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Abstract 
Fatty liver disease is one of those health problems which, if not taken seriously, might 
lead to the most menacing complications. Henceforth, the diagnosing phase has to be 
both accurate and just-in-time to allow proper treatment. The approach based on the 
usage of the convolutional neural network AlexNet for feature extraction of a complex 
nature and decision-making by the AdaBoost classifier is hence introduced. Extremely 
high capability of feature extraction by AlexNet made its implementation reach a 
detection accuracy of 88.5%, in general 5% better than earlier practices. Results have 
proven that this approach can extract unique features from ultrasound images, which 
would be useful in diagnosing and managing fatty liver diseases. This could be 
instrumental in helping the physicians to be right on the spot in the accuracy and 
quality of diagnosis. 
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Introduction 

With the increasing prevalence of fatty liver disease, it has become a significant global health concern due to its potential to lead 

to severe liver complications and other systemic disorders. Early and accurate diagnosis is essential for managing this condition 

and preventing its progression. Traditional diagnostic methods, such as biopsy and blood tests, are often invasive, time-

consuming, or insufficiently precise [1]. Recently, advancements in medical imaging, particularly ultrasound, have opened new 

avenues for non-invasive diagnosis of fatty liver disease. However, manual interpretation of ultrasound images is prone to 

subjectivity and variability among clinicians, which may affect diagnostic accuracy [2]. This underscores the necessity of 

automated diagnostic systems that combine the power of deep learning techniques with robust classification methods to enhance 

precision and reliability. Leveraging the feature extraction capabilities of convolutional neural networks like AlexNet, paired 

with advanced classifiers such as AdaBoost, offers a promising solution for addressing these challenges. 

Numerous studies have explored different approaches to enhance fatty liver detection using Ultrasound images. 

In article [3], the authors diagnosed fatty liver disease through ultrasound images using deep convolutional learning. In this study, 

90 ultrasound images from fatty liver patients and 51 images from healthy individuals were used. The models trained on 

combined liver-kidney-liver (CLKL) images achieved an accuracy of 80.1%, sensitivity of 86.2%, and specificity of 80.5% in 

detecting fatty liver disease. The regression model also showed a moderate accuracy (R2 = 0.633) in predicting fat fraction 

values, indicating the potential of deep learning-based ultrasound for diagnosing fatty liver disease. 
In article [4], the authors developed neural network-based models to detect and classify the severity of Non-Alcoholic Fatty Liver 

Disease (NAFLD) using B-mode ultrasound images. This study compared several pre-trained convolutional neural networks, 

with ResNet-50 v2 achieving the best performance. The final model showed high diagnostic accuracy with an ROC area of 0.985 

for detecting any severity and 0.996 for moderate to severe steatosis. These results suggest that this model works with non-

invasive, cost-effective methods, offering a feasible alternative for clinical applications. However, challenges like device 

variations and motion artifacts should be addressed. 
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In article [5], the authors developed a machine learning (ML) 

model to differentiate Non-Alcoholic Fatty Liver Disease 

(NAFLD) from healthy liver tissue in children using 

ultrasound image texture analysis. The study utilized texture 

features extracted from regions of interest (ROI) in the 

ultrasound images, analyzed with ImageJ and MAZDA 

software. The final model, a combination of support vector 

machine algorithms, neural networks, and gradient boosting, 

achieved high accuracy in distinguishing NAFLD from 

normal liver images. The study highlights the potential of ML 

models using texture features for precise NAFLD 

classification. 
In article [6], the authors propose a new computer-aided 

diagnosis (CAD) framework for detecting fatty liver disease 

using convolutional neural networks and transfer learning 

with a pre-trained VGG-16 model. This framework achieved 

a classification accuracy of 90.6% for detecting fatty liver 

and normal images, providing better diagnostic efficiency 

and further supporting radiologists in patient management. 
In article [7], the authors proposed a convolutional neural 

