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Abstract 
In this paper, the Large Eddy Simulation (LES) flow modeling technique is used to 
solve the Navier-Stokes equations. In this, the effect of the stress components from the 
small structures is modeled by the Smagorinsky flow model. This mathematical model 
is used for the flow through a square cylinder at two different Reynolds number 
conditions Re = 400 and Re = 22,000. The computed results of the average flow and 
the features of the multi-dynamic components are compared with the results obtained 
from the DNS (Direct Numerical Simulation) method and the k-ε model, 
demonstrating the benefits of this method. Simultaneously, these results also align well 
with the experimental results at the same Reynolds number conditions. 
Air flows through a square cylinder with a side of 1 cm under standard conditions with 
a temperature of 2930K, atmospheric pressure, and a kinetic coefficient of 1.513 *10-
5 m2/s. Reynols number is 22000. 
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Introduction 

For many years, flow modeling techniques using the Reynolds Averaged Navier-Stokes (RANS) equations along with models 

like k-ε or Q-ω have been the only options to simulate and calculate flow in industrial settings. The benefit of using models 

based on the Reynolds Navier-Stokes average equations is that they involve relatively low computational effort and can be 

utilized with existing computing tools to obtain average flow characteristics. The drawback of these models is that the 

calculation's time response does not align with the actual flow's time response. Additionally, for these models, five to seven 

numerical terms are needed in the Reynolds-averaged equation, which depends on factors such as flow type, Reynolds number, 

and fluid type, each requiring different numerical terms. 

Recently, the model-free Direct Numerical Simulation (DNS) approach to solving the Navier-Stokes equations has been 

examined for many types of flows. The benefit of this approach is that it precisely represents the time changes of the flow and 

the average values. The downside of the approach is that the computational expense is very high. Piomeli [1] calculated the 

amount of points needed for a three-dimensional moving flow in space using the DNS method at a scale of Re9/4. With the 

power of modern computers, this method can only simulate a few simple flows with low Reynolds numbers of several thousand. 

To solve the difficulties of the two flow modeling methods mentioned above, currently, the flow modeling method according to 

large structures (Large Eddy Simulation - LES) is being researched and used in many problems and in the future will be used in 

many flow calculation software. This LES method is based on the basic principle of directly calculating only large flow 

structures, while small structures will be modeled. Therefore, with the LES method, the modeling process only requires a 

moderate amount of calculation to be able to calculate large structures - structures that characterize the flow motion 

characteristics. 

In this paper, the LES flow model with the Smagorinsky flow model [2] is applied to solve the problem over a square. The 

computational results will be compared with the experimental results by Lyn et al. [3, 4] and Durao et al. [5], showing the good 

agreement of the model with the experimental results. 

https://doi.org/10.54660/.IJMRGE.2024.5.6.955-966
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This is the first part of the research on the LES method and is 

only applied to the flow through a simple square body, but it 

is also the foundation for the next research parts of this 

method for complex bodies applied in the industrial field later 

(flow through hydraulic machines, turbines, aircraft blades, 

etc.) 

 

Theoretical basis 

LES Turbulent flow simulation 

In the LES shear modelling method, shear structures with 

larger excitations than the shear size are modelled directly, 

while those with smaller excitations than the shear size are 

modelled. To distinguish between large and small shear 

structures and to model the influence of small shear structures 

on large shear structures, a force function is applied to the 

Navier-Stokes equations. With this function, a physical 

quantity f in the equation will be divided into two parts; one 

filtered part f , which represents the large-scale structure, 

will be calculated directly from the equation f  , the other 

part, which represents the small-scale structure, will be 

modeled: f f f   .  

In which, the large-scale structure component f  has been 

filtered when applying a filter function as follows: 
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Apply this equation to the continuity equation and the 

momentum equation: 
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The momentum equation after being applied will give rise to 

a quantity that models the nonlinear interaction of two 

velocity components in the directions i  and j : i ju u . 

