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1. Introduction

HIV originally came from a virus particular to chimpanzees in West Africa during the 1930s, and originally transmitted to
humans through the transfer of blood through hunting. Over the decades, the virus spread through Africa, and to other parts of
the world (CANFAR 2023). HIV remains a major global public health issue, having claimed 40.4 million [32.9-51.3 million]
lives so far with ongoing transmission in all countries globally; with some countries reporting increasing trends in new infections.
There were an estimated 39.0 million [33.1-45.7 million] people living with HIV at the end of 2022, two thirds of whom (25.6
million) are in the WHO African Region. In 2022, 630 000 [480 000—880 000] people died from HIV-related causes and 1.3
million [1.0-1.7 million] people acquired HIV. WHO, the Global Fund and UNAIDS all have global HIV strategies that are
aligned with the SDG target 3.3 of ending the HIV epidemic by 2030. When considering all people living with HIV, 86% [73—
>98%] knew their status, 76% [65-89%] were receiving antiretroviral therapy and 71% [60-83%] had suppressed viral
loads. (CANFAR 2023; WHO 2023; UNAIDS 2023).

However, this infection has no curing medication and the Control of HIV/AIDS is not yet over (Udoo, et al.,2015) [, but with
access to effective HIV prevention, diagnosis, treatment and care, PrEP usage, and antiretroviral therapy (ART) or its
combination has helped in halting further progression of infection but if left untreated leads to a severe stage called acquired
immunodeficiency syndrome (AIDS). HIV infection has become a manageable chronic health condition, enabling people living
with HIV to lead long and healthy lives. HIV infection progresses through stages as follows: (i) primary stage (asymptomatic
stage): this stage faces human individuals where the virus is in the blood and cannot be diagnosed with medical instruments; (ii)
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asymptomatic stage: this stage is a symptomless stage of HIV infection but diagnosable with a medical test; (iii) symptomatic
stage: in this stage, the symptoms of HIV infection like tiredness, loss of weight, and extreme loss of water start to manifest in
the life of HIV-infected individuals; and (iv) AIDS stage: this is an advanced stage of HIV infection where it is difficult for
treatment and leads to death soon if special care is not taken. Modes of HIV transmission are through unsafe sexual practices
with HIV-infected persons, through contacts of normal blood with HIV-infected blood, infected mother to child transmission
through breast or at birth time, and any contacts of HIV contains fluids of human’s with HIV-negative human fluids. However,
in safe practice, the risk of HIV transmission can be reduced by using the principle of abstinence—be faithful-use condom (ABC).
Infected individuals face disproportionately high rates of infectious diseases, compounded by restricted access to preventive
measures. To understand the transmission and mitigation of diseases within infective population and their broader impact on
public health, dynamic modelling approaches are employed (Martial et al. 2018).

Effective interventions and health care services are critical to addressing this public health concern. Criminalizing drug use traps
individuals in a cycle of incarceration, exacerbating health risks for HIV, TB, and other diseases among vulnerable populations
like people who inject drugs (PWID). The PrEP landscape has evolved significantly in years since the original brief was released
(WHO 2015) both in scale and variety with over 75% from African region.

Pre-Exposure Prophylaxis (PrEP) is a medication regime taken daily by HIV-negative individuals to prevent HIV infection. Its
primary function is to prevent HIV replication. PrEP medication such as tenofovir/femtricitabine inhibit HIV replication in the
body. Also, PrEP is highly effective (up to 99%) in preventing HIV infection when taken consistently (Oladejo and Oluyo,
2022). It provides protection against HIV infection, even if other prevention methods (e.g, condoms) fail or are not used and
also reduces transmission risk, especially for high-risk groups such as the sexually active individuals and injection drug users.
PrEP involves the use of antiretroviral drugs, either as oral pills or injectables, to reduce the risk of HIV infection in individuals
who are at high risk of acquiring the virus. The world Health Organization (WHO) recommends PrEP as preventive measure for
people who may be exposed to HIV [2015, 2019]. It is important strategy in HIV prevention efforts.

