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Introduction

With the increasing prevalence of fatty liver disease, it has become a significant global health concern due to its potential to lead
to severe liver complications and other systemic disorders. Early and accurate diagnosis is essential for managing this condition
and preventing its progression. Traditional diagnostic methods, such as biopsy and blood tests, are often invasive, time-
consuming, or insufficiently precise M. Recently, advancements in medical imaging, particularly ultrasound, have opened new
avenues for non-invasive diagnosis of fatty liver disease. However, manual interpretation of ultrasound images is prone to
subjectivity and variability among clinicians, which may affect diagnostic accuracy 1. This underscores the necessity of
automated diagnostic systems that combine the power of deep learning techniques with robust classification methods to enhance
precision and reliability. Leveraging the feature extraction capabilities of convolutional neural networks like AlexNet, paired
with advanced classifiers such as AdaBoost, offers a promising solution for addressing these challenges.

Numerous studies have explored different approaches to enhance fatty liver detection using Ultrasound images.

In article ¥, the authors diagnosed fatty liver disease through ultrasound images using deep convolutional learning. In this study,
90 ultrasound images from fatty liver patients and 51 images from healthy individuals were used. The models trained on
combined liver-kidney-liver (CLKL) images achieved an accuracy of 80.1%, sensitivity of 86.2%, and specificity of 80.5% in
detecting fatty liver disease. The regression model also showed a moderate accuracy (R2 = 0.633) in predicting fat fraction
values, indicating the potential of deep learning-based ultrasound for diagnosing fatty liver disease.

In article &, the authors developed neural network-based models to detect and classify the severity of Non-Alcoholic Fatty Liver
Disease (NAFLD) using B-mode ultrasound images. This study compared several pre-trained convolutional neural networks,
with ResNet-50 v2 achieving the best performance. The final model showed high diagnostic accuracy with an ROC area of 0.985
for detecting any severity and 0.996 for moderate to severe steatosis. These results suggest that this model works with non-
invasive, cost-effective methods, offering a feasible alternative for clinical applications. However, challenges like device
variations and motion artifacts should be addressed.
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In article [, the authors developed a machine learning (ML)
model to differentiate Non-Alcoholic Fatty Liver Disease
(NAFLD) from healthy liver tissue in children using
ultrasound image texture analysis. The study utilized texture
features extracted from regions of interest (ROI) in the
ultrasound images, analyzed with ImageJ and MAZDA
software. The final model, a combination of support vector
machine algorithms, neural networks, and gradient boosting,
achieved high accuracy in distinguishing NAFLD from
normal liver images. The study highlights the potential of ML
models using texture features for precise NAFLD
classification.

In article ¥, the authors propose a new computer-aided
diagnosis (CAD) framework for detecting fatty liver disease
using convolutional neural networks and transfer learning
with a pre-trained VGG-16 model. This framework achieved
a classification accuracy of 90.6% for detecting fatty liver
and normal images, providing better diagnostic efficiency
and further supporting radiologists in patient management.
In article ], the authors proposed a convolutional neural
network (CNN) for detecting fatty liver disease, tailored to
the features of B-mode ultrasound images. Experimental
results show that the CNN-based model achieved satisfactory
classification performance and outperformed traditional
methods for classifying fatty liver ultrasound images,
emphasizing the potential of CNNs in improving diagnostic
accuracy.

In [ authors implemented deep learning in the detection of
NAFLD via ultrasound images. A total of 710 ultrasound
images of NAFLD were classified using three models of
convolutional neural network (VGG16, ResNet50, and
Inception-v3) to achieve accuracies of 66.2%, 58.5%, and
59.2%, respectively. Two new parameters were introduced to
enhance the accuracies: ultrasound echo attenuation
coefficient (0), and ROD. A multi-input deep learning
network was created based on the VGG16 model, combining
ultrasound image analysis with 6 and ROD, which showed
strong diagnostic capacities (especially for moderate and
severe fatty liver) with an AUC of 0.95 and 77.5% improved
accuracy. The research thus paves the way for doctors to
diagnose NAFLD accurately and efficiently by its
methodology.