network (CNN) for detecting fatty liver disease, tailored to 

the features of B-mode ultrasound images. Experimental 

results show that the CNN-based model achieved satisfactory 

classification performance and outperformed traditional 

methods for classifying fatty liver ultrasound images, 

emphasizing the potential of CNNs in improving diagnostic 

accuracy. 
In [8], authors implemented deep learning in the detection of 

NAFLD via ultrasound images. A total of 710 ultrasound 

images of NAFLD were classified using three models of 

convolutional neural network (VGG16, ResNet50, and 

Inception-v3) to achieve accuracies of 66.2%, 58.5%, and 

59.2%, respectively. Two new parameters were introduced to 

enhance the accuracies: ultrasound echo attenuation 

coefficient (θ), and ROD. A multi-input deep learning 

network was created based on the VGG16 model, combining 

ultrasound image analysis with θ and ROD, which showed 

strong diagnostic capacities (especially for moderate and 

severe fatty liver) with an AUC of 0.95 and 77.5% improved 

accuracy. The research thus paves the way for doctors to 

diagnose NAFLD accurately and efficiently by its 

methodology. 

In reference [9], authors applied ultrasound in combination 

with artificial intelligence for the diagnosis of NAFLD as a 

non-invasive and cheap diagnostic tool. Only 120 clinically 

suspected NAFLD patients along with 10 healthy volunteers 

were considered for this study. MRI (MR-PDFF) determined 

the amount of fat in the liver as the reference standard. The 

ultrasonography images were taken for analysis from the 10 

different sites of the liver lobes. A supervised machine-

learning model was developed and tested. During the internal 

validation, the model recorded an accuracy of 0.941, recall at 

88.2%, and precision at 89.0. For the test set, sensitivity 

exhibited by the model was 72.2%, specificity was 94.6%, 

PPV reached 93.1%, and the overall accuracy was 83.4%. 

These outputs hint that this AI-enabled ultrasound model 

might be used as a screening tool for NAFLD, particularly 

within high-risk populations. 

In [10], the authors introduce a machine learning model for 

fatty liver disease (FLD) detection with multiple ultrasound 

images. Ultrasound has wide applications and is inexpensive; 

however, it often generates multiple images of the target 

tissue. A model is trained on these ultrasound images using a 

graph neural network after extracting features by a pre-

trained image encoder. These embeddings produced are fed 

into a classifier for detecting FLD. The model was developed 

using a dataset of ultrasound images collected by Taiwan's 

Biobank. Better classifier performance was developed by the 

authors through consistent prediction under a risk control 

setting, ensuring high accuracy guarantees. This approach is 

aimed at increasing the dependability and diagnostic 

performance of detecting fatty livers from ultrasound images. 

In [11], the authors contributed to the prediction of Non-

Alcoholic Fatty Liver Disease (NAFLD) through machine 

learning algorithms. They also proposed an alternative 

method that combines traditional data augmentation with 

Generative Adversarial Networks to produce synthetic 

medical images for the extension of training datasets and 

model performances. Many deep neural network 

architectures were tried, and the most proper model achieved 

accuracy, recall, precision, and specificity of 96%, 93%, 

95%, and 96%, respectively, outperforming models like 

SegNet. The study proved that synthetic images improve the 

effectiveness of GANs in the classification of NAFLD with 

real-world data, a very promising avenue in the prediction of 

liver diseases. 

In reference [12], the use of machine learning techniques, 

particularly Generative Adversarial Networks (GANs), by 

the authors, for the prediction of NAFLD is discussed. The 

authors merge conventional data augmentation with synthetic 

images produced by GANs to increase the training dataset. 

This approach improved model performance, with the GAN-

based model surpassing models such as SegNet, having an 

accuracy of 96%, recall of 93%, precision of 95%, and 

specificity of 96%. Which indicated that in the presence of 

both synthetic and real-world data, NAFLD classification 

was greatly improved and which can be a promising way to 

better predictions about liver diseases. 

In the work [13], the focus is on the detection of Non-Alcoholic 

Fatty Liver Disease (NAFLD) from ultrasound (US) images. 

Digital image analysis (DIA) and machine learning (ML) 

have been used for the discrimination between healthy liver 

tissue and NAFLD-affected liver tissue. Models were two 

classifiers based on EfficientNet and K-Nearest Neighbors 

(KNN). The former achieved 87% accuracy, while the latter 

attained 85% accuracy. It has been revealed by this study that 

automatic detection of liver fat using texture-based features 

from the gray-level co-occurrence matrix (GLCM) can go a 

long way in enabling accurate diagnosis of NAFLD, thus 

proving to be quite helpful for physicians in the decision-

making process. 

