
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    224 | P a g e  

 

 

 
The analysis solution of Non-liner Dirac equation 

 
Abdel Radi Abdel Rahman Abdel Gadir Abdel Rahman 1*, Marafy Ahmed Aldaw Ahmed 2, Neama Yahia Mohammed 3,  

Subhi Abdalazim Aljily 4 
1, 2 Department of Mathematics, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan 
3 Department of Mathematics, College of Science, Tabuk University, Saudi Arabia 
4 Department of Mathematics, Faculty of Education, University of AL Butana, Sudan 

 

* Corresponding Author: Abdel Radi Abdel Rahman Abdel Gadir Abdel Rahman 

 

 

 

Article Info 

 

ISSN (online): 2582-7138 

Volume: 03  

Issue: 01  

January-February 2022 

Received: 26-12-2021;  

Accepted: 12-01-2022 

Page No: 224-228 

 

Abstract 

We construct nonlinear extensions of Dirac relativistic electron equation that preserve 

its other desirable properties such as locality reparability conservation of probability 

and Poincare invariance we determine the constraint that the nonlinear term must obey 

and classify the resultant non polynomial nonlinearities in a double expansion in the 

degree of nonlinearity and number of derivatives. The aims of this paper is to solve 

the nonlinear Dirac equation using the analysis method. We followed the historical 

analysis mathematical method and we found the following some results: Possibility of 

solving the nonlinear Dirac equation for many –bodies system with may bring about 

more insight into physical system.
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1. Introduction 

The basic of relativistic quantum mechanics was formulated by Paul Dirac in 1928 in away consistent with special relativity 
[16].The equation describes the behavior of weakaly coupled electrons at high speeds or strongly coupled electrons such as in the 

case of core electron states in heavy atoms. Among the benefits of this relativistic formulation is the natural emergence of the 

electron spin and prediction partner to the electron the positron which was discovered experimentally few years later. The physics 

and mathematics of the Dirac equation is very rich illuminating and provides atheoretical framework for different physical 

phenomena that are not present in the nonrelativistic regime such as the klein paradox [22]. In addition Dirac equation emerges 

in the study of the transport properties ingraghene which makes it important for future applications. Exact solution of the Dirac 

equation with agiven potential configure ationare limited and not trivial compared to the nonrelativisitic Schrodinger equation 

in fact the Dirac Hamilton being amatrix the spinor space allows for more structure in the potential interaction the terminology 

given to relativistic problem such as the " Dirac –coulomb" "Dirac-oscillation" "Dirac-Morse" "…."etc refers to the Dirac 

equation that reduces to an effective Schrodinger –like equation with the nomad potential for the large spinar component different 

approaches were developed to generate exact solution to the Dirac equation such as superymmetric quantum mechanics and 

factorization method to only few [29]. 

 

2. Analysis 

Lemma (2.1) 

Let 𝑓/(𝑥1 … … … … … 𝑥𝑛), ………𝑓𝑛(𝑥1 … … … … … … … 𝑥𝑛)be 𝑐∞function 𝑛variabels 𝑥2 … … … . , 𝑥𝑛defind in aneighorhood of 

𝑥°
1 … … . . 𝑥°

𝑛let𝑑(𝑥1 … … . . 𝑥𝑛)= det (
𝑑𝑓𝑖

𝑑𝑥𝑗)Bethe Jacobian determinant and suppose that 𝐽(𝑥°
1 … … … . 𝑥°

𝑛) ≠ 0 let 

𝑤0
1𝑓1𝑥°

1 … … . . 𝑥°
𝑛,…….𝑤°

𝑛=𝑓𝑛(𝑥°
1 … … 𝑥°

𝑛). then there is neighborhood 𝑣of (𝑥°
𝑛 , … … . . , 𝑥°

𝑛)and there are𝑛𝑐∞functions 

(𝑤1, … … . . , 𝑤𝑛), 𝑔𝑛(𝑤1, … … . , 𝑤𝑛)satisfying𝑔1(𝑤°
1, … … , 𝑤°

𝑛)such that for any (𝑤1, … . , 𝑤𝑛).