In reference ), authors applied ultrasound in combination
with artificial intelligence for the diagnosis of NAFLD as a
non-invasive and cheap diagnostic tool. Only 120 clinically
suspected NAFLD patients along with 10 healthy volunteers
were considered for this study. MRl (MR-PDFF) determined
the amount of fat in the liver as the reference standard. The
ultrasonography images were taken for analysis from the 10
different sites of the liver lobes. A supervised machine-
learning model was developed and tested. During the internal
validation, the model recorded an accuracy of 0.941, recall at
88.2%, and precision at 89.0. For the test set, sensitivity
exhibited by the model was 72.2%, specificity was 94.6%,
PPV reached 93.1%, and the overall accuracy was 83.4%.
These outputs hint that this Al-enabled ultrasound model
might be used as a screening tool for NAFLD, particularly
within high-risk populations.

In %, the authors introduce a machine learning model for
fatty liver disease (FLD) detection with multiple ultrasound
images. Ultrasound has wide applications and is inexpensive;
however, it often generates multiple images of the target
tissue. A model is trained on these ultrasound images using a
graph neural network after extracting features by a pre-
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trained image encoder. These embeddings produced are fed
into a classifier for detecting FLD. The model was developed
using a dataset of ultrasound images collected by Taiwan's
Biobank. Better classifier performance was developed by the
authors through consistent prediction under a risk control
setting, ensuring high accuracy guarantees. This approach is
aimed at increasing the dependability and diagnostic
performance of detecting fatty livers from ultrasound images.
In I the authors contributed to the prediction of Non-
Alcoholic Fatty Liver Disease (NAFLD) through machine
learning algorithms. They also proposed an alternative
method that combines traditional data augmentation with
Generative Adversarial Networks to produce synthetic
medical images for the extension of training datasets and
model performances. Many deep neural network
architectures were tried, and the most proper model achieved
accuracy, recall, precision, and specificity of 96%, 93%,
95%, and 96%, respectively, outperforming models like
SegNet. The study proved that synthetic images improve the
effectiveness of GANSs in the classification of NAFLD with
real-world data, a very promising avenue in the prediction of
liver diseases.

In reference 14, the use of machine learning techniques,
particularly Generative Adversarial Networks (GANSs), by
the authors, for the prediction of NAFLD is discussed. The
authors merge conventional data augmentation with synthetic
images produced by GANSs to increase the training dataset.
This approach improved model performance, with the GAN-
based model surpassing models such as SegNet, having an
accuracy of 96%, recall of 93%, precision of 95%, and
specificity of 96%. Which indicated that in the presence of
both synthetic and real-world data, NAFLD classification
was greatly improved and which can be a promising way to
better predictions about liver diseases.

In the work 131, the focus is on the detection of Non-Alcoholic
Fatty Liver Disease (NAFLD) from ultrasound (US) images.
Digital image analysis (DIA) and machine learning (ML)
have been used for the discrimination between healthy liver
tissue and NAFLD-affected liver tissue. Models were two
classifiers based on EfficientNet and K-Nearest Neighbors
(KNN). The former achieved 87% accuracy, while the latter
attained 85% accuracy. It has been revealed by this study that
automatic detection of liver fat using texture-based features
from the gray-level co-occurrence matrix (GLCM) can go a
long way in enabling accurate diagnosis of NAFLD, thus
proving to be quite helpful for physicians in the decision-
making process.

In article [*4], the authors discuss the increasing prevalence of
Non-Alcoholic Fatty Liver Disease (NAFLD) and the
challenges in its non-invasive diagnosis. While traditional
methods like ultrasonography and clinical scoring systems
have been suggested as alternatives to liver biopsy, their
effectiveness has been questioned. This study evaluates the
use of artificial intelligence (Al) to improve the diagnosis and
quantification of NAFLD through ultrasound images. A
systematic review of 49 studies shows that Al significantly
enhances the diagnosis of NAFLD, Non-Alcoholic
Steatohepatitis (NASH), and liver fibrosis. Al-supported
systems showed improved accuracy, sensitivity, and
specificity, but further prospective studies comparing Al with
traditional methods are needed before real-world
implementation.

The papers herein reviewed have as their principal area of
challenge the doubtful capability of their models to recognize
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fatty liver disease from ultrasound images with any measure
of correctness. They further include problems related to noise
and motion artifacts that distort the acquired images. Also,
challenges come about through variations in devices and
imaging conditions; also, in specific cases, it has been pointed
out that the models do not well identify different stages of the
disease. There is also the need to improve the process of
feature extraction from ultrasound images.

