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Abstract 
HIV/AIDS continues to pose significant global health concerns, underscoring the need 
for mathematical modelling to inform evidence-based intervention and policy 
decisions. This study explores the global Stability of HIV/AIDS Dynamics with PrEP 
Intervention and a six-compartment model which includes susceptible, vaccinated-
PrEP, asymptomatic infective, symptomatic infective, treated and AIDS population is 
presented. The validity of the solution states affirms that the model is well-defined and 
holds epidemiologically significant. The basic reproduction number )( 0R  was obtained 

using the next generation matrix. The disease-free and endemic equilibrium points 
were investigated, with a comprehensive analysis of both local and global stability. 
Sensitivity analysis was carried out using normalized forward sensitivity index. The 
outcome from stability and sensitivity analysis suggest promising prospects for 
mitigating HIV/AIDS spread in the population. The sensitivity analyses identify 
critical parameters influencing disease transmission. By applying the insights gained 
from this analysis, stakeholders can develop evidence-based policies and interventions 
to reduce the spread of HIV/AIDS transmission in the population. 
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1. Introduction 

HIV originally came from a virus particular to chimpanzees in West Africa during the 1930s, and originally transmitted to 

humans through the transfer of blood through hunting. Over the decades, the virus spread through Africa, and to other parts of 

the world (CANFAR 2023). HIV remains a major global public health issue, having claimed 40.4 million [32.9–51.3 million] 

lives so far with ongoing transmission in all countries globally; with some countries reporting increasing trends in new infections. 

There were an estimated 39.0 million [33.1–45.7 million] people living with HIV at the end of 2022, two thirds of whom (25.6 

million) are in the WHO African Region. In 2022, 630 000 [480 000–880 000] people died from HIV-related causes and 1.3 

million [1.0–1.7 million] people acquired HIV. WHO, the Global Fund and UNAIDS all have global HIV strategies that are 

aligned with the SDG target 3.3 of ending the HIV epidemic by 2030. When considering all people living with HIV, 86% [73–

>98%] knew their status, 76% [65–89%] were receiving antiretroviral therapy and 71% [60–83%] had suppressed viral 

loads. (CANFAR 2023; WHO 2023; UNAIDS 2023). 

However, this infection has no curing medication and the Control of HIV/AIDS is not yet over (Udoo, et al.,2015) [2], but with 

access to effective HIV prevention, diagnosis, treatment and care, PrEP usage, and antiretroviral therapy (ART) or its 

combination has helped in halting further progression of infection but if left untreated leads to a severe stage called acquired 

immunodeficiency syndrome (AIDS). HIV infection has become a manageable chronic health condition, enabling people living 

with HIV to lead long and healthy lives. HIV infection progresses through stages as follows: (i) primary stage (asymptomatic 

stage): this stage faces human individuals where the virus is in the blood and cannot be diagnosed with medical instruments; (ii) 
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asymptomatic stage: this stage is a symptomless stage of HIV infection but diagnosable with a medical test; (iii) symptomatic 

stage: in this stage, the symptoms of HIV infection like tiredness, loss of weight, and extreme loss of water start to manifest in 

the life of HIV-infected individuals; and (iv) AIDS stage: this is an advanced stage of HIV infection where it is difficult for 

treatment and leads to death soon if special care is not taken. Modes of HIV transmission are through unsafe sexual practices 

with HIV-infected persons, through contacts of normal blood with HIV-infected blood, infected mother to child transmission 

through breast or at birth time, and any contacts of HIV contains fluids of human’s with HIV-negative human fluids. However, 

in safe practice, the risk of HIV transmission can be reduced by using the principle of abstinence–be faithful–use condom (ABC). 

Infected individuals face disproportionately high rates of infectious diseases, compounded by restricted access to preventive 

measures. To understand the transmission and mitigation of diseases within infective population and their broader impact on 

public health, dynamic modelling approaches are employed (Martial et al. 2018).  

Effective interventions and health care services are critical to addressing this public health concern. Criminalizing drug use traps 

individuals in a cycle of incarceration, exacerbating health risks for HIV, TB, and other diseases among vulnerable populations 

like people who inject drugs (PWID). The PrEP landscape has evolved significantly in years since the original brief was released 

(WHO 2015) both in scale and variety with over 75% from African region.  