In article [14], the authors discuss the increasing prevalence of 

Non-Alcoholic Fatty Liver Disease (NAFLD) and the 

challenges in its non-invasive diagnosis. While traditional 

methods like ultrasonography and clinical scoring systems 

have been suggested as alternatives to liver biopsy, their 

effectiveness has been questioned. This study evaluates the 

use of artificial intelligence (AI) to improve the diagnosis and 

quantification of NAFLD through ultrasound images. A 

systematic review of 49 studies shows that AI significantly 

enhances the diagnosis of NAFLD, Non-Alcoholic 

Steatohepatitis (NASH), and liver fibrosis. AI-supported 

systems showed improved accuracy, sensitivity, and 

specificity, but further prospective studies comparing AI with 

traditional methods are needed before real-world 

implementation. 
The papers herein reviewed have as their principal area of 

challenge the doubtful capability of their models to recognize 
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fatty liver disease from ultrasound images with any measure 

of correctness. They further include problems related to noise 

and motion artifacts that distort the acquired images. Also, 

challenges come about through variations in devices and 

imaging conditions; also, in specific cases, it has been pointed 

out that the models do not well identify different stages of the 

disease. There is also the need to improve the process of 

feature extraction from ultrasound images. 

It uses the AlexNet convolutional neural network to address 

complex feature extraction in ultrasound images, with 

subsequent use by an AdaBoost classifier for improved 

accuracy and reduced diagnostic error in the task. 

This combination marries well with the capability that 

AlexNet has in extracting rich and intricate features in images 

and further with AdaBoost’s power in boosting the 

performance of machine learning models. The approach 

drastically enhances diagnostic speed, accuracy, and 

efficiency over than that of the usual methods — especially 

in more complicated cases of data and feature analysis. 

The sections below will follow this organizing structure: 

Section 2 will elaborate on the basic concepts required for 

better comprehension of the proposed methodology. Section 

3 will introduce and explain the methodology, with details on 

the design of the CNN for feature extraction based on 

AlexNet and the AdaBoost classifier for disease 

classification. Section 4 will explain the dataset in detail, 

which includes ultrasound images and their labeled data for 

detecting fatty liver disease.  
Section 5 will account for the choice of evaluation metrics 

through which any level of performance toward the proposed 

model can be estimated. Section 6 will report on the 

experiments, analyzing the achieved classification 

accuracies, senilities, specificities, and other related 

measures.  
Section 7 closes by comparing the present method with a 

number found in the literature to showcase the best features 

of the present method. 
Section 8 concludes and discusses results on fatty liver 

disease detection and possible future directions. 

 

2. Basic concepts 

This section deals with an elaborate discussion of the basic 

principles and key concepts that are necessary to understand 

the method of this work. 

 

2.1. AlexNet 

AlexNet is a pretrained deep convolutional neural network 

that can extract complex hierarchical features from images. 

The convolutional layers in this network extract visual 

features in a manner where low-level visual features are 

extracted progressively, such as edges and lines in the initial 

layers, and high-level features of more complexity-like 

shapes, patterns, and objects are obtained in deeper layers. 

Starting from the preprocessed images, the images are fed 

with the AlexNet architecture, and the output of the last layer 

before the fully connected layers is the extracted features 

from the images. These would be numerical vectors, quite 

high-dimensional normally. This neural network contains in 

total 11 layers. For the extractor of the features from the 

images in this work, only the top 8 layers will be taken into 

consideration. The following describes the layers in the 

architecture of this neural network for feature extraction 
[15].The layer architecture for feature extraction in AlexNet is 

as follows: Layer 1: 96 11×11 convolut ional layersLayer 2: 

Using 3×3 convolut ional layers Layer 3: 256 5×5 

convolutional layers Layer 4: Using 3×3 convolutional 

layersLayer 5: 384 3×3 convolutional layersLayer 6: 384 3×3 

convolutional layers Layer 7: 256 3×3 convolutional layers • 

Layer 8: This is a pooling layer with a size of 3×3. • Layer 9: 

Fully connected layer with a size of 4096. • Layer 10: Fully 

connected layer with a size of 4096. • Layer 11: Fully 

connected layer with a size of 1000. 

The tasks performed by each of these layers are described in 

the following sections. 