In this neighborhood the equation(𝑤)1=𝑓1(𝑥1, … . . , 𝑥𝑛), , , , , , , 𝑤𝑛 =, 𝑓𝑛(𝑥1, … . . , 𝑥𝑛) 
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Havethe unique solution 𝑥1 = 𝑔1(𝑤1 , … . , 𝑤𝑛) … 𝑥. ,𝑛 =𝑔𝑛(𝑤1, … … , 𝑤𝑛) suchthat (𝑥1, … . , 𝑥𝑛) ∈ v [21]. 

 

i. Phase Plane Analysis 

Example (2.1) 

(Pendulum equation for small oscillations) this is the well know equation 𝑥 ∙∙ + 𝑘𝑥 = 0, 𝑘 > 0.Solving the equation to obtain the 

solution explicitly we see that every solution is periodic. The same conclusion may by reached analyzing which turns out to be 

(𝑥 ∙(𝑡))
2

= 𝑘(𝑥(𝑡))
2

= 2𝐸And E is obtained from the initial conditions the orbits in this case are ellipses (circles if K=1 ) 

surrounding the origin in the phase plane [1]. 

 

3. Palan of Qualitative Analysis 

Plan (3.1) 

Let us now formulate a plan to qualitatively study a system of two differential equations with two variables and consider several 

example we study the system: 

 

[

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦)

 (1) 

 

Our main aim is to plot the phase portrait of this system and then predict it dynamics. Based on methods which we have developed 

we will do it two steps 

1. Null- Cline Analysis  

2. Jacobian Analysis 

3. Null- Cline Analysis 

 

We assume that on the OXY- plane the X –axis is the horizontal axis and the Y- axis in the vertical axis. 

1. Draw the 
𝑑𝑥

𝑑𝑡
= 0 null- clines form the equation 𝑓(𝑥, 𝑦) = 0 using dashed line and the 

𝑑𝑦

𝑑𝑡
= 0 nuall –clines form the equation 

𝑔(𝑥, 𝑦 = 0) using sold line. 

2. Chooseapaint in one of the regions on the X, Y plane and find the vector field for the X-Component denote the X component 

as dashed→ 𝑖𝑓(𝑥, 𝑦) > 0and as adashed ← 𝑖𝑓(𝑥, 𝑦) < 0. 

3. Find the vector filed for the Y-component at the same point. 

Denote the Y –component as asoiled↑if 𝑔(𝑥, 𝑦) > 0and as asoild ↓ 𝑖𝑓𝑔(𝑥, 𝑦) < 0. 

4. Fined the vector field in the adjacent regions using the following rule 

 

A. Change the direction of the dashed component of the vector field if to get to the adjacent region you cress the dashed null-

cline. 

B. Change the direction of the soleid component of the vector field if to get to the adjacent region you cross the solid null-cline. 

C. Show the direction of the vector field on the null-clines close to the equilibrium [2]. 

 

4. The Nonlinear Dirac Equation 

To meet the need of simulating self- ineracting Dirac fermions [14, 15, 27]. The nonlinear Dirac equation (NLDE) was introduced 

in 1938 [20] which has the form [11]. 

 

𝑖ℎ𝜕𝑡𝜑 = [−𝑖𝑐ℎ ∑ 𝛼𝑗𝑑𝑗 + 𝑚𝑐23
𝑗=1 ]𝜑 + 𝑒[𝑣(𝑥, 𝑦)𝐼4 − ∑ 𝐴𝑗(𝑡, 𝑥)𝛼𝑗

3
𝑗=1 ]𝜑 + 𝑓(𝜑)𝜑𝑥 ∈ 𝑅3  (2) 

 

The nonlinear Dirac equation (3.1) is similar to the Dirac equation except for the nonlinear term (𝜑). The nonlinearity is 

introduced for self-interction and in the resulting field equation it is cubic with respect to the wave function which is only 

signifiacant at extremely highdensities at extremely highdensities. There have been different cubic nonlinearities generated from 

different application {17}.Here we take 𝑓(𝜑) = 𝑔1(𝜑∗𝛽𝜑)𝛽 + 𝑔2|𝜑|2𝐼4𝑔1𝑔2 ∈ 𝑅Tow constants and𝜑∗ = 𝜑−𝑡 while 𝑓− 

denotes the complex conjugate of f The first term, i.e 𝑔1 = 0 𝑎𝑛𝑑𝑔2 ≠ 0 is generated from and second term i.e 𝑔1 = 0 𝑎𝑛𝑑𝑔2 ≠
0 is generated fom BECS with chiral confinement and/or spin –obet coupling [10, 19]. Aremark is given here that our numerical 

methods and their error estimates in thesis can be easily extended to the NLDE with other nonlinearities [26, 27] in fact the fact the 