Pre-Exposure Prophylaxis (PrEP) is a medication regime taken daily by HIV-negative individuals to prevent HIV infection. Its 

primary function is to prevent HIV replication. PrEP medication such as tenofovir/emtricitabine inhibit HIV replication in the 

body. Also, PrEP is highly effective (up to 99%) in preventing HIV infection when taken consistently (Oladejo and Oluyo, 

2022). It provides protection against HIV infection, even if other prevention methods (e.g, condoms) fail or are not used and 

also reduces transmission risk, especially for high-risk groups such as the sexually active individuals and injection drug users. 

PrEP involves the use of antiretroviral drugs, either as oral pills or injectables, to reduce the risk of HIV infection in individuals 

who are at high risk of acquiring the virus. The world Health Organization (WHO) recommends PrEP as preventive measure for 

people who may be exposed to HIV [2015, 2019]. It is important strategy in HIV prevention efforts.  

Numerous trials and studies involving some key populations have demonstrated that the use of PrEP is a secure and effective 

method for preventing HIV infection. Mathematical models have been employed to project the impact of early diagnosis and 

treatment on the HIV epidemic over an extended period, in comparison to the present scenario. Similarly, models incorporating 

PrEP have been utilized to illustrate a decrease in HIV incidence when provided to individuals at a high risk. 

Oladejo and Oluyo (2022), proposed a mathematical model that incorporates PrEP as a control strategies to control the spread 

of HIV/AIDS in a population with direct inflow of infective immigrants. Result shows that the disease free is unattainable as 

long as there is an influx of infective immigrants.  

This study present a mathematical analysis of an HIV/AIDS model that accounts for the HIV/AIDS infective population and the 

vaccinated susceptible population that uses PrEP as a preventive measure for people who are uninfected but are at substantial 

risk of been infected with the HIV infection, thereby reducing the risk of HIV infection in individuals who are at high risk of 

acquiring the virus. Also, to carry out sensitivity analysis in order to know which of the parameter is most sensitive and its 

implications to the basic reproduction number and to examine the global stability. The results of this study can provide valuable 

insights for policymakers and public health officials seeking to develop effective control strategies for HIV/AIDS. 

 

2. Methodology 
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The model parameters used in the model is defined as follows 
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Table 1: Model variables and parameters 
 

Parameters/ variables Description 
   


 Transmission rate 

d  AIDS related death rate 

  Pace at which asymptomatic population become aware of being infected after a screening process. 


 Natural mortality rate unrelated to AIDS 

  Fraction of vaccinated that become susceptible. 
  Progression rate from Asymptomatic class to AIDS class. 

  Progression rate from Symptomatic class to Treated and AID class. 


 

  

Infectivity rate of transmission 

Fraction of persons placed on prep strategy. 

)(tS
 

)(tV
 

Susceptible population at a given time(t). 

Vaccinated susceptible 

)(1 tI
 

Asymptomatic population at a given time 

)(2 tI
 

)(tT
 

)(tA
 

Symptomatic population at a given time. 

Treated population 

AIDS population 

 

In this study, the susceptible and infectious epidemic model )(SI  is presented. A population of )(tN  was partitioned in to 

subclasses which are susceptible, vaccinated susceptible, asymptomatic infective population, symptomatic infective population, 

Treated infective population and AIDS population on the classes. The size denoted by )(),(),(),(),(),( 2 tAtTtItItVtS

respectively as shown in figure 1 below: 

 

 
 

Fig 1: Transmission diagram for susceptible-infected (S-I) model 

 

2.1 Positivity and boundedness of the model: In this section we shall show from model (1) that the state variables are non-

negative and the solutions remain positive for all .0t Hence, the parameters in the model are assumed to be positive. 