One of the advantages of the LES method is that the kinetic 

equation after being translated can be written as the equation 

of motion of large-scale elements. 
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In which: ij i j i ju u u u   , called the «substructure 

tensor», the influence of the velocity components of the small 

structure, which are not directly solved, on the velocity 

components of the large structure is modeled. This unknown 

quantity will be modeled. 

 

In practice, the tensor under stress can be decomposed into 

its deviatoric stress components 1 3D

ij ij kk ij     and the 

effects of the main component on the pressure quantity 

* 1 3 kkp p   . The resulting equation is of the form: 
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The system of equations and will be closed when the shear 

stress component is modeled by the shear stress model 

according to Boussinesq's hypothesis: 
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or: 2D

ij T ijS     (1.7) 

 

In which the smallest, T , will be calculated according to the 

Smagorinsky model [2]. 
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With 
SC which It is called the Smagorinsky number. 

According to the theory of homogeneous and uniform 

motion, this number is determined 0.18SC  . However, in 

many recent studies, authors have proposed to use 0.15SC  .  

 

The final equation has the form: 
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Thus the system of equations and will be closed by 

Smagorinsky's model. 

 

Numerical calculation diagram 

The Navier Stokes equations with the LES model are solved 

in a uniformly distributed computational domain in a Decart 

system by the finite difference method. The spatial scheme is 

a second-order exact central difference scheme. The temporal 

difference scheme is a Mac-Cormack scheme with two-step 

prediction and correction of second-order accuracy. The 

continuity and momentum equations are solved by the 

projection method of Najm et al. [6] to derive the Poisson 

equation. This Poisson equation is solved by the differential 

equation method to find the pressure, which is then 

introduced into the momentum and continuity equations to 

find the velocity components of the flow. The stability 

condition of the differential equation in this calculation is the 

condition CFL = 0.3 according to Pham et al. [7]. 

 

Boundary condition calculation configuration 

The computational domain of the simple problem is a 

rectangular prism of dimensions
XL , 

YL , 
ZL in three 

directions of velocity 
xu , 

yu , 
zu in three-dimensional space 

as. The rectangular prism of dimensions D is placed parallel 
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to the axis Z  of the rectangular prism. This prism problem is 

solved in three-dimensional computational space with 

different numbers of solutions depending on the Reynolds 

number presented above.

 
Table 1: Calculation, division and timing configuration 

 

Reynolds D  (m) XL  YL  ZL
 XN  YN  ZN

 
t (s) 

400 5.10-4 24 D 8 D 12 D  19212896 2,4.106 10-6 

22000 2.10-3 
15 D 7 D 1,5 D  40025632 3,3.106 10-5 

 

The input variable condition of the problem is a uniform flow 

with velocity 0U . To create conditions for the flow to 

develop, the input velocity of the problem has a dynamic 

component of about 0.1%, this condition is also suitable for 

the conditions in reality as well as in experiments. The 

boundary conditions on the two sides of the perpendicular 

region with respect to the direction Y  are symmetrical 

boundary conditions. The boundary conditions on the top and 

bottom sides of Z  the perpendicular region with respect to 

the direction Z are periodic because in this case we assume 

an infinitely long cylindrical geometry in the direction and 

this problem only solves a part of the cylindrical geometry. 

The output condition of the computational domain is the 

passive flow condition (whatever the flow inside is, the flow 

outside will have its properties preserved). And finally the 

flow condition on the diagram is the zero velocity 

components.

 

 
 

Fig 1: Computational configuration and conditions 

 

Experience of Medium turbulent airflow and LES time 

Response Capability 

Medium and turbulent airflow  

As introduced in the previous section, in this paper the LES 

model is used to simulate the flow around a square cylinder 

in two cases with different Reynolds numbers. The effect of 

Reynolds number on the flow structure around the square 

cylinder will be discussed in the final section of the paper. In 

this section we will only discuss the flow through the 

diaphragm at Reynolds Re = 22,000 to be able to compare it 

with the experimental results as well as with other results 

calculated k   by the Reynolds-averaged model. In this 

calculation, the flow around the cylinder is modeled in terms 

of the total time of the flow being 0.4s, of which the first 0.1s 

is the time required for the flow to reach a steady state from 

an initial velocity of zero. The remaining time 0.3s is the time 

that the current has reached a steady state, and the average 

value is calculated from the average of all the values in the 

0.3s steady state of the current. 