NLDE has also been in the Einstein –cartan –sciama- kibble theory of gravity in order to extend general relativity to matter with 

intrinsic angular momentum (spin). And recently, the NLDE has been adapted as amean field model for Bose –Einstein 

condenstes (BECS) and /or cosmology [25]. Moreover the experimental advances in BECS graphene and other 2D materials have 

also stimulaterd the research interests on the mathematical analysis and numerical simulations of the Dirac equation and/or the 

NLDE without /with electromagnetic potentials especially the honeycomb lattice potential [1, 12, 13]. 

Similar to the process of Dirac equation [5] through apropernondimensionalization with the choice of 𝑥𝑠, 𝑡𝑠 =  
𝑚𝑥2

ℎ
, 𝐴𝑠 =

 
𝑚𝑣2

𝑒
𝑎𝑛𝑑𝜑𝑠 = 𝑥𝑠

−3

2  as the dimensionless lengh unit time unit potential unit and spinor filed unit respectively and dimension 

reduction we cane obtain the dimensionless NLDE in- dimensions (d=3,2,1) 𝑖𝑑1𝜑 = [−
𝑖

𝜖
∑ 𝛼𝑗𝜕𝑗 +

1

𝜖2 𝛽𝑑
𝑗=1 ] 𝜑 + 

[𝑣(𝑡, 𝑥)𝐼4 ∑ 𝐴𝑗(𝑡, 𝑥)𝛼𝑗
𝑑
𝑗=1 ]𝜑 + 𝑓(𝜑)𝜑𝑥 ∈ 𝑅𝑑  (3) 
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Whereϵisadimensioniess parameter parameter inversely proportional to the light speed given by 

 

0 < 𝜖 =  
𝑥𝑠

𝑡𝑠𝑐
=

𝑣

𝑐
≤ 1  (4) 

 

With 𝑣 =
𝑥𝑠

𝑡𝑠
 the wave speed and 

 

𝑓(𝜑) = 𝜆1(𝜑∗𝛽𝜑)𝛽 + 𝜆2|𝜑|2𝐼4𝜑 ∈ 𝑐4  (5) 

 

Where 𝜆1 =
𝑔1

𝑚𝑣2𝑥𝑠
3 ∈ 𝑅𝑎𝑛𝑑𝜆2

𝑔2

𝑚𝑣2𝑥𝑠
3 ∈ 𝑅 are two dimensioniess constats for the for the interaction to study the dynamics we 

give the initial condition 𝜑(𝑡 = 0, 𝑥) = 𝜑°𝑥 ∈ 𝑅𝑑 the NLDE (3) is dispersive and time symmetric [29] similar to the Dirac 

equation after introducing proper total probability density p as well as the current density 𝐽(𝑋, 𝑌) =  (𝐽1(𝑡, 𝑥)), 𝐽2(𝑡, 𝑥) we could 

the conservation law moreover the NLDE (3.2)Consrves the total mass. thecnergy is conserved if the electromagnetic potentials 

are time. independenti.e if v(t,x) =v(x) and 𝐴𝑗(𝑡, 𝑥) = 𝐴𝑗(𝑥)𝑓𝑜𝑟𝑗 = 1,2,3 then E(t)= ∫ [−
𝑖

𝜖
∑ 𝜑∗𝛼𝑗𝜕𝑗𝜑𝑑

𝑗=1 +
1

𝜖2 𝛽𝜑 +
𝑅𝑑

𝑣(𝑥)|𝜑|2 + 𝐺(𝜑) − ∑ 𝐴𝑗(𝑥)𝜑∗𝛼𝑗𝜑𝑑
𝐽=1 ] 𝑑𝑥  (6) 

 

Where 

 

𝐺(𝜑) =
𝜆1

2
(𝜑∗𝛽𝜑)2 +

𝜆2

2
|𝜑|4𝜑 ∈ 𝑐4  (7) 

 

In (3,2) if the external electromagnetic potential potential are taken to be constants i.e v(t,x)≡ 𝑣°and 𝐴𝑗(𝑡, 𝑥) ≡ 𝐴𝑗
°𝑓𝑜𝑟𝑗 = 1,2,3 

then the NLDE (2) admits the plane wave solution as 𝜑(𝑡, 𝑥) = 𝐵𝑒𝑖(𝑘−𝑥−𝑤𝑡)where the time frequency W amplitude vector 𝐵 ∈
𝑅4 and spatial wave number 𝑘 = (𝑘1, … . , 𝑘𝑑) ∈ 𝑅𝑑 satisfy. 