Layer 1: First Convolutional Layer This layer is a 

convolutional layer that takes as input an image of size 

3×224×224. It applies 96 kernels of size 11×11 with a stride 

of 4 and padding equal to 2. The convolution operation is 

performed on the input image, and the output consists of 96 

feature maps of size 55×55. These are then passed through a 

linear activation function and forwarded to the next layer. 

Layer 2: First Pooling Layer The output of the first layer is 

passed to a pooling layer. Here, the pooling process is done 

using a kernel of size 3×3, stride of 2, and padding equal to 

0. The output of this layer consists of 96 feature maps of size 

27×27, which are passed to the next layer. 

Layer 3: Second Convolutional Layer In this stage, the 

output from the previous layer (used as input for this layer) 

undergoes convolution with 256 kernels of size 5×5, stride of 

1, and padding equal to 2. The output consists of feature maps 

of size 256×27×27, which are then passed through a linear 

activation function and forwarded to the next layer. 

Layer 4: Second Pooling Layer It receives the output from 

the previous convolution layer and operates max-pooling 

with a 3×3 kernel, a stride of 2, and padding equal to 0. It will 

have 256 features of size 13×13 as its output, which will now 

be passed through a linear activation function to the next 

layer. 

Layer 5: Third Convolutional Layer It takes the input as 

the output of the previous layer (256 feature maps of 13 x 13). 

Convolutions are performed with 384 kernels of size 3 x 3, a 

stride of 1, and padding equal to 1. The output will be 

comprising 384 feature maps of 13 x 13 which, before getting 

passed on to the next layer, are passed through a linear 

activation function. 

Layer 6: Fourth Convolutional Layer This layer conducts 

the convolution operation on the output of the previous layer 

similar to what is done in Layer 5 convolution. It produces 

384, 13x13 sized feature maps that are then linearly activated 

and passed onto the next layer. 

Layer 7: Fifth Convolutional Layer These are again 

convolutions, but the kernel size is 3×3 with a total of 256 

kernels, a stride of 1, and this time the padding is equal to 1 

on the output from the previous layer. The output consists of 

256 features maps of size 13×13 which are then passed 

through a linear activation function and fed to the next layer. 

Layer 8: Third Pooling Layer This layer would take input 

from the previous layer (256 feature maps of size 13×13) and 

carries out pooling with kernel size 3×3, stride 2, padding 

same 0. It results in 256 feature maps of size 6×6, output of 

which is to given through linear activation function 

forwarded to the next layer. 

 

2.2. Adaboost 

The AdaBoost algorithm is one of the powerful and popular 

algorithms for data classification. It develops a decision tree 

that divides the training data into various classes, and test data 

are finally classified using this tree [16]. Steps in training the 
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AdaBoost algorithm are as follows [17]: 

Begin Training: All the initial training data are taken as an 

input to the algorithm. 

2. Feature Selection: In this step, the algorithm chooses 

appropriate features that can well separate the categories of 

the dataset. Features are selected on the basis of information 

gain or Gini. These parameters show how well each feature 

indicates the level of classification of the data being worked 

on. 

3. Building the Decision Tree: A decision tree is built using 

the features that have been selected. The decision tree divides 

the data into different categories using conditional rules. Each 

node in the decision tree examines a feature, and based on the 

value of that feature, it directs the data to one of the branches 

of the tree. 

4. Checking Stopping Conditions: At each stage of building 

the decision tree, stopping conditions are checked. These 

conditions could include factors such as the maximum depth 

of the tree, the minimum number of samples at each leaf, or 

the minimum population for each category. For example, if 

the maximum depth of the tree is set to 5, when the tree 

reaches a depth of 5, the tree-building process stops, and the 

final decision tree is obtained. Similarly, if the number of 

samples at any leaf is less than a minimum threshold, the tree 

might need to use a common label for those samples instead 

of a precise classification. In this case, the training stops, and 

the final decision tree is created. Properly setting the stopping 

conditions can improve the performance and efficiency of the 

AdaBoost algorithm. 

5. Backtracking and Building Leaves: When a stopping 

condition is met, the decision tree returns to the backtracking 

step and labels the leaves. At this stage, each leaf belongs to 

a category, and its label is used as the output of the algorithm 

for test data. The final decision tree includes all the leaves 

that have fully classified the data. 

6. Prediction and Evaluation: Using the constructed 

decision tree, we can predict the test data. By applying the 

test data to the decision tree, each data point is assigned to a 

specific leaf, and the corresponding label is displayed in the 

algorithm’s output. Then, the algorithm’s performance can be 

evaluated by comparing the predicted labels with the actual 

labels of the test data. 