The mean velocity in the flow direction (direction X ) on the 

symmetric plane of the cylinder is shown in Fig. The results 

calculated by the LES model are also compared with the 

experimental results at the same Reynolds number condition 

Re = 22,000 performed by Lyn et al. [3, 4] and Durao et al. [5]. 

This comparison shows that the results calculated by the LES 

model are in close agreement with the experimental results of 

Lyn et al. [3, 4] in the front part of the figure. The back part of 

the figure shows a difference of about 5% to 10% between 

the calculated and experimental results.
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Fig 2: Distribution in the direction X of mean velocity xu  

 

In this case, if we compare the results calculated by the LES 

model k   applied to the Reynolds Navier Stokes average 

equation with the experimental results, there is a very large 

difference of up to 50% in the velocity part behind the image. 

While the velocity part in front of the image k   calculated 

from the LES model and the experimental results are almost 

the same. This is also easily explained because the LES 

model is used to simulate and respond well over time so that 

it can accommodate the very large velocity variations after 

the deformation caused by the Von-Karman vortices. While 

the model k  applied to the Reynolds average equation 

has a poor time response (due to averaging the equation), it 

can only give good results for the pre-rotation velocity 

(because there is little noise) and significant errors for the 

post-rotation velocity, where there is a significant noise 

component. This will be discussed in more detail in the 

following section.

 

 
 

Fig 3: The distribution Y of the mean velocity curve on the upper surface xu  

 

Another result in a relatively complex region is also 

presented, which is a square rotation on both sides, to show 

the adaptation of the LES model. This rotation lies on a very 

thin layer on both sides of the square. The LES calculation 

results are similar to the experimental results obtained by Lyn 

et al. [3, 4] The y-direction average velocity xu  profile of Fig. 

3 at point 0,5x D a shows the adaptation of the LES model. 

Physically, the phenomenon of boundary layer separation of 

the trough layer near the shear wall creates a reverse flow in 
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this region 0xu  and the flow returns to normal 0xu 

when 0,2y D . With the above comparisons of the average 

current, the LES method gives results close to the 

experimental results. 

Not only for the average value but also for the currents or for 

the idle currents the dynamic component plays a very 

important role. This dynamic component is represented by 

the dynamic energy of the current: 
 2 2 21

2
x y zk u u u    

on the 

symmetrical plane shown in Figure 4.

 

 
 

Fig 4: Divide the raft according X to the direction of the gate. 

 

The calculated results of the dynamic response using the LES 

method are consistent with the experimental results by Lyn et 

al. [3, 4] and by Durao et al. [5]. Once again the comparison of 

the model k  with the calculated results of the kinetic 

energy obtained from the multi-velocity components behind 

the image shows the limitations of the model k  with both 

non-uniform flows and kinetic flows. In this case, the 

calculated result of the dynamic force by the model k  by 

Franke and Rodi [8] after the regression only achieved the 

largest value of about 0.1 while the experimental results as 

well as the results ca lculated by the LES method were in the 

range 0,6 0,7 shown in Figure 4. Even with the corrected 

model k  by Lamder and Kato [9], this value only 

achieved about 0.4. Thus, in terms of mean and dynamic 

range, the LES method has a remarkable agreement with the 

experimental results while the model k  has a certain 

limited capability. 

 

2.4.2- LES Time Response Capability 

To investigate the variation of quantities with time, as well as 

with frequency, in this section the method of frequency 

spectrum analysis of velocity signals is applied to determine 

the frequency variation of the stream. Figure 5(a) shows the 

frequency spectrum at point A located at the position 

0,5x D and 0,75y D within the lateral rotation 

region of the figure. The energy at this point has a maximum 

at frequency 115f hz  and has the form of the energy of 

the free current. The value of this frequency corresponds to 

the Strouhal number

0

0,14
fD

St
U

  , which is the integer 

frequency of the Von-Karman vortex after the rotation. 