It uses the AlexNet convolutional neural network to address
complex feature extraction in ultrasound images, with
subsequent use by an AdaBoost classifier for improved
accuracy and reduced diagnostic error in the task.

This combination marries well with the capability that
AlexNet has in extracting rich and intricate features in images
and further with AdaBoost’s power in boosting the
performance of machine learning models. The approach
drastically enhances diagnostic speed, accuracy, and
efficiency over than that of the usual methods — especially
in more complicated cases of data and feature analysis.
The sections below will follow this organizing structure:
Section 2 will elaborate on the basic concepts required for
better comprehension of the proposed methodology. Section
3 will introduce and explain the methodology, with details on
the design of the CNN for feature extraction based on
AlexNet and the AdaBoost classifier for disease
classification. Section 4 will explain the dataset in detail,
which includes ultrasound images and their labeled data for
detecting fatty liver disease.

Section 5 will account for the choice of evaluation metrics
through which any level of performance toward the proposed
model can be estimated. Section 6 will report on the
experiments, analyzing the achieved classification
accuracies, senilities, specificities, and other related
measures.

Section 7 closes by comparing the present method with a
number found in the literature to showcase the best features
of the present method.

Section 8 concludes and discusses results on fatty liver
disease detection and possible future directions.

2. Basic concepts

This section deals with an elaborate discussion of the basic
principles and key concepts that are necessary to understand
the method of this work.

2.1. AlexNet

AlexNet is a pretrained deep convolutional neural network
that can extract complex hierarchical features from images.
The convolutional layers in this network extract visual
features in a manner where low-level visual features are
extracted progressively, such as edges and lines in the initial
layers, and high-level features of more complexity-like
shapes, patterns, and objects are obtained in deeper layers.
Starting from the preprocessed images, the images are fed
with the AlexNet architecture, and the output of the last layer
before the fully connected layers is the extracted features
from the images. These would be numerical vectors, quite
high-dimensional normally. This neural network contains in
total 11 layers. For the extractor of the features from the
images in this work, only the top 8 layers will be taken into
consideration. The following describes the layers in the
architecture of this neural network for feature extraction
351 The layer architecture for feature extraction in AlexNet is
as follows: Layer 1: 96 11x11 convolut ional layersLayer 2:
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Using 3x3 convolut ional layers Layer 3: 256 5x5
convolutional layers Layer 4: Using 3x3 convolutional
layersLayer 5: 384 3x3 convolutional layersLayer 6: 384 3x3
convolutional layers Layer 7: 256 3x3 convolutional layers ¢
Layer 8: This is a pooling layer with a size of 3x3. « Layer 9:
Fully connected layer with a size of 4096. « Layer 10: Fully
connected layer with a size of 4096. « Layer 11: Fully
connected layer with a size of 1000.

The tasks performed by each of these layers are described in
the following sections.

Layer 1: First Convolutional Layer This layer is a
convolutional layer that takes as input an image of size
3x224x224. It applies 96 kernels of size 11x11 with a stride
of 4 and padding equal to 2. The convolution operation is
performed on the input image, and the output consists of 96
feature maps of size 55x55. These are then passed through a
linear activation function and forwarded to the next layer.
Layer 2: First Pooling Layer The output of the first layer is
passed to a pooling layer. Here, the pooling process is done
using a kernel of size 3x3, stride of 2, and padding equal to
0. The output of this layer consists of 96 feature maps of size
27x27, which are passed to the next layer.

Layer 3: Second Convolutional Layer In this stage, the
output from the previous layer (used as input for this layer)
undergoes convolution with 256 kernels of size 5x5, stride of
1, and padding equal to 2. The output consists of feature maps
of size 256x27x27, which are then passed through a linear
activation function and forwarded to the next layer.

Layer 4: Second Pooling Layer It receives the output from
the previous convolution layer and operates max-pooling
with a 3x3 kernel, a stride of 2, and padding equal to 0. It will
have 256 features of size 13x13 as its output, which will now
be passed through a linear activation function to the next
layer.

Layer 5: Third Convolutional Layer It takes the input as
the output of the previous layer (256 feature maps of 13 x 13).
Convolutions are performed with 384 kernels of size 3 x 3, a
stride of 1, and padding equal to 1. The output will be
comprising 384 feature maps of 13 x 13 which, before getting
passed on to the next layer, are passed through a linear
activation function.