 
3. Methodology 

In this paper, our goal is to diagnose fatty liver disease from 

ultrasound images. One of the most important steps in 

diagnosing this disease is feature extraction from images. To 

achieve this, we use the pre-trained convolutional neural 

network AlexNet. This neural network has been pre-trained 

on large datasets like IMAGE NET and does not require re-

training. AlexNet consists of 11 layers, six of which are 

convolutional layers. The convolutional layers extract 

features from images using windowing. 

In this study, instead of using fully connected layers for 

classification, the features extracted from this network are 

transferred to the AdaBoost algorithm for classification. 

Using this method allows us to improve classification 

accuracy because the fully connected layers actually function 

like a multi-layer perceptron, and using the AdaBoost 

classifier improves performance. 
In the image preprocessing stage, the input images are first 

resized to 224x224 pixels. This is the standard size for input 

into the AlexNet convolutional neural network. Since the 

AlexNet convolutional neural network is insensitive to noise 

and lighting changes, this feature enhances its performance 

in detecting and classifying ultrasound images accurately and 

resiliently to lighting variations. After resizing the images, no 

impact from noise or lighting changes is applied to the 

detection process, and only the measurement of important 

features from the images is considered. 
After preprocessing and resizing the images, the next step is 

feature extraction. In this step, the AlexNet neural network is 

used, which is specifically designed to extract complex and 

hierarchical features from images.  

The convolutional layers of this network sequentially extract 

low-level visual features such as edges and lines, and as we 

progress to higher layers, more complex visual features such 

as objects and intricate patterns are identified. The features 

extracted from the higher layers are presented as high-

dimensional numerical vectors. In this research, only the first 

eight layers of the AlexNet neural network are used for 

feature extraction. 
After feature extraction, the features are normalized. 

Normalization means adjusting the features so that they have 

a zero mean and unit variance. This process improves the 

performance of classifiers and can resolve scalability issues, 

as shown in Equation 1. After normalizing the features, the 

data is split into training and testing sets. Typically, 70% of 

the data is used for training, and 30% is used for model 

evaluation and testing. 
 

𝑍𝑖 =
𝑋𝑖−𝜇

𝜎
  (1) 

 

After extracting and normalizing the features, the AdaBoost 

classifier is used for data classification. AdaBoost is a well-

known and powerful algorithm for classification, which 

divides the training data into several categories using 

decision trees and then uses them to classify the test data. 

Based on the features extracted from the AlexNet neural 

network, this algorithm is capable of accurately categorizing 

the data into different classes.
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The flowchart of the proposed method can be seen in the following section 

 

 
 

Fig 1: Flowchart of the proposed method 

 

4. Dataset 

In this paper, a database known as the Zenodo repository is 

used. This database can serve as a valuable resource for 

researchers interested in fatty liver imaging. It contains 

ultrasound images from 110 severely obese patients (40 men 

and 70 women) with an average age of 40.1 ± 9.1 years and 

an average body mass index of 45.9 ± 5.6, collected at the 

Medical University of Warsaw, Poland.

 

 
 

Fig 2: Part of the dataset images 

 

5. Evaluation Metrics 

In this paper, the following evaluation criteria are used to 

assess the performance of the proposed method in diagnosing 

fatty liver disease using ultrasound images: 

1. Accuracy: The ratio of the number of samples correctly 

classified to the total number of samples. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

 
2. Coverage: The ratio of the number of positive samples 
correctly identified as positive to the total number of actual 
positive samples. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑅𝑒𝑎𝑙𝑦 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃

∑ 𝑇𝑒𝑠𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
  

 
3. Confusion Matrix: A matrix that shows the number of 

samples from each class that have been correctly and 

incorrectly classified. 
These metrics can be useful in evaluating the accuracy and 
performance capability of the proposed method for detecting 
fatty liver disease from ultrasound images. 

 
6. Simulation results 

In this section, we will review the performance of the results 

of the proposed method in order to diagnose fatty liver 

disease.The simulations were conducted using MATLAB 

2022 on a system with an Intel Core i5 cpu , 3 GB RAM 

First, after receiving the images from the dataset, the 

preprocessing step must be performed. In this step, the 

dimensions of the images are resized to the appropriate size 

for input to the convolutional neural network, which is 

224x224. In Figure 3, a sample of the read image and its 

resized version can be seen. 