Comparison with the experimental results of Lyn et al. [3, 4] 

with 0,132St  , Durao et al. [5] with 0,139St  shows the 

compatibility of this calculation result. 

The frequency spectrum of a point B located behind the 

hexagonal prism 11 , 0X D y  is shown in Figure 5(b). At 

this point, the frequency spectrum has no maximum value as 

seen in the region near the hexagonal prism, and the slope of 

the frequency spectrum on the logarithm is -5/3. The slope 

value of -5/3 indicates a Kolmogorov structure in this 

directional region. This analysis shows the evolution of the 

flow from layer to layer, and it also shows the capture of the 

flow structures of the LES method.
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Fig 5: The energy density at two points A and B. 

 

2.4.3- Reynolds flow structure 

In terms of physics, in order to easily see the development of 

the flow structure, the calculation method and the 

representation of the turbulence field 2 2 2

x y z     

are considered in this section. As mentioned in the 

introduction, the influence of the Reynolds number on the 

flow structure is also analyzed in this section, namely the two 

Reynolds numbers Re 22000 and Re 400 . Figure 

6(a) shows the is surface of the vortex field 15000( )s   

corresponding to Re 22000 . In this case, in the region 

near the cylinder the flow structure is laminar with large 

structures. Farther behind the cylinder, these large structures 

overlap and are collapsed into small, laminar structures. 

 

 
 

Fig 6: Structure of air flow moving through cylindrical structure 
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In contrast, in the case of the small Reynolds number 

Re 400 shown in Figure 6(b) 
130000( )s  , the 

near-circular flow structures are two-dimensional vortex 

tubes with longitudinal axis produced by the separation of the 

boundary layers. These two-dimensional vortex tubes are 

separated from the circular shape and deform into curved 

vortex structures in space as they move away from the 

circular shape. In addition, between these longitudinally 

curved vortex tubes, there are also vortex fibers entrained in 

the direction of flow caused by the deformation of the 

longitudinally curved vortex tubes. It is noteworthy here that, 

although they are entrained in each other, these vortex 

structures are not crushed in the case Re 22000 ; 

showing the structure of a laminar flow. This structure is also 

a laminar flow structure obtained from the direct solution of 

the Navier-Stockes (DNS) equations by Lambalais et al. [10] 

together with Reynolds. 

 

Result 

Experirencial model 

Air flows through a square cylinder with a side of 1 cm under 

standard gas conditions with a temperature of 2930K, 

atmospheric pressure, and a kinematic viscosity coefficient 

of 1.513 *10-5 m2/s. Reynols number is 22000. 

 

The drag coefficient is defined as follows: 

  

HV

F
C D

D
2

2

1





 

 

In there: 

CD the drag coefficient 

FD air resistance 

 kinematic viscosity coefficient 

V  velocity of air flow 

H size of square cylinder 

Set up the calculation domain with the following dimensions 

as shown in the figure:

 

 
 

Fig 7: Dimensional parameters in the calculation model and boundary conditions 

 

3.2. Discretized model of computational domain 

After building the cylinder and the survey area, we use the 

Gambit tool to discretize the calculation area.  

To simulate the flow through a cylindrical object accurately, 

we need to pay attention to the mesh density, the density of 

the mesh affects the calculation results. In the solid wall area, 

the fluid changes greatly, so we need to divide the mesh here 

more finely, to see the change of the flow clearly. The finer 

the mesh, the clearer the simulation, thereby seeing the 

change of the flow.  

The cylindrical object, placed fixed in a natural environment 

with air flowing through, should be suitable for the properties 

of the fluid flow.  

The calculation area is divided according to an unstructured 

mesh, triangular type. 
 