Layer 6: Fourth Convolutional Layer This layer conducts
the convolution operation on the output of the previous layer
similar to what is done in Layer 5 convolution. It produces
384, 13x13 sized feature maps that are then linearly activated
and passed onto the next layer.

Layer 7: Fifth Convolutional Layer These are again
convolutions, but the kernel size is 3x3 with a total of 256
kernels, a stride of 1, and this time the padding is equal to 1
on the output from the previous layer. The output consists of
256 features maps of size 13x13 which are then passed
through a linear activation function and fed to the next layer.
Layer 8: Third Pooling Layer This layer would take input
from the previous layer (256 feature maps of size 13x13) and
carries out pooling with kernel size 3x3, stride 2, padding
same 0. It results in 256 feature maps of size 6x6, output of
which is to given through linear activation function
forwarded to the next layer.

2.2. Adaboost

The AdaBoost algorithm is one of the powerful and popular
algorithms for data classification. It develops a decision tree
that divides the training data into various classes, and test data
are finally classified using this tree (11, Steps in training the
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AdaBoost algorithm are as follows [171;

Begin Training: All the initial training data are taken as an
input to the algorithm.

2. Feature Selection: In this step, the algorithm chooses
appropriate features that can well separate the categories of
the dataset. Features are selected on the basis of information
gain or Gini. These parameters show how well each feature
indicates the level of classification of the data being worked
on.

3. Building the Decision Tree: A decision tree is built using
the features that have been selected. The decision tree divides
the data into different categories using conditional rules. Each
node in the decision tree examines a feature, and based on the
value of that feature, it directs the data to one of the branches
of the tree.

4. Checking Stopping Conditions: At each stage of building
the decision tree, stopping conditions are checked. These
conditions could include factors such as the maximum depth
of the tree, the minimum number of samples at each leaf, or
the minimum population for each category. For example, if
the maximum depth of the tree is set to 5, when the tree
reaches a depth of 5, the tree-building process stops, and the
final decision tree is obtained. Similarly, if the number of
samples at any leaf is less than a minimum threshold, the tree
might need to use a common label for those samples instead
of a precise classification. In this case, the training stops, and
the final decision tree is created. Properly setting the stopping
conditions can improve the performance and efficiency of the
AdaBoost algorithm.

5. Backtracking and Building Leaves: When a stopping
condition is met, the decision tree returns to the backtracking
step and labels the leaves. At this stage, each leaf belongs to
a category, and its label is used as the output of the algorithm
for test data. The final decision tree includes all the leaves
that have fully classified the data.

6. Prediction and Evaluation: Using the constructed
decision tree, we can predict the test data. By applying the
test data to the decision tree, each data point is assigned to a
specific leaf, and the corresponding label is displayed in the
algorithm’s output. Then, the algorithm’s performance can be
evaluated by comparing the predicted labels with the actual
labels of the test data.

3. Methodology

In this paper, our goal is to diagnose fatty liver disease from
ultrasound images. One of the most important steps in
diagnosing this disease is feature extraction from images. To
achieve this, we use the pre-trained convolutional neural
network AlexNet. This neural network has been pre-trained
on large datasets like IMAGE NET and does not require re-
training. AlexNet consists of 11 layers, six of which are
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convolutional layers. The convolutional layers extract
features from images using windowing.

In this study, instead of using fully connected layers for
classification, the features extracted from this network are
transferred to the AdaBoost algorithm for classification.
Using this method allows us to improve classification
accuracy because the fully connected layers actually function
like a multi-layer perceptron, and using the AdaBoost
classifier improves performance.

In the image preprocessing stage, the input images are first
resized to 224x224 pixels. This is the standard size for input
into the AlexNet convolutional neural network. Since the
AlexNet convolutional neural network is insensitive to noise
and lighting changes, this feature enhances its performance
in detecting and classifying ultrasound images accurately and
resiliently to lighting variations. After resizing the images, no
impact from noise or lighting changes is applied to the
detection process, and only the measurement of important
features from the images is considered.

After preprocessing and resizing the images, the next step is
feature extraction. In this step, the AlexNet neural network is
used, which is specifically designed to extract complex and
hierarchical features from images.

The convolutional layers of this network sequentially extract
low-level visual features such as edges and lines, and as we
progress to higher layers, more complex visual features such
as objects and intricate patterns are identified. The features
extracted from the higher layers are presented as high-
dimensional numerical vectors. In this research, only the first
eight layers of the AlexNet neural network are used for
feature extraction.