 

𝑤 = [∑ (
𝑘𝑗

𝜖
− 𝐴𝐽

° ) 𝛼𝑗 +
1

𝜖2 𝛽 + 𝑣°𝐼4 + 𝜆1(𝐵∗𝛽𝐵)𝛽 + 𝜆2|𝐵|2𝐼4
𝑑
𝑗=1 ] 𝐵  (8) 

 

Which immediately gives the dispersion relation of the dispersion relation of the NLDE (2) as 

 

𝑤 = 𝑤(𝑘, 𝐵) = 𝑉° + 𝜆2|𝐵|2 ±
1

𝜖2 √[1 + 𝜖2𝜆1(𝐵∗𝛽𝐵)] + 𝜖2|𝑘 − 𝜖𝐴°|2𝑘 ∈ 𝑅𝑑  (9) 

 

Again similar to the Dirac equation [5] for one dimension (1D) and two dimension (2D) the NLDE (3.2) can be simplified to the 

following one 

 

𝑖𝑑𝑡Φ = [−
𝑖

𝜖
∑ 𝜎𝑗𝑑𝑗 + 

1

𝜖2 𝜎3
𝑑
𝑗=1 ] Φ + [𝑣(𝑡, 𝑥)𝐼2 − ∑ 𝐴𝑗(𝑡, 𝑥)𝜎𝑗

𝑑
𝑗=1 ]Φ + 𝑓(Φ)Φ𝑥 ∈ 𝑅𝑑  (10) 

 

Where 

 

𝑓(Φ) = 𝜆1(Φ∗𝜎3Φ)𝜎3 + 𝜆2|Φ|2𝐼2Φ ∈ 𝑐2  (11) 

 

With 𝜆1and 𝜆2both real numbers in (3.9) the two –component wave functions Φdefined as Φ = Φ(𝑡, 𝑥) =

(Φ1(𝑡, 𝑥)), Φ2(𝑡, 𝑥)𝑡 ∈ 𝑐2the initial condtion for dynamics is given as [19]. 

 

Φ(𝑡 = 0, 𝑥) = Φ°(𝑥)𝑥 ∈ 𝑅𝑑  (12) 

 

The NLDE (8) has similar properties to its four – component ersion (2) it is dispersive and time symmetric satisfies the 

conservation law{7} conserves total mass and also conserves energy 

 

𝐸(𝑡) = ∫ (−
𝑖

𝜖
∑ Φ∗𝜎𝑗𝑑𝑗Φ +

1

𝜖2 Φ∗𝜎3Φ + 𝑣(𝑥)|𝑥|2 − ∑ 𝐴𝑗(𝑥)Φ∗𝜎𝑗Φ + 𝐺(Φ)𝑑
𝑗=1

𝑑
𝑗=1 ) 𝑑𝑥

𝑅𝑑   (13) 

 

Where  

𝐺(Φ) =  
𝜆1

2
(𝑥∗𝜎3Φ) +

𝜆2

2
|Φ|4Φ ∈ 𝑐2  (14) 

 

If the electromagnetic potenials time –independent. 

Under constant external electromagnetic potentials i.e𝑣(𝑡, 𝑥) ≡ 𝑣°𝑎𝑛𝑑𝐴𝑗(𝑡, 𝑥) ≡ 𝐴𝑗
°𝑓𝑜𝑟𝑗 = 1,2 the NLDE (8) admits the plane 

we soluation as Φ(𝑡, 𝑥) = 𝐵𝑒𝑖(𝑘.𝑥−𝑤𝑡) with the time frequency w amplitude vector 𝐵 ∈ 𝑅2 and spatial wave number 𝑘 =
(𝑘1, , , , , 𝑘𝑑)𝑡 ∈ 𝑅𝑑 satify. 
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𝑤𝐵 = [∑ (
𝑘𝑖