 
 

Fig 3: An example of the read and resized image 

 
After preprocessing the images, the AlexNet neural network 

will automatically extract a 1000-dimensional feature vector. 

This vector contains potential features from the images that 

are obtained by the neural network during training, based on 

various optimization algorithms and utilizing all layers of the 

network. These features are typically representative of 

important information from the images and are used as input 

for classification. The features obtained from the neural 

network were normalized, and as a result, the feature values 

fall within the range between 0 and 1. A portion of the 

features after normalization is shown in Figure 4.

 

 
 

Fig 4: Part of the normalized features 

 
After preparing and normalizing the features extracted by the 

AlexNet neural network, these features were provided to the 

AdaBoost classifier for classification. The specifications of 

the AdaBoost algorithm used in this paper are provided in 

Table 1.

 
Table 1: Adaboost classifier specifications 

 

Classifier of Adaboost Algorithm Name 

1000 neurons in the input layer The number of neurons in the input layer 

2 neurons in the output layer The number of neurons in the output layer 

Improving Classification Accuracy and Performance by Combining Weak Classifiers Goal 

Combining Multiple Weak Classifiers Using the AdaBoost Algorithm Training Process 

Calculating Classification Accuracy and Updating Weights Weak Classifier Performance 

Combining weak classifiers based on their weights Strong Classifier 

Reducing classification error, using each weak classifier Advantages 

Determining initial weights, training weak classifiers, updating weights Training Steps 

Using the AdaBoost classifier for fatty liver disease detection Use in this thesis 

 

In the following section, we will review the results obtained 

for both the training and test datasets. The performance 

evaluation results of the proposed method for each dataset 

will be examined separately. 
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In Figure 5, the results of the training dataset are displayed in 

the form of a confusion matrix. This matrix is a 3x3 matrix, 

and each entry represents the number of correctly classified 

samples. The entries of this matrix are defined as follows: 

 

Entry (1,1): The number of samples correctly classified as 

positive class (fatty liver disease). 

Entry (1,2): The number of samples incorrectly classified as 

negative class (healthy liver). 

Entry (2,1): The number of samples incorrectly classified as 

positive class. 

Entry (2,2): The number of samples correctly classified as 

negative class 

Additionally, based on the confuse on matrix, we can 

calculate other evaluation metrics. For example: 

Accuracy: This metric shows the ratio of correctly classified 

samples to the total number of samples. The accuracy 

calculation based on the confusion matrix is as follows: 

Accuracy = (Entry (1,1) + Entry (2,2)) / (Entry (1,1) + Entry 

(1,2) + Entry (2,1) + Entry (2,2)) 

Recall (True Positive Rate): This metric shows how well the 

classifier identifies actual positive samples. Recall 

calculation based on the confusion matrix is as follows: 

 

Recall = Entry (1,1) / (Entry (1,1) + Entry (1,2)) 

 

Precision (Positive Predictive Value): This metric shows how 

well the classifier identifies positive samples that actually 

have the disease. Precision calculation based on the confusion 

matrix is as follows: 

Precision = Entry (1,1) / (Entry (1,1) + Entry (2,1)) 

By examining the values of these metrics in the confusion 

matrix, we can more accurately assess how successful the 

proposed method is and how well it identifies fatty liver 

disease. 

 

 
 

Fig 5: Confusion Matrix of the Training Dataset for the AdaBoost Classifier 

 

As explained above, it can be observed that the accuracy 

obtained for the training dataset is 100%. This indicates that 

the AdaBoost classifier has been able to correctly adjust its 

parameters using the training dataset. 

Analysis of Results Obtained from the Test Dataset 

In order to analyze and evaluate the results of the proposed 

method, the test dataset was used as input to the AdaBoost 

classifier, and the results are presented in the form of figures 

and charts. 