After feature extraction, the features are normalized.
Normalization means adjusting the features so that they have
a zero mean and unit variance. This process improves the
performance of classifiers and can resolve scalability issues,
as shown in Equation 1. After normalizing the features, the
data is split into training and testing sets. Typically, 70% of
the data is used for training, and 30% is used for model
evaluation and testing.

_ Xi—u

Zi=—— 1)
After extracting and normalizing the features, the AdaBoost
classifier is used for data classification. AdaBoost is a well-
known and powerful algorithm for classification, which
divides the training data into several categories using
decision trees and then uses them to classify the test data.
Based on the features extracted from the AlexNet neural
network, this algorithm is capable of accurately categorizing
the data into different classes.
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The flowchart of the proposed method can be seen in the following section

Get pictures

Pre-processing: changing the dimensions of images ]

extract features from images

-
Using the pre-trained neural network of AlexNet in order to }

[ Not using fully connected layers and removing fully connected layers and ]

[ Extracted feature processing and feature segmentation ]

[ Ethical classifier training using training dataset ]

Evaluation using test data ]

Fig 1: Flowchart of the proposed method

4. Dataset ultrasound images from 110 severely obese patients (40 men
In this paper, a database known as the Zenodo repository is and 70 women) with an average age of 40.1 + 9.1 years and
used. This database can serve as a valuable resource for an average body mass index of 45.9 + 5.6, collected at the
researchers interested in fatty liver imaging. It contains Medical University of Warsaw, Poland.

Fig 2: Part of the dataset images

5. Evaluation Metrics fatty liver disease using ultrasound images:
In this paper, the following evaluation criteria are used to 1. Accuracy: The ratio of the number of samples correctly
assess the performance of the proposed method in diagnosing classified to the total number of samples.
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> True Positive+), True Negative
TP+TN+FP+FN

Accuracy =

2. Coverage: The ratio of the number of positive samples
correctly identified as positive to the total number of actual
positive samples.

Y True Positive
Recall = ——F——
Y. Realy Positive

»TP

Y Test Outcome Positive

Precision =

3. Confusion Matrix: A matrix that shows the number of
samples from each class that have been correctly and
incorrectly classified.

These metrics can be useful in evaluating the accuracy and
performance capability of the proposed method for detecting
fatty liver disease from ultrasound images.

6. Simulation results

In this section, we will review the performance of the results
of the proposed method in order to diagnose fatty liver
disease.The simulations were conducted using MATLAB
2022 on a system with an Intel Core i5 cpu, 3 GB RAM
First, after receiving the images from the dataset, the
preprocessing step must be performed. In this step, the
dimensions of the images are resized to the appropriate size
for input to the convolutional neural network, which is
224x224. In Figure 3, a sample of the read image and its
resized version can be seen.
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Fig 3: An example of the read and resized image

After preprocessing the images, the AlexNet neural network
will automatically extract a 1000-dimensional feature vector.
This vector contains potential features from the images that
are obtained by the neural network during training, based on
various optimization algorithms and utilizing all layers of the
network. These features are typically representative of
important information from the images and are used as input
for classification. The features obtained from the neural
network were normalized, and as a result, the feature values
fall within the range between 0 and 1. A portion of the
features after normalization is shown in Figure 4.

5 6 7 8
0 00397 7.4113e-04 0.0591
0 00314  41489e-04 0.0366
0 00275 7.9433e-04 0.0378
01111 00332 1.9740e-04 0.0248
0.1986 0.0509 0.0027 0.0390
0 00303 2.3759e-04 0.0355
0.1040 00366 2.9314e-04 0.0307
0 00417 1.5839e-04 0.0343
0.6418 00361 1.8676e-04 0.0626
0 0 27423e-04 0.0638
0 00444 2.2577e-04 0.0355

1 2 3 4
1 01749 0.0851 0.0414
2 0.0012 0.1005 0.0780 0.0343

| 3 0.0095 0.2163 0.0757 0

4 0.0012 0.1052 0.0780 0.0272

B 0 01619 0.0473 0.0414

| 6 0.0059 01371 0.0875 0

E 0.0035 0.0922 0.0591 0.0378
8 00118 0.1359 0 0

|9 0.0024 0.2329 0.0827 0.0532

10 0.0095 01478 01135 0

1 0.0047 0.1300 0.1087 0

Fig 4: Part of the normalized features

After preparing and normalizing the features extracted by the
AlexNet neural network, these features were provided to the
AdaBoost classifier for classification. The specifications of

the AdaBoost algorithm used in this paper are provided in
Table 1.