 

Theorem 1: Let the initial conditions or values of the state variables be such that 

   0)0(,0)0(,0)0(,0)0(,0)0(,0)0( 21 ATIIVS , then the set  )(),(),(),(),( 21 tAtTtItItS  is 

non-negative in   for all .0t  

Proof: Considering the first equation in (1), are considered for the positivity of the state variables as follows using the approach 

of (Adeyemi and Oluyo, 2023; Oladejo and Oluyo, 2022; Odebiyi et al., 2024; Temesgen et al., 2023) [12, 1, 18] 
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It is possible to show using the same procedure for other state variables that:  
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This shows that all the solutions of equation (1) are positive for all 0t  . Therefore, the HIV/AIDS transmission model stated 

in (1) is both epidemiologically significant and numerically well posed in an attainable given region 0  

 

Theorem2: Every solution in the region 
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invariant with respect to the HIV/AIDS model (1) in the populations. The solutions for the system are contained and remain in 

the region   for all time .0t  

 

Proof: Considering the equation of the model, and adding up all the derivatives with respect to time ,t  we obtained 
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Where 0N
is the initial size of the population 

Therefore, 

 







)(lim tN

t
 

 

This result implies that HIV/AIDS model (1) has non-zero negative and bounded solution in the region  and all the solutions 

starting in  approach, enter or stay in . Hence, it is sufficient to conclude that the model is epidemiologically well posed. 

 

2.2 Existence and uniqueness of solution of the model 

In this section, we establish conditions for the existence and uniqueness of a solution of our model. We shall rigorously employ 

Picard theorem to achieve this.  

Theorem 3: There exists a unique solution for the transmission of HIV model (1). 
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Consider the system of equations below: 
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The model can be written in a compact form as follows 
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Theorem 4: Let f be continuous in a domain 
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Then, system (3) has a unique solution in D, where the pairs ),( 1 txf and ),( 2 txf belongs to D and L (Lipschitz constant) is 

a positive constant. 
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Proof: 
It is suffices to show Lipschitz condition property satisfied by the model and this is done as follow.  

From the first compartment of equation (1), it can be shown that 
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Therefore, it follow from equation (8), 2112111 ),(),( SSLtSftSf 
  

This implies that 
 tSf ,11  is Lipschitz continuous with Lipschitz constant where 
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Similarly re-writing the second compartment of the equation model  
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It is important to show that 
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Where 2L  is the Lipschitz constant greater than zero, then equation (15) become  
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 is the Lipschitz constant greater than zero, then equation (20) become  
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It is important to show that 
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 is the Lipschitz constant greater than zero, then equation (24) become  
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This implies that 
 tIf ,244  is Lipschitz continuous with Lipschitz constant  

 

 
 dL  4   (28) 

In a Similar manner, re-writing the fifth compartment of equation (1)  

 

 TIInxtf
dt

dT
  1225 ),(

  
 (29) 

It is important to show that 
 tTf ,55  satisfies the Lipschitz condition 

 

2152515 ),(),( TTLtTftTf 
  (30) 
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Where 5L
 is the Lipschitz constant greater than zero, then equation (29) become  

 

 

 
    TIInTIIntTftTf   1221222515 ),(),(

 (31) 

 

Further simplification of (31) gives 

 

    212515 ),(),( TTtTftTf  
 

 

    21 TT  
 

 

  21)1( TT  
  

 

  21 TT  
  (32) 

Therefore, it follow from equation (31) 

      21,25,15 TTtTftTf  
 

 

2152515 ),(),( TTLtTftTf 
 

This implies that 
 tTf ,55  is Lipschitz continuous with Lipschitz constant where, 

 

 
  5L

  (33) 

Re-writing the sixth compartment of the equation model  

 

 
    AdATIntAf

dt

dA
)(1, 226  

  (34) 

It is important to show that 
 tAf ,66  satisfies the Lipschitz condition 

 

 2162616 ),(),( AALtAftAf 
  (35) 

Where 6L
 is the Lipschitz constant greater than zero, then equation (34) become  

 

 
    AdATInAdATIntAftAf )(1)(1),(),( 22222616  

  (36) 

 

Further simplification of (36) gives 

 

 
      222211222515 1)(1),(),( AdATInAdATIntAftAf  

 
 

    2211 AAdAAd  
 

 

  21)1( AAd  
 

 

  211 AAd  
 

 

  21 AAd  
  (37)  

 

Therefore, it follow from equation       21,26,16 AAdtAftAf    

This implies that  tAf ,,66  is Lipschitz continuous with Lipschitz constant  

 

 
   dL6   (38) 
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Hence, the HIV model (1) has a unique solution in the region D .  

