mesh point of the
intergration interval. Table 1-4 resolve that small step-size gives better accuracy with less computional error. It may observed
from Table 1-4 thatproposed method less error than other methods. Hence the new proposed is superier than Taylor and RK-5
method

Conclusion

In this manuscript, a fifth order improved L-stable method has been derived. Also Taylor series method and RK-5 method are
compared with the proposed method on initial value problem (1\VVPs) and proposed method is found more applicable to solve
such problems. The local truncation error and stability of proposed method were also investigated. The performance measure of
the method is examined on four 1\VVPs. The results and errors obtained via the newly developed scheme shown in Tables 1, 2, 3
and 4 respectively, compared favorably with other existing methods, this proves that the new proposed scheme performs better
and is a best choice for solving the I\VVPs in ODEs. The proposed numerical method is found to be L-stable. Therefore, it is
employable for stiff and singular ordinary differential equations.
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