Table 1: Adaboost classifier specifications

Algorithm Name

Classifier of Adaboost

The number of neurons in the input layer

1000 neurons in the input layer

The number of neurons in the output layer

2 neurons in the output layer

Goal Improving Classification Accuracy and Performance by Combining Weak Classifiers

Training Process

Combining Multiple Weak Classifiers Using the AdaBoost Algorithm

Weak Classifier Performance

Calculating Classification Accuracy and Updating Weights

Strong Classifier

Combining weak classifiers based on their weights

Advantages

Reducing classification error, using each weak classifier

Training Steps

Determining initial weights, training weak classifiers, updating weights

Use in this thesis

Using the AdaBoost classifier for fatty liver disease detection

In the following section, we will review the results obtained
for both the training and test datasets. The performance

evaluation results of the proposed method for each dataset
will be examined separately.
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In Figure 5, the results of the training dataset are displayed in
the form of a confusion matrix. This matrix is a 3x3 matrix,
and each entry represents the number of correctly classified
samples. The entries of this matrix are defined as follows:

Entry (1,1): The number of samples correctly classified as
positive class (fatty liver disease).

Entry (1,2): The number of samples incorrectly classified as
negative class (healthy liver).

Entry (2,1): The number of samples incorrectly classified as
positive class.

Entry (2,2): The number of samples correctly classified as
negative class

Additionally, based on the confuse on matrix, we can
calculate other evaluation metrics. For example:

Accuracy: This metric shows the ratio of correctly classified
samples to the total number of samples. The accuracy
calculation based on the confusion matrix is as follows:
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Accuracy = (Entry (1,1) + Entry (2,2)) / (Entry (1,1) + Entry
(1,2) + Entry (2,1) + Entry (2,2))

Recall (True Positive Rate): This metric shows how well the
classifier identifies actual positive samples. Recall
calculation based on the confusion matrix is as follows:

Recall = Entry (1,1) / (Entry (1,1) + Entry (1,2))

Precision (Positive Predictive Value): This metric shows how
well the classifier identifies positive samples that actually
have the disease. Precision calculation based on the confusion
matrix is as follows:

Precision = Entry (1,1) / (Entry (1,1) + Entry (2,1))

By examining the values of these metrics in the confusion
matrix, we can more accurately assess how successful the
proposed method is and how well it identifies fatty liver
disease.

Confusion Matrix

5 79 0
54.9% 00%
12
1]
3
o 0 65 0
51 00% 45.1% 0
3 { . 0.0
5
(o]
100%
0.08
Q ~
Target Class

Fig 5: Confusion Matrix of the Training Dataset for the AdaBoost Classifier

As explained above, it can be observed that the accuracy
obtained for the training dataset is 100%. This indicates that
the AdaBoost classifier has been able to correctly adjust its
parameters using the training dataset.

Analysis of Results Obtained from the Test Dataset

In order to analyze and evaluate the results of the proposed
method, the test dataset was used as input to the AdaBoost
classifier, and the results are presented in the form of figures
and charts.

Figure 6 shows the results related to the test dataset in the
form of a confusion matrix. Based on the previous section, it
can be stated that the percentage of data correctly classified
into the fatty liver class is 59%, the percentage of data in the
healthy class is 29.5%, 4.9% of the data were mistakenly
classified into the fatty liver class, and 6.6% were mistakenly
classified into the healthy class. Finally, the obtained
accuracy is 88.5%.

589|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

Confusion Matrix

5 36 3 a2.3
59.0% 49% 7.79
1
"
3
O 4 4 18 81.8
5 66% 29.5% 18.2%
Q.
5
(o)
10.0 . 5%
2.0% 11.5%
< N
Target Class

Fig 6: Confusion Matrix of AdaBoost Classifier on the Test Dataset

In Figure 7, the results for the test dataset are presented based
on the Receiver Operating Characteristic (ROC) curve. The
ROC curve represents the ratio of true positives to false
positives for the AdaBoost classifier. In this curve, the higher

the curves are above the 45-degree line, the more accurate the
classifier is in distinguishing between correct and incorrect
predictions. Ultimately, this indicates that the classifier has
classified the test data with greater accuracy.