 

Fig 8: Discrete spatial computation on Gambit 
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Fig 9: Mesh area near the cylinder boundary 

 

3.3- Boundary conditions 
The boundary conditions of the calculation domain are 
defined as input velocity boundary condition, output pressure 
condition, upper and lower surfaces symmetric boundary 
condition, square cylinder solid boundary condition. The 
values of these boundary conditions are shown in the 
following table: 
 

Table 2: Input velocity boundary conditions 
 

V (m/s) r


 T(K) I L (cm) 

39.358 (1,0,0) 293 5% 1 

 
Table 3: Outlet pressure boundary conditions 

 

P(Pa) T(K) I L(cm) 

9.81*104 193.774 5% 1 

In which: I is the turbulence intensity, L is the characteristic 

length. From the above parameters, we can calculate the 

turbulence kinetic energy k is 5.8 m2/s2, the dissipation  is 
3286.5 m2/s3. After determining the boundary conditions, the 
step is to determine the algorithm diagram for the 
mathematical model. The basic equations are solved by the 
sequential solution method. Discretize the time domain 

according to the implicit diagram, choose the k -  standard 
model and the solid-state fluid region is calculated according 
to the empirical functions. Use the SIMPLE algorithm 
diagram to calculate the pressure from the connection of the 
continuity equation and the momentum equation, the energy 
equation and the two characteristic equations of turbulence. 
The result of the problem will converge when the error of the 
problem is less than 10-5. 
 

3.4. Effect of number of mesh elements on calculation 

results: 

Using Fluent software, we have the following result relating 

the number of mesh elements to the drag coefficient Cd: 

 
Table 4: The relationship between the number of mesh elements 

and the drag coefficient Cd 
 

No. Number of mesh elements Cd 

01 22466 1.867 

02 42600 1.867 

03 56508 1.792 

04 58776 1.838 

05 65930 1.820 

06 68300 1.806 

07 69434 1.806 

08 89120 1.795 

09 94430 1.797 

 

 
 

Fig 10: Variation of drag coefficient with different mesh density 
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Fig 11: Check y+ of grid 68300 

 

At the top surface of the cylinder in Figure 11, draw a vertical 

line. Output the velocity vector on this line, where u1 and u2 

are the velocities on the solid wall of the cylinder and point 2 

is the point close to the solid wall, the values y1 and y2 are the 

coordinates of point 1 and point 2. 

 

Shear stress:  
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Impact velocity on solid wall:  
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So the y+ value close to the solid wall is 0.25 < 5. So the mesh 

divided at the number of elements 68300 is reasonable. 

 

3.5. Analysis of flow structure characteristics through a cylindrical object 

 

 
 

Fig 12: Velocity distribution of flow through square cylinder 
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Fig 13: Zoom in on velocity distribution near square cylinder wall 

 

 
 

Fig 14: Pressure distribution through square cylinder 

 

 
 

Fig 15: Zoom in on pressure distribution across square cylinder 

 
 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    965 | P a g e  

 

 

Fig 16: Pressure coefficient distribution on 2D cylindrical object 

 

 
 

Fig 17: Fluid flow through square cylinder 

 

Compare the drag coefficient CD in the above calculation 

results with some other calculation methods and experimental 

results in the case of flow through a 2D square cylinder (Re 

number in the range of 20000 - 22000).

 
Table 5: The drag coefficient CD in the above calculation results with some other calculation methods and experimental results in the case 

of flow through a 2D square cylinder (Re number in the range of 20000 - 22000) 
 

Method CD St Grid 

Basic Solver (Ec = 0) 1.82 0.130 100x90 

CVC (Ec = 0.001 - 0.002 2.1 - 2.68 0.135 - 0.138 100x90 

LES:    

Murakami 2.09 0.132 104x69x10 

KAWAMU 2.58 0.15 135x78x20 

UMIST2 2.02 0.09 140x81x13 

RANS:    

KL - k -  1.79 0.142 100x76 

RNG k -  2.13 0.133  

TL - RSM 2.15 0.136 70x64 

    

Exp. 1.92 - 2.2 0.136 - 0.138  

 

Conclusion 

In this paper, the LES flow modelling method has been 

applied to solve the square envelope flow problem in two 

different Reynolds numbers. The results show the 

adaptability of the LES flow modelling method to the 

experimental data in terms of both mean and time-varying 

values. The calculated results are also compared with some 

results of other authors using the model k  , showing the 

advantage of the best response time of the LES method. 