𝜀
− 𝐴𝑗

°)𝑑
𝐽=1 𝜎𝑗 +  

1

𝜀2 𝜎3 + 𝑣°𝐼2 +  𝜆1(𝐵∗𝜎3𝐵)𝜎3 + 𝜆2|𝐵|2𝐼2] 𝐵 (15) 

 

With implies dispersion relation of the NLDE (3.9) directilyas 

 

𝑤 = 𝑤(𝑘, 𝐵) =  𝑣° +  𝜆2|𝐵|2 ±
1

𝜀2 √(1 + 𝜀2𝜆1(𝐵∗𝜎3𝐵))2 + 𝜀2|𝑘 − 𝜀𝐴°|2𝑘 ∈ 𝑅𝑑  (16) 

 

The NLDE (2) has different regimes with different choices of the dimensionless parameter ᵋ. When 𝜀 = 1 wich corresponds to 

the classical regime extensive analytical and numerical result have been obtaind [3, 4, 9]. 
 

5. Solution of Nanlinear Dirac Equation 

Theorem (5.1) 

Let (W),(v) and (𝑓°) − 𝑓2 , (𝑓3
/
), 𝑓4

/
 be satisfied. then (D) v has at lest one nontrivial 𝑢 ∈ ⋂ 𝑤𝑖,𝑡  (𝑅3, 𝐶4)𝑡≥2  if in addition f is 

even and (𝑓5) hold then (𝐷)𝑣 has infinitely may geometrically distince soluation 𝑈 ∈ ⋂ 𝑤𝐼,𝑇(𝑅4, 𝐶4)𝑡≥2 .Here are example where 

the assumption apply. 

 

Example (5.2) 

a. 𝑓(𝑥, 𝑢) =  
1

2
𝑏(𝑥)|𝑢|2 (1 −

1

ln (ℯ+|𝑢|)
). 

b. 𝑓(𝑥, 𝑢) = 𝑏(𝑥)𝜓 (
1

2
) |𝑢|2 where 𝜓 = [0, ∞) → [0, ∞) is of class𝑐2 with 𝜑(0) =  𝜑∕(0) = 0 𝑎𝑛𝑑𝜑∕(𝑠) → 1 as 𝑠 →

∞𝜑∕∕(𝑠) ≥ 0 

c. 𝑓𝑢(𝑥, 𝑢) = 𝑓(𝑥, |𝑢|)𝑢 where 𝑓(𝑥, 𝑠) is even in s 𝑓(𝑥, 𝑠) → 0 𝑎𝑠𝑠 → 0 uniformly in x,f(x,s) is nondecreasing for 𝑠 ∈
[0, ∞)𝑎𝑛𝑑𝑓(𝑥, 𝑠) → 𝑏(𝑥)𝑎𝑠𝑠 → ∞. 

 

6. Variational Setting 

We denoted by |∙|𝑝 the usual 𝐿𝑝 norm for 𝑝 ∈ [1, ∞]. For 𝑣 ∈ 𝑙100
2 (𝑅3, 𝑅)𝑡ℎ𝑒 operator 𝐴 =  −𝑖 ∑ 𝑎𝑘𝜕𝑘 + (𝑣(𝑥) + 𝑎)𝛽3

𝐾=1  is 

selfadajoint operator in 𝑙2 =  𝑙2(𝑅3, 𝐶4) it is unbounded from above and from below in orden to inverstigate the spectrum of A 

we consider 

 

𝐴2 =  ∆ + (𝑉 + 𝑎)2 + 𝑖 ∑ 𝛽𝑎𝑘𝑑𝑘𝑣

3

𝑘=1

 

 

Let 𝜎(𝑠), 𝜎𝑑(𝑠), 𝜎ℯ(𝑠)𝑎𝑛𝑑𝜎𝑐(𝑠) denote respectively the spectrum the essential spectrum and the continuous spectrum of aself –

odjointoperator S on 𝐿2. 

 

Result 
We gave several examples of such equation different in structure from those studied previously in the literature and discussed 

their properties we also demonstrated that our equation were not guge equivalent to the linear Dirac equation.Solution to our 

nonlinear equation similar to what has been done for simpler polynomial type nonlinear Dirac equation. 

 

Conclusion 

We found possibility of solving the nonlinear Dirac equation for many –bodies system using analysis solution. 
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