Numerous trials and studies involving some key populations have demonstrated that the use of PrEP is a secure and effective
method for preventing HIV infection. Mathematical models have been employed to project the impact of early diagnosis and
treatment on the HIV epidemic over an extended period, in comparison to the present scenario. Similarly, models incorporating
PrEP have been utilized to illustrate a decrease in HIV incidence when provided to individuals at a high risk.

Oladejo and Oluyo (2022), proposed a mathematical model that incorporates PrEP as a control strategies to control the spread
of HIV/AIDS in a population with direct inflow of infective immigrants. Result shows that the disease free is unattainable as
long as there is an influx of infective immigrants.

This study present a mathematical analysis of an HIV/AIDS model that accounts for the HIV/AIDS infective population and the
vaccinated susceptible population that uses PrEP as a preventive measure for people who are uninfected but are at substantial
risk of been infected with the HIV infection, thereby reducing the risk of HIV infection in individuals who are at high risk of
acquiring the virus. Also, to carry out sensitivity analysis in order to know which of the parameter is most sensitive and its
implications to the basic reproduction number and to examine the global stability. The results of this study can provide valuable
insights for policymakers and public health officials seeking to develop effective control strategies for HIV/AIDS.

2. Methodology

?j—?z;r—ﬂ(ll+nlz)8—y8—a8 + &V

(Z—\::aS—(,u+8)\/

=gl )5~ 0+ o),

di

d—t2:6‘|1—(y+§+d)lz

C;—-trzné'lz+a|1—(a)+u)'l'

d—Az(l—n)é]2 +oT —(u+d)A

dt 1)

$(0)=S,.V(0)=V,, 1,(0)=1,,,1,(0)=1,,, A(Q) = A, (2)

The model parameters used in the model is defined as follows
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Table 1: Model variables and parameters

Parameters/ variables Description
s

Transmission rate
AIDS related death rate
Pace at which asymptomatic population become aware of being infected after a screening process.
Natural mortality rate unrelated to AIDS
Fraction of vaccinated that become susceptible.
Progression rate from Asymptomatic class to AIDS class.
Progression rate from Symptomatic class to Treated and AID class.

Infectivity rate of transmission

S| QAN R | D2

a Fraction of persons placed on prep strategy.
S(t) Susceptible population at a given time(t).
V(t) Vaccinated susceptible
1,() Asymptomatic population at a given time
15(t) Symptomatic population at a given time.
T(t) Treated population

A(t) AIDS population

In this study, the susceptible and infectious epidemic model (SI) is presented. A population of N(t) was partitioned in to
subclasses which are susceptible, vaccinated susceptible, asymptomatic infective population, symptomatic infective population,
Treated infective population and AIDS population on the classes. The size denoted by S(t),V (t),1 (t),1,(t),T (t), A(t)
respectively as shown in figure 1 below:
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Fig 1: Transmission diagram for susceptible-infected (S-1) model

2.1 Positivity and boundedness of the model: In this section we shall show from model (1) that the state variables are non-
negative and the solutions remain positive for all t= 0. Hence, the parameters in the model are assumed to be positive.

Theorem 1: Let the initial conditions or values of the state variables be such that
{(S(0)>0,v(0)>0,1,(0)>0,1,(0)>0,T(0) >0, A(0) >0) € Q}, then the set (S(t),1,(t),1,(t),T(t),A®t)) is

non-negative in € forall t= 0.
Proof: Considering the first equation in (1), are considered for the positivity of the state variables as follows using the approach
of (Adeyemi and Oluyo, 2023; Oladejo and Oluyo, 2022; Odebiyi et al., 2024; Temesgen et al., 2023) [12 1. 18]

> (g1, )+ i+ a)s
E - [(p0, 1)+ el

Using variable separable
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ds—sz—j(ﬂ(l1 +77l,)+ p+ a)dt

Ins>—~(B(1, +7l,)+u+ak+C
S(t) > o~ (Bl Jruralt (Cy

S(t)= Soe*(ﬁ(|1+ﬂ|2)+y+a)t.
S(O):S():>A|_=SO

S(t)>0 S, > 0.