Despite its many advantages over the linear model k  , the 
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LES method using the Smagorinsky model still has many 

issues that need to be developed to better match experimental 

results. For example, the value of the constant 0.15sC  is 

chosen in most problems, but this value can be calculated if 

the LES method with the dynamic constant is used. And 

finally, what the authors want to say here is just the initial 

research part of the LES method that can give the flow 

through a square. But it is also a foundation for studying the 

application of this LES method to problems with complex 

shapes as well as industrial flow problems. 

 

References 

1. Piomeli U. High Reynolds number calculations using the 

dynamic subgrid-scale stress model. Physics of Fluids. 

1993;A5:1484. 

2. Smagorinsky J. General circulation experiments with the 

primitive equations. Monthly Weather Review. 

1963;91(3):99-164. 

3. Lyn DA, Rodi W. The flapping shear layer formed by 

flow separation from the forward corner of a square 

cylinder. Journal of Fluid Mechanics. 1994;267:353-76. 

4. Lyn DA, Einav S, Rodi W. A laser-Doppler velocimetry 

study of ensemble-averaged characteristics of turbulent 

near wake of a square cylinder. Journal of Fluid 

Mechanics. 1995;304:285-319. 

5. Durao DF, Heitor MV, Pereira JCF. Measurement of 

turbulent and periodic flows around a square cross-

section cylinder. Experimental in Fluids. 1988;6:298-

304. 

6. Najm HN, Wyckoff PS, Knio OM. A semi-implicit 

numerical scheme for reacting flow. Journal of 

Computational Physics. 1998;143:381-402. 

7. Pham MV, Plourde F, Doan Kim S. LES simulation in a 

thin liquid film submitted to high thermal stress. ASME 

Summer Heat Transfer Conference; 2003 Jul 21-23; Las 

Vegas, NV, USA. 

8. Franke R, Rodi W. Calculation of vortex shedding past a 

square cylinder with various turbulence models. Proc. 

8th Symposium on Turbulent Shear Flows; 1991:189. 

9. Lamder BE, Kato M. Modelling flow-induced 

oscillations in turbulent flow around a square cylinder. 

Proc. Forum on Unsteady Flow (FED). 1993;157:189. 

10. Lamballais E, Sylvestrini SH. Direct numerical 

simulation of interactions between a mixing layer and 

wake around a cylinder. Journal of Turbulence. 

2002;3:28. 

11. Khoa BQ. Researching, designing, and manufacturing of 

the pollen bee vacuum dryer model. Ho Chi Minh City 

University of Technology; c2010. 

12. Khoa BQ. Vietnam's renewable energy industry's 

approach to market development: Impact of Smart grid 

systems and renewable energy sources integration. 

International Journal of Multidisciplinary Research and 

Growth Evaluation; c2024. DOI: 

https://doi.org/10.54660/IJMRGE.2024.5.6.857-872. 

13. Ngoc TM, Khoa BQ. Simulate energy in buildings 

according to LEED & LOTUS. Certification Science & 

Technology Publisher; c2023. 

14. Ngoc TM, Khoa BQ. LEED rating system basis for green 

buildings. Certification Science & Technology 

Publisher; c2022. 

15. Khoa BQ, Hay N, Duc LA, Tam PH. Optimization of the 

vacuum drying process for bee pollen using the R 

method. International Journal of Multidisciplinary 

Comprehensive Research; c2024. DOI: 

https://doi.org/10.54660/IJMCR.2024.3.6.51-56. 

16. Cong NC, Vuong PM, Nghia LTM, Khoa BQ. CFD 

simulation of convective airflow through a square 

cylinder. International Journal of Multidisciplinary 

Comprehensive Research; c2024. DOI: 

https://doi.org/10.54660/IJMCR.2024.3.6.57-62. 