ROC for Simple Create: Test Data
1r T
Class 1
_l Class 2

2
©
o
o
=
‘@
o
o
[0}
2
= 04}

03}

0.2

01}

0 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Fig 7: ROC Curve for Test Data
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The results obtained for the test data metrics are shown in
Figure 8. According to this graph, the accuracy of the test data
is 88.25%. This metric indicates that 88.25% of the test
samples were correctly classified by the classifier.
Additionally, the precision for the test data is 92.3%. This
metric shows that 92.3% of the instances predicted as positive
by the classifier are indeed positive.

[ international Journal of Multidisciplinary Research and Growth Evaluation
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The recall for the test data is 90%. This metric indicates that
90% of the actual positive samples were correctly identified
by the classifier. Finally, the F1 score is 91.1%. The F1 score
is a combined metric that takes both precision and recall into
account and is calculated as the geometric mean of precision
and recall. A high F1 score of 91.1% suggests that the
classifier performs well.

Accuracy Precision Recall F-Scores
09 - : a0 100 :
08| { 90 I 8o b ot
s0 | | 80|
07 1 ’ 70
70 5‘ ! 70F
06 60
60 b 60 [
a5 ’ 50
50 | | 50 b
04 | ’ 40 F
so| | 40t
03 ’ 30
30 | 30
0zt 1 { 20t
20 ’ 20
01r 1 10} "' o 10}
0 0 — 0 0
1 1 1 1
Accuracy = 0.88525 Precision = 92.3077 Recall =90 F-Scores = 91.1392

Fig 8: Evaluation Metrics Results for the Test Dataset

Overall, based on the obtained results, the proposed method
for detecting fatty liver disease using ultrasound images
demonstrates good performance and is capable of accurately
classifying the test samples.

7. Comparison

In Table 2, the results for the test data obtained with Adaboost
classifier are compared with other state-of-the-art methods.
All works have used the same dataset; that is the reason for
this note of comparison required to be specified here.

Accuracy method
82.65% NB[18]
76.96% LR[18]
81.85% ANNI[18]
88.5% Alexnet+Adaboost

Results in Table 2 indicate that, by using the AlexNet neural
network and AdaBoost classifier with a feature extraction
method, an average 5% enhanced level of accuracy is
obtained for the feature described over those other methods
presented. The reason for such a difference in accuracy is that
the powerful, deep etwork AlexNet can extract very complex
features, in addition to the AdaBoost classifier, which
enhances the accuracy of diagnoses of liver disease to a great
extent. Such results can state that the approach to the rule
paper must be approved as an effective and superior one for
diagnosis liver disease.

8. Conclusion
Fatty liver disease is considered as one of the most common

precursors to severe liver pathologies and general health-
related complications. The identification of this disease, with
the highest quality and least loss of information, is very
important for its further effective and optimal treatment.
Innovations in this field and the possibility of seeing resulted
ultrasound sections on technological monitors opened up
some new opinions for diagnosing such a disease as fatty
liver. Previous studies offer some points of view on research
designed for diagnosing fatty liver using ultrasound imaging.
In proceeding work on this subject, various features are
juxtaposed using traditional approaches, for instance by
Support Vector Machine (SVM), the nearest neighbors of a
point, or simple neural networks. In some cases, classification
is performed by routine methods such as decision trees and
fuzzy logic. It is admitted that these methods are very simple
and apply, but do not give more than that in terms of
diagnostic accuracy.

This paper discusses the method of diagnosis of hepatic
steatosis through ultrasound images. Diagnosis of the hepatic
steatosis achieved good results by using the AlexNet neural
network for feature extraction and the AdaBoost classifier for
decision-making.

When we used AlexNet neural network features for the
extraction and AdaBoost classification decision-making, we
achieved 78% accuracy in detecting fatty liver disease. The
most important advance over previous works in this field is
the use of the AlexNet neural network. Being a deep network
capable of extracting complex and non-linear characteristics
from images, it brought a huge increase in diagnostic
accuracy of fatty liver disease. The experimental results gave
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the accuracy of 88.5% for this method, which is 5% more
than for others. On the whole, with the developed approach,
meaningful information that made up unique features of
ultrasound images on the topic of fatty liver disease was
obtained. The method can be very helpful to physicians and
healthcare specialists in making information relevant to
improved diagnostic and treatment decision processes.
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