Figure 6 shows the results related to the test dataset in the 

form of a confusion matrix. Based on the previous section, it 

can be stated that the percentage of data correctly classified 

into the fatty liver class is 59%, the percentage of data in the 

healthy class is 29.5%, 4.9% of the data were mistakenly 

classified into the fatty liver class, and 6.6% were mistakenly 

classified into the healthy class. Finally, the obtained 

accuracy is 88.5%.
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Fig 6: Confusion Matrix of AdaBoost Classifier on the Test Dataset 

 

In Figure 7, the results for the test dataset are presented based 

on the Receiver Operating Characteristic (ROC) curve. The 

ROC curve represents the ratio of true positives to false 

positives for the AdaBoost classifier. In this curve, the higher 

the curves are above the 45-degree line, the more accurate the 

classifier is in distinguishing between correct and incorrect 

predictions. Ultimately, this indicates that the classifier has 

classified the test data with greater accuracy. 

 

 
 

Fig 7: ROC Curve for Test Data 
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The results obtained for the test data metrics are shown in 

Figure 8. According to this graph, the accuracy of the test data 

is 88.25%. This metric indicates that 88.25% of the test 

samples were correctly classified by the classifier.  

Additionally, the precision for the test data is 92.3%. This 

metric shows that 92.3% of the instances predicted as positive 

by the classifier are indeed positive.  

The recall for the test data is 90%. This metric indicates that 

90% of the actual positive samples were correctly identified 

by the classifier. Finally, the F1 score is 91.1%. The F1 score 

is a combined metric that takes both precision and recall into 

account and is calculated as the geometric mean of precision 

and recall. A high F1 score of 91.1% suggests that the 

classifier performs well. 

 

 
 

Fig 8: Evaluation Metrics Results for the Test Dataset 

 

Overall, based on the obtained results, the proposed method 

for detecting fatty liver disease using ultrasound images 

demonstrates good performance and is capable of accurately 

classifying the test samples. 

 

7. Comparison 

In Table 2, the results for the test data obtained with Adaboost 

classifier are compared with other state-of-the-art methods. 

All works have used the same dataset; that is the reason for 

this note of comparison required to be specified here. 

Accuracy method 

82.65% NB[18] 

76.96% LR[18] 

81.85% ANN[18] 

88.5% Alexnet+Adaboost 

 

Results in Table 2 indicate that, by using the AlexNet neural 

network and AdaBoost classifier with a feature extraction 

method, an average 5% enhanced level of accuracy is 

obtained for the feature described over those other methods 

presented. The reason for such a difference in accuracy is that 

the powerful, deep etwork AlexNet can extract very complex 

features, in addition to the AdaBoost classifier, which 

enhances the accuracy of diagnoses of liver disease to a great 

extent. Such results can state that the approach to the rule 

paper must be approved as an effective and superior one for 

diagnosis liver disease. 

 

8. Conclusion 

Fatty liver disease is considered as one of the most common 

precursors to severe liver pathologies and general health-

related complications. The identification of this disease, with 

the highest quality and least loss of information, is very 

important for its further effective and optimal treatment. 

Innovations in this field and the possibility of seeing resulted 

ultrasound sections on technological monitors opened up 

some new opinions for diagnosing such a disease as fatty 

liver. Previous studies offer some points of view on research 

designed for diagnosing fatty liver using ultrasound imaging. 

In proceeding work on this subject, various features are 

juxtaposed using traditional approaches, for instance by 

Support Vector Machine (SVM), the nearest neighbors of a 

point, or simple neural networks. In some cases, classification 

is performed by routine methods such as decision trees and 

fuzzy logic. It is admitted that these methods are very simple 

and apply, but do not give more than that in terms of 

diagnostic accuracy. 

This paper discusses the method of diagnosis of hepatic 

steatosis through ultrasound images. Diagnosis of the hepatic 

steatosis achieved good results by using the AlexNet neural 

network for feature extraction and the AdaBoost classifier for 

decision-making.  

When we used AlexNet neural network features for the 

extraction and AdaBoost classification decision-making, we 

achieved 78% accuracy in detecting fatty liver disease. The 

most important advance over previous works in this field is 

the use of the AlexNet neural network. Being a deep network 

capable of extracting complex and non-linear characteristics 

from images, it brought a huge increase in diagnostic 

accuracy of fatty liver disease. The experimental results gave 
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the accuracy of 88.5% for this method, which is 5% more 

than for others. On the whole, with the developed approach, 

meaningful information that made up unique features of 

ultrasound images on the topic of fatty liver disease was 

obtained. The method can be very helpful to physicians and 

healthcare specialists in making information relevant to 

improved diagnostic and treatment decision processes. 
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