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Abstract 

In the present paper, we introduce a general class of generating functions involving 

the product of modified Bessel polynomials 𝑌𝛼+𝑛(. ) and the confluent hypergeometric 

function ⬚𝐹⬚(. ) and then, obtain its some more 1 1 general class of generating 

functions by group-theoretic approach and discuss their applications. 
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1. Introduction 

Krall and Frink [1] introduced generalized Bessel polynomials defined by 
 

 (1.1) 
Further Mukherjee and Chongdar [4] have considered and studied the modified Bessel polynomials defined by 

 

 (1.2) 

 

The function ⬚𝐹⬚(. ) can be replaced by many special functions such as 

 

The Leguerre polynomials or the parabolic cylinder functions etcetera 

Srivastava and Manocha [3] defined and studied various bilinear, bilateral and multilinear functions. Chatterjee and Chakraborty 
[5] introduced and studied some quasi-bilinear and quasi-bilateral generating functions. Mukherjee [8] defined and studied an 

extension of bilateral generating functions of certain special functions. Rama Kameswari and Bhagavan [14] introduced and 

studied group theoretic origins of certain generating functions of Legendre Polynomials. Further Bhandari [15] defined and studied 

general class of generating functions and its applications. 

Motivated by above work, in the present paper, we introduce the following new general class of generating functions: 

 

 (1.3) 
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Where, an is any arbitrary sequence independent of x, u and w. Since in (1.3) as setting various values of An, we may find 

several results on generating functions involving different special functions. 

Further, making an appeal to the group-theoretic techniques, here in the present paper, we evaluate some more general class of 

generating functions and finally discuss their applications. 

 

2. Group-Theoretic Operators. 

In our investigations, we use the following group-theoretic-operators and their actions: 

The operator H1 due to Kar [7] is given by 

 

   (2.1) 

 Such that 

 

 (2.2) 

 

The operator H2 due to Miller Jr. [2] is given by 

  

  (2.3) 

Such that 

 

  (2.4) 

 

The actions of H1 and H2 on f are obtained as follows: 

 

  

  (2.5) 

And 

 

 (2.6) 

 

3. Some more general class of generating function 

In this section, making an use of the general class of generating function (1.3) and group-theoratic operators H1 and H2 with 

their actions given in the Section 2, we obtain some more general class of generating functions through following theorem: 

Theorem. If there exists a general class of generating functions involving the product of modified Bessel polynomials and the 

confluent hypergeometric functions given by (1.3), then following more general class of generating functions hold: 

  

  (3.1) 

 

  (3.2) 

 

or equivalently 
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 (3.3) 

 

and 

  

  (3.4) 

 

 

Proof: In the general class of generating function (1.3), replacing w by wyv and then multiplying by𝑧𝛼 tm both sides, we get 

  

  (3.5) 

 

Now, making an appeal to (2.2) and (2.4), from (3.5), we derive 

 

 (3.6) 

  

and 

 

 (3.7) 

 

 

Now, operating both sides of (3.5) by the operators exp[𝑤𝐻1]exp[𝑤𝐻2] and then, making an appeal to the relations (2.5) and 

(2.6) in the left hand side and (3.5) and (3.6) in the right hand side, we evaluate 

 

 (3.8) 

 

Now, setting 𝑦/𝑧2 = 1 and v=t in (3.8), we prove (3.1). 

 

Again, setting 𝑦/𝑧2 = −1 and v=t in (3.8), we prove (3.2). 

 

Finally, replacing r by r-n and than applying series rearrangement techniques in (3.1) and (3.2), we obtain (3.3) and (3.4) 

respectively. 

 

4. Special Cases: Applications and Deductions. 

For ma positive integer (3.1), (3.2), (3.3) and (3.4) reduce respectively to 
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 (4.1) 

 

 (4.2) 

 

 (4.3) 

 

  (4.4) 

 

From (4.1), we further derive 

  

  (4.5) 

 

While from (4.2), we obtain 

 

 (4.6) 

 

Further setting β = 𝑢 and t=1 in (3.1), we derive 

 

  (4.7) 

 

Where are (𝑚)(𝑢) Leguerre polynomials. 

For 𝛽 = −𝑢, 𝑡 = 1, (3.2) gives 

 

  (4.8) 

 

Other similarly results can be obtained form (3.3) and (3.4) in similar manner. 

If m is positive integer than (4.7) and (4.8) give 
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 (4.9) 

 

and 

 

 (4.10) 

 

Respectively. 

 

Further setting m=0 and t=1 in (3.1), we derive a generating relation 

 

 (4.11) 

 

which is similar result due to Mukherjee and Chongdar [4], 

 

while for m=0 and t=1, from (3.2), we obtain a generating relation: 

 

  

 (4.12) 

 

From (4.7) and (4.8), we further derive a relation 

 

 (4.13) 
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