Since +forall t>0 provided that

Hence, S®=0

It is possible to show using the same procedure for other state variables that:

www.allmultidisciplinaryjournal.com

1, (t) = 1,(0)e @ >0,V (t) =V (0)e “** >0, 1,(t) > 1,(0)e 7t >,

T()>T(0)e " >0, A(t) > A(0)e “*t >0

This shows that all the solutions of equation (1) are positive for all t =0 _ Therefore, the HIV/AIDS transmission model stated
in (1) is both epidemiologically significant and numerically well posed in an attainable given region Q=0

Theorem2: Every solution in the region Q= {(S(t),v (), 1,0), 1, (1), T(),Al) eQ® :N(t) < zj} is positively
7

invariant with respect to the HIVV/AIDS model (1) in the populations. The solutions for the system are contained and remain in

the region € for all time t=0.

Proof: Considering the equation of the model, and adding up all the derivatives with respect to time

N(t
%=ﬂ+u(s +V 4+, +1,+T +A)—dA
Let d=0
dN(t)
— =7+
dt N
N < 1+(N0 ——je*’t
u U
Where No is the initial size of the population
Therefore,
limN@) <2
t—oow U

' we obtained

This result implies that HIV/AIDS model (1) has non-zero negative and bounded solution in the region €2 and all the solutions
starting in €2 approach, enter or stay in €2 . Hence, it is sufficient to conclude that the model is epidemiologically well posed.

2.2 Existence and uniqueness of solution of the model

In this section, we establish conditions for the existence and uniqueness of a solution of our model. We shall rigorously employ

Picard theorem to achieve this.

Theorem 3: There exists a unique solution for the transmission of HIV model (1).
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Consider the system of equations below:

X1’: fl(Xsz’ Xt )X (t )= (Xl)O
X; = fz(xl’le = Xy )X (t )= (X )0

X = Fo (X0 X0y X0, 0 X0 () = (X4, @3)

The model can be written in a compact form as follows

X" = f(t,x),x(t,) = %,

(4)
Theorem 4: Let f be continuous in a domain
= (D)t =t <@ x| <X = (%0 X130, % ={00)o, (Do (X0 Do -
Suppose that f(t,x) satisfies Lipschitz condition
1 (xgt) = F (%, )] < L%, — | ©)

Then, system (3) has a unique solution in D, where the pairs f(x,1) and f(x;,1) belongs to D and L (Lipschitz constant) is
a positive constant.

of,
It is of great importance to note that the Lipschitz condition is satisfied by the requirement that P —L i, j=12,-
i
continuous and bounded in D.
Proof:

It is suffices to show Lipschitz condition property satisfied by the model and this is done as follow.
From the first compartment of equation (1), it can be shown that

S _ (S, t)= @ _ B, +71,)S — 1S —aS + &V
dt dt @)
” fl(sl’t) - fl(SZ't)” < L1||Sl _82” (8)
Then, from the first compartment in equation (1),
Using the inequality, | f,(S;,t) — f,(S,,t)| < L[S, =S, .
Then (7) becomes
:”—ﬁ(ll +77'2)51 -5 —aS +&V _(”_ﬁ(h "'77'2)82 — 15, - a5, +5V) 9)

:”_,B(Il +77'2)81 — S —aS; + &V _”+(;B(|1 +77'2)82 + 1S, + S, "‘5\/)
Further simplification of (9) gives

=||_(/3(|1 +77|2)+/1+05)Sl +(ﬁ(|1 +77|2)+ﬂ+05)82”

=080, +m,)+ w+ a)s, + (B, + 71, )+ 1+ @S, )|

:|—1|||(,B(|1 +77|2)+,u+a)(81 - Sz)”

<|-YBA, + )+ g+ @)KS, = S,))
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S”[(ﬁ(ll +17l,)+ u+a)l(S, =S,)| (10)