 

2.3 Mathematical Analysis of the Model 

2.3.1 Disease free equilibrium point: This is a state where the disease is completely eliminated from the population, that is, 

there is no infected individuals, no disease transmission and population is entirely susceptible. 

 At the equilibrium, 

 

021 
dt

dA

dt

dT

dt

dI

dt

dI

dt

dV

dt

dS

  
 

 

 
 

   
 

 
    


















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2
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TIIn

IdI
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VSSSII


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







  
  

At the disease free equilibrium, we set 0,0,0 21  ATIIVS  Substituting these to equation (1) and solving 

gives the infection – free equilibrium as 

 

   
    












 0,0,0,0,,,,,, 00

2
0
1

000








AIIVSE

  (39) 

 

2.3.2 Endemic equilibrium point: The endemic equilibrium is a steady- state solution where the disease persists in the 

population at a stable level. At endemic equilibrium, 
0,0,0,0,0,0 21  ATIIVS

 

Solving equations (1) simultaneously, we have the endemic equilibrium points of the HIV model (1) designated by 

 **

0 ,,, ATIIS sa

 
 is obtained as  
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  (40)  

Where, 

         dKKdKKK   54321 ,,,,  

2.3.3 Derivation of Basic Reproduction Number, 0R : This is a threshold parameter. It represents the average number of 

secondary infections generated by a single infected individual in a completely susceptible population. For example if ,10 R

means Disease will decline and eventually die out. If ,10 R Disease will remain stable and if ,10 R Disease will spread and 

potentially lead to an outbreak. The basic reproduction number predicts disease spread and potential outbreaks, guides control 

measures (e.g., vaccination, quarantine), and helps evaluate effectiveness of interventions. The next-generation matrix is 

determined by analyzing new infection pathways and also infection transmission between compartments. 
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iF
 and iV

 are calculated as follows using the approach of (Van den Driessche and Watmough, 2002) 

 

 
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
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 


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
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2
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1
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1

1
  (41) 

      

The Jacobian matrices of iF
 and iV

 at the disease free equilibrium point, 

 
 






0S

, are:  
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

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




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 (42)  
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 (43)  

Where,
  1G

,
 dG  2 ,

   dGG   43 ,
 

 

         dKKdKKK   54321 ,,,,  
 








































4

1

43432

323

4321

2323

0

3

1

32

2

321

22

00

2

1

21

000

1

1

1

GGGGGG

KnnK

GGGG

KKnKn

GGG

n

GGG

Gn

GGG

G

V







  (44) 
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  (45) 

 

The basic reproduction number, which is the dominant Eigen-value of the product FV-1, is therefore obtained as: 

 

 

 
21

20
0 GG

GS
R






 (46) 

 

2.3.4 Stability analysis of the Disease free equilibrium 

 Theorem 4: The disease-free state is locally asymptotically stable if the basic reproduction number
10 R

 and unstable if 

otherwise. 
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Proof: 

We evaluate the Jacobian matrix of the model at the disease free equilibrium 
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Where,
  1G

,
 dG  2 ,

   dKnGG   543 ,)1(,
 

The characteristic polynomial equation is obtained as 

 

     021
2

21
2

35  bbccGG 
 (48) 

Where, 

 

0211 SGGc 
, 

 0212 1 RGGc 
, 

   21b
, 

    22 b
, 

 

 








)(
0S

 

The eigenvalues 
,, 3251 GG  
and the remaining will be obtained from the quadratic equations (12) and (13),i.e 

 

021
2  CC 

 (49) 

 

021
2  bb 

 (50) 

Where 
01 b

if 
,2  
 

02 b
if 

    2
 

,01 c
if 

,021 SGG 
and 

10 02  Rc
 

 

Then by Routh Hurwitz criteria, the remaining four eigenvalues are negative. Hence, the disease free equilibrium is locally 

asymptotically stable. 

 

2.3.5 Global asymptotic stability of endemic equilibrium 

Theorem 5: The global asymptotic stability of the HIV model (1) around the endemic equilibrium point is globally 

asymptotically stable in the region D whenever the basic reproduction number is greater than one. 

Proof: Consider a quadratic Lyapunov function   RRDL 6:
defined by  

 

 

         2********

2

1
AATTIIIISSL ssaa  

 (51) 

 

The time derivative of the Lyapunov function (51) is given by   

 

            ATIIS
dt

d
AATTIIIISS

dt
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sassaa   ********

 
 

             ATIISAATTIIIISS
dt

dL
sassaa   ********
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Since 


**N

, then, the following result is obtained 

 

            
 

 



















****

2

**

1
**

21****

22

**

11
****

ATIIVS

ATIIVS
AATTIIIIVVSS

dt

dL


 
 

                 
      




















****

22

**

11
****

****

22

**

11
****

AATTII

IIVVSS
AATTIIIIVVSS

 
 

            2****

22

**

11
**** AATTIIIIVVSS    (53) 

Since the time derivative of the continuously differentiable function G  is negative semi-definite i.e., 0
dt

dL
, then, the function 

L  is a Lyapunov function. Therefore, 0
dt

dL
 provided that 

 TTIIIIAAVVSS ,,,,,
**

22

**

11
******

and

**AA  .Then, by LaSalle’s invariance principle (LaSalle, 1976), the largest invariance set for which 0
dt

dL
 is the singleton 

set  ** , which implies that the endemic equilibrium point of the HIV/AIDS model (1) is globally asymptotically stable. 

 

2.3.6 Global Asymptotic Stability of the Disease free Equilibrium 

Theorem 6: The disease free equilibrium point of the model is globally asymptotically stable whenever the basic reproduction 

number is less than unity. 

Proof: Following the approach given in the global asymptotic stability of the HIV model (1) is investigated. Re-writing the HIV 

model (1) in a compact form as follows 

 

 

    ,00,,,

,,





XGZXG
dt

dZ

ZXF
dt

dX

  (54) 

 

Where X  is the uninfected class of the HIV model and Z  is the infected classes of the model i.e. 
2

 RSX  and

  4
21 ,,,  RATIIZ

. Also, let the disease-free equilibrium point of the HIV model be denoted by  0,*

0 X . Then, the 

following properties must be satisfied 

 

:1H  For  0,XF
dt

dX
 , 

*X  is globally asymptotically stable 

 

:2H     0,ˆ,  ZXGAZZXG
,  

Where ZGA  , which is an M-matrix evaluated at  0,*X  with non-negative off diagonal entries. 

Theorem 7: The disease-free  0,*

0 X  of the HIV model (1) is globally asymptotically stable if the properties 
1H  and 

2H  

are satisfied. 

 

Proof:  ZXF , and 
 ZXG ,  are obtained from the HIV model (1) as  

 

0221100 )0(,)0(,)0(,)0(,)0(
00

AAIIIIVVSS 
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 
 

  













VS

VSSSII
ZXF



 21
,

  
 (55) 

 

   
 

 
    






























AdTIn

TIIn

IdI

ISII

ZXG









2

12

21

121

1

,

  (56) 

Such that,  

 

   SSXF  0,  
 

 S
dt

dS
 

  (57) 

 

Simplifying Equation (57) gives  

 

    tStS )(0 







 









 

   (58) 

 

Also, for    VXF  0,  

 

  0 V
dt

dV


 
 

teVtV )()0()( 
 

Irrespective of the initial sizes of the variables as t , then,   0)(,  tVtS



. Therefore, the DFE  0,*X  is 

globally asymptotically stable satisfying property .1H  

Now, to establish the second property ,2H  recall that 

 

 

   
 

 
    






























AdTIn

TIIn

IdI

ISII

ZXG









2

12

21

121

1

,

  (59) 

 

An M-matrix whose off diagonal entries are non-negative is obtained as  

 

 
 

 
 




































d

n

d

SS

Z

G
A









0

0

00

00

 (60) 

 

Where



S . Then, from  

 

   ,,,ˆ ZXGAZZXG 
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 

  



















 





0

0

0
,ˆ

21 SSII

ZXG



  (61) 

Since



 S0 , clearly, it is obvious that 

0),(,0),(,0),( 32 


YXGYXGYXG
, 

0),(4 


YXG
  

Hence, property 2H  is satisfied. Therefore, the disease-free equilibrium of the HIV model (1) is globally asymptotically stable. 

 

2.3.7 Sensitivity Analysis of the basic Reproduction number  
Sensitivity analysis assesses how changes in model parameters, assumptions or input affect the outcomes and conclusions of the 

model, providing insights into the robustness and reliability of the results. By identifying the most influential parameters, 

sensitivity analysis informs policymakers and decision-makers on where to focus resources and efforts to maximize impact and 

mitigate uncertainty.  

Sensitivity analysis also allow us to measure the relative change in a state variable when a parameter changes. The normalized 

forward sensitivity index of a variable to a parameter is a ratio of the relative change in the variable to the relative change in the 

parameter. When a variable is differentiable function of the parameter, the sensitivity index may be alternatively defined using 

partial derivatives. 

Using the approach of (Chitnis, 2008) [9], the normalized forward sensitivity index of a variable “b” that depends differentiable 

on a parameter “m” is defined as 

 

b

m

m

b
X b

m *:





  (62) 

As we have an explicit formula for 0R
 in equation (46), and we derive an analytical expression for the sensitivity of 0R , as 

g

h

h

g
X g

h *:



  with respect to each of the parameters involved in 0R

as computed in table 2 below: 

 
Table 2: Sensitivity Result 

 

Parameters Values Sensitivity Index Source 


 

0.0009 +1.0000 Alsheikh (2011) 

  
300 +1.0000 Odebiyi et.al (2024) [1] 


 

0.02 -0.70007719 Ibrahim et.al. (2006) [14] 


 

0.2 -0.00031059 Ratera et al. (2012) [15] 

d
 

1.0 -0.0015529 Alsheikh (2011) [15] 

  0.2 -0.2797202 Ratera et al. (2012) 


 


 

0.015 

0.3 

-0.01833895 

0.002640 

Alsheikh (2021) 

Odebiyi et al. (2024) [1] 

 

2.3.8 Interpretation of Sensitivity Indices: Table 2 represents the sensitivity index for the base line parameter values and 

it shows that recruitment rate ( ), transmission rate (


), and infectivity rate 
)(

 are the most sensitive parameters. When the 

parameters ,  


 and 


increase while other parameters remain constant, the value of 0R
 also increases. More so, when the 

parameters 
 ,,,

and d  increase while keeping other parameters constant, the value of 0R
 also decreases. It should be 

targeted by intervention strategies in order to have a stable and disease free environment. For instance, 
0R

X  +1.0000 means 

that increasing or decreasing 


 by 5% increases or (decreases) 0R
by 5% while 

0R
X  -0.01833895 means that increasing or 

(decreasing ) 0R
 by 0.09169475% as seen in table 2 below. Others can be calculated following same procedure. 

 

3. Numerical simulations and discussion 
Simulation of Simulation of the model was performed for better understanding of dynamical spread of transmission of HIV/AIDS 

infection using Maple 18.0 software. The simulation demonstrates model equations and reveals the impact of these parameters 

on the basic reproduction number.  
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Fig 3.1: Graphical Representation of the Sensitivity indices of 0R
 

 

 

Fig 3.2: Sensitivity of the basic reproduction number to the parameters and 
  
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Fig 3.3: Sensitivity of the basic reproduction number to the parameters  and   

 

 
 

Fig 3.4: Sensitivity of the basic reproduction number to the parameters and   
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Fig 3.5: Sensitivity of the basic reproduction number to the parameters and   

 

 

Fig 3.6: Sensitivity of the basic reproduction number to the parameters  and 
  



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1147 | P a g e  

 

 

Fig 3.7: Sensitivity of the basic reproduction number to the parameters and 
  

 

 
Fig 3.8: Sensitivity of the basic reproduction number to the parameters  and   
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Fig 3.9: Global stability of disease free equilibrium 

 

 
Fig 3.10: Plot of fraction of susceptible population placed on PrEP 

 

 

 
 

Fig 3.11: Plot of Fraction of Vaccinated susceptible placed on PrEp 
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Discussion 

Fig 3.1 shows the graphical representation of the basic reproduction in form of a bar chart. The most sensitive parameters are 

recruitment rate , transmission rate and infectivity rate. 

Fig 3.2 shows Both recruitment rate of susceptible   and  . An increase in these parameter values increases the value of the 

basic reproduction number. Similarly in fig 3.3, increases in progression rate from asymptomatic infective to AIDS class 
),(

 

and progression rate from symptomatic class to treated and AIDS class respectively 
)(

, resulted in to a corresponding decrease 

the value of basic reproduction number. 

Fig 3.4 also shows the plot of Sensitivity of the basic reproduction number to the parameters )( and ).(  It reveals that 

increase in the value of 
)(

and 
)(

, resulted into a corresponding decrease in the basic reproduction number population. Figure 

3.5 reveals the Sensitivity of the basic reproduction number to the parameters )( and ).(  Both parameters reveals that an 

increase in the fraction of individuals placed on prep strategy )(a and fraction of vaccinated that become susceptible 
)(

, 

resulted into a corresponding decrease in the basic reproduction number population. An increase in the value of fraction of 

vaccinated that become susceptible 
)(

, decreases the basic reproduction number and increase in the transmission rate 
),(

will lead to increase in the basic reproduction number as depicted in fig 3.6.  

Fig. 3.7 depicts the Sensitivity of the basic reproduction number to the parameters  and 
)(

. It was shown that increase in 

pace at which asymptomatic infective population become aware of been infected after a screening process yields a decrease in 

the basic reproduction and also an increase in the basic reproduction number as transmission rate also increase. Fig. 3.8 

investigated the sensitivity of the basic reproduction number to the parameters
)(
 and 

)(
, and an increase in the fraction of 

vaccinated that become susceptible 
)(

, decreases the basic reproduction number and the basic reproduction number also 

increases as the recruitment rate of susceptible increases.  

The portrait of global stability of the disease free equilibrium with various initial conditions as illustrated in fig. 3.9. It simply 

suggest that if the basic reproduction number
10 R

, the virus cannot sustain itself in the population and the number of new 

cases will decrease over time. The HIV virus can be eradicated from the population, regardless of the number of people that are 

initially infected and the disease will eventually die out, regardless of the initial number of infective individuals whenever
10 R

 

and the system will always converge to the disease-free state.  

Fig. 3.10 shows the proportion of susceptible individuals taking PrEP. However, the plot indicates that non-adherence to PrEP 

leads to decrease in PrEP coverage among the susceptible population while in fig 3.11, reveals that as more individuals are 

enlisted for PrEP uptake, there is a notable decline in the asymptomatic class as observed.  

 

4. Conclusion 

This research utilizes mathematical modelling to evaluate the effectiveness of Pre-Exposure Prophilaxis (PrEP) in preventing 

HIV transmission and curtaining its spread at various stages of HIV infection. The nonlinear mathematical model provides a 

robust framework for understanding HIV/AIDS transmission dynamics among the susceptible population, vaccinated 

susceptible, asymptomatic, symptomatic, treated and AIDS infective population. The outcomes of both local and global stability 

analysis of the disease-free equilibrium indicate a strong potential for achieving and maintaining a stable disease-free 

environment. The results of this study highlight the importance of targeted interventions in achieving a disease-free environment. 

The most sensitive parameters influencing the dynamics of the disease were revealed. However, increasing those parameters 

would increase the basic reproduction number. Therefore, health policymakers and stakeholders are advised to prioritize 

interventions that increase parameters with negative index values to effectively reduce 0R
 and achieve a disease free and 

healthier environment. 

In conclusion, we therefore recommend based on our findings, daily pre-Exposure Prophylaxis (PrEP) for susceptible 

populations and vaccinated individuals at substantial risk of HIV infection. By doing so, we can significantly reduce the risk of 

HIV transmission and prevent further spread of the disease. It is essential to emphasize that the effectiveness of PrEP relies 

heavily on strict adherence to the prescribed treatment regimen.  
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