Using the limiting value where I, <1, <T < A< then it follows from {0) that
H

<GB0, +71,)+ g+ a)lS, = S,)|

(ﬁ(%+n%]+y+aj(sl —52){

(ﬂ(%+n%)+u+a} (S, —S,)|

Therefore, it follow from equation (8), ” (S0 -1, ’t)” < L1||Sl B 82”

[,(8,t)- £.(S,.t) <

(11)

<

(12)

o f,(S,t
This implies that :

L, =(ﬂ(£+an+y+a]

Similarly re-writing the second compartment of the equation model

c:j—\fz fz(t,x)zaS—(,u+8)\/

is Lipschitz continuous with Lipschitz constant where

(14)
o Fo0V211) i te Lipschite coni
It is important to show that satisfies the Lipschitz condition
[£20v1.0) = £, (Vo D S LoV =V | (15)
Where L, is the Lipschitz constant greater than zero, then equation (15) become
[£,040) = £,05,0)] =05 — (e + ), a8 ~(u+ &)y (16)
=||a5—(lu+8)\/l—(as—(,u+g)\/21| 17

Further simplification of (16) gives

=[-(u+ eV +(u+ 2V, )

= ”(‘D(ﬂ + 5)[\/1 -V, ]|

<4+ fvy - Ve ]

< ”(ﬂ +e)V, -V, ]| (18)
Therefore, it follow from (18), [ ()= 1. (\/Z't]| S CRD\ARA

This implies that fZ(VZ ' t) is Lipschitz continuous with Lipschitz constant
L, = (,u + 8) (19)

Similarly re-writing the third compartment of the equation model
dl
L=yt =B, +71,)5 = (0 + u+ o)),
dt (20)

It is important to show that f, (I12 ’t) satisfies the Lipschitz condition
||f3(|11’t) - 1:3(|121t)||S L3|||11 - |12||

Where L is the Lipschitz constant greater than zero, then equation (20) become
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H fa(ly, 1) - f3(|12,t)H = Hﬂ(h + 77'2)S - (9 tut O')li - ﬂ(l1 + 'llz)s - (9 tut O')'zH (21)
Further simplification of (21) gives

:Hfs(lnvt)_ fs('u:OHZHﬂ(h+77|2)S_(9+N+U)|11_(ﬂ(|1+77|2)5 +(‘9+ﬂ+5)|12]‘

H ((9+ﬂ+5)11) (9+ﬂ+0' 12H

_”( 1)[(9+/1+O' 121|
|( 1)|||[(‘9+/‘+0' 12X|
<O+ p+oNly 15, 22)

Therefore, it follow from equation " E (Illvt)_ f3(|12’tl| S||(0+#+O-)(|11 —l )|

This implies that f3(|13’t) is Lipschitz continuous with Lipschitz constant

L, =(6’+,u+0') (23)
In a Similar manner, re-writing the forth compartment of equation(1)
dl,
—Z=f,(It)=a —(u+5+d)l,
dt (24)

It is important to show that f3(| 2 't) satisfies the Lipschitz condition

||f4(|21,t)_ f4(|22,'[)||S L4|||21 - |22||

(25)
Where L4 is the Lipschitz constant greater than zero, then equation (24) become
Hf3(I21,t) f3(15,1) H9| (,u+)/+d)|21—(9|1—(/1+;/+d)|22]‘ (26)
Further simplification of (26) gives
Hf3(|21,t)— I5,1) H&I (ﬂ+§+d)|21_6|1+(/1+5+d)|22H
:H(_(ﬂ‘*é“"d )[|21 - 22]‘
< H(‘l)((ﬂ +8+d)fl, - |2z]‘
<| 1”|(,U +0+ d [l ool ) ]| 27)
Therefore, it follows from equation (27)
fy(ly0,t) = f4(I,0) < (ﬂ+5+d1“21‘|22H
[fa(l2,) = F, (1 ) S Lyl — 12|
This implies that f4(l 24't) is Lipschitz continuous with Lipschitz constant
L, =(u+6+d) 28)
In a Similar manner, re-writing the fifth compartment of equation (1)
?TIZ fs(t,X)=nS,1, +ol, — (@ + u)T
(29)
It is important to show that fs (T5 't) satisfies the Lipschitz condition
[15(T2.0 = (T2, 0] < LefT, -] 0
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Where L5 is the Lipschitz constant greater than zero, then equation (29) become

[ 5(Tut) — £ (T, 0] =6, 1, + oty — (@ + )T = (05,1, + oAy (@ + )T ) 31)
Further simplification of (31) gives

|50~ s O] = |-+ 0+ T

=~ @+, + 0+ )T

<(-Yflw+ . -Te]

<@+ w)m -T,] (32)
Therefore, it follow from equation (31)

| £5(Tt)— fo(Tot)| < (@+ )T, - T,

[ 5 (T, 0) = 5 (T, )] < Ls [T, — T

This implies that fs (T5’t) is Lipschitz continuous with Lipschitz constant where,

Ls = (a) + ,U) (33)
Re-writing the sixth compartment of the equation model

dA

—=f(At)=0-n)5,1, + oT + WA— (u+d)A

dt (34)

It is important to show that fﬁ(Aﬁ’t) satisfies the Lipschitz condition

[ f6 (ALY — f (A D] < Lg|A — Ay (35)

Where L6 is the Lipschitz constant greater than zero, then equation (34) become

[fs(AL) - fs(A, 0] =[L-1)5,1, + 0T + @A—(u+d)A=({L-n)3,1, + 0T + wA- (u+d)A (36)

Further simplification of (36) gives
[f5(AD) — £ (A )] = [L-)6,1, + OT + A —(u+d)A ~(L-n)3,1, +0T — A, + (u+d)AY
== (e + d)A + oA + (1 +d)A, + oA,
=Dk +d + o)A - A
<1z + d + @)A - A

< ||(y +d+ a))(A1 -A, X| (37)

Therefore, it follow from equation || fe (Aﬂ)— f6(A2't}| < (d -|-,uX|Al — A2||
This implies that f6 (A6 ,t) is Lipschitz continuous with Lipschitz constant

L =(u+d+w) (38)
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Hence, the HIV model (1) has a unique solution in the region D.

2.3 Mathematical Analysis of the Model

2.3.1 Disease free equilibrium point: This is a state where the disease is completely eliminated from the population, that is,
there is no infected individuals, no disease transmission and population is entirely susceptible.

At the equilibrium,

ds_dv _di, _dl, _dT_dA_,
dt dt dt dt dt dt
7Pl +71,)S — 1S —aS+eV =0
aS—(u+eN =0
,3(|1+77|2)S_(9+ﬂ+0')|120
A, —(u+s+d)l, =0
né]2+a|1—(a)+,u)T=O
@1-n)dl, + T —(u+d)A=0

At the disease free equilibrium, we set S =0,V =0,1, =1, =T = A=0 Substituting these to equation (1) and solving
gives the infection — free equilibrium as

a(u+e) ar
mu+eta) plu+e+a)l

E°=(S°,V°,I1°,I§,A°):£ ,o,o,o,oj

(39)

2.3.2  Endemic equilibrium point: The endemic equilibrium is a steady- state solution where the disease persists in the

population at a stable level. At endemic equilibrium, S#0V=#0,1,#0,1, #0,T #0,A=0
Solving equations (1) simultaneously, we have the endemic equilibrium points of the HIV model (1) designated by

* * *
& =1\S

5

V=

1T A

s lag 1 g

1

is obtained as

a

1

ST [Kl(ﬂf +u+ a)— (mx + ga)J

K, {(Kl(/l* +u+a))-(m

1

+sa)}

T K, {(Kl(}f +u+a))-(m +8a)}

0 A
K,K, (Kl(ﬂf +,u+a))—(7za + ea)

1

o7

1

or

_(Kl(/l* +u+ a))

+o
— (mx +.€a)}

novL”

_(kl(/l* +y+a»—(m +mz)}+ Kk, {(Kl(ﬂ* +y+a»—(m +5a)}

1

K,K5K, {(Kl(}f +tuta

1

oz
Kk,

(Kl(/l* +u +a»—(7za + &)

»4m+mj+

|

(40)
Where,

Ki=(u+8)Ky=(0+p+0) Ky=(u+6+d) K, =(0+ ) K= (u+d)

2.3.3 Derivation of Basic Reproduction Number, RO: This is a threshold parameter. It represents the average number of
secondary infections generated by a single infected individual in a completely susceptible population. For example if R, <1,
means Disease will decline and eventually die out. If R, =1, Disease will remain stable and if R, >1, Disease will spread and

potentially lead to an outbreak. The basic reproduction number predicts disease spread and potential outbreaks, guides control
measures (e.g., vaccination, quarantine), and helps evaluate effectiveness of interventions. The next-generation matrix is
determined by analyzing new infection pathways and also infection transmission between compartments.
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K and Vi are calculated as follows using the approach of (Van den Driessche and Watmough, 2002)
- (9 +u+ 0')|1
B, +11,)s A, —(u+5+d)l,
O Vi = 1
f, =
0 ndl, + ol —(w+ u)T
0 , (L-n)A, + T —(u+d)A (1)
. _ w(u+¢)
o=
The Jacobian matrices of R and Vi at the disease free equilibrium point, “(“ tet a) , are:
BSog PnSy 0 0
oF, (E 0 0 00
DF(E,) = M =
OX; 0 0 00
0 0 00
(42)
G, 0 0 0
oV, (E -0 G 0 O
DV(EO) — l( O) — 2
0 -@-nj§ -o G,
(43)
Where, Gl :(9+:u+o-)'GZ :(ﬂ+5+d),G3 :(a)+ﬂ), G4 :(/U+d)
Ki=(u+e) Ky =(0+u+0) Ky =(u+ 5 +d) K, = (@+ ) Ks = (u+d)
Gi 0 0 0
1
N 5 0o
v -1 _ 172 2
ngs, +oG, né, 1 0
GleG3 GZG3 GS
_&a(s—ancSz—dHKs—a)oKz _&K3—nw§2—d<3 o 1
i 616,636, 626384 ©364 Gy 44)
PSq, Prs0 By
4 1a &% 9
FV ~= 0 0 00
0 0 00
i 0 0 0 0] (45)
The basic reproduction number, which is the dominant Eigen-value of the product FV2, is therefore obtained as:
. 5,70 +G,)
0 GG
172 (46)

2.3.4  Stability analysis of the Disease free equilibrium
Theorem 4: The disease-free state is locally asymptotically stable if the basic reproduction number Ro<1 and unstable if
otherwise.
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Proof:
We evaluate the Jacobian matrix of the model at the disease free equilibrium
71'(/l+€) , ar ,0,0’0,0
mutera) wute+a)l
~(uta) e ~fSe  ~PnS, 0 0]
a —(u+e) 0 0 0 0
0 0 -G S 0 0
J (EO) — ﬁso 1 1377 0
0 0 0 -G, 0 0
0 0 o no -G, 0
.0 0 0 K, o —Gg | (@)

Where, G, :(9+u+a)’G2 :(,u+5+d)'G3 =(w+u),G, =(1-n)5, Ky =(u+d)

The characteristic polynomial equation is obtained as

(A+Gg XA +G, 22 +¢,4+C, A2 +by A+, )=0 @)
Where,

¢, =G+G, = /5 ¢, =G,G, (1~ Ro), by =(2y+a—$)7 b, :ﬂ(a+;“)_5(fu+2a)7

7(u+¢)
Sg=——"~
wly+e+a)
The eigenvalues A =G5, 4, =-G;, and the remaining will be obtained from the quadratic equations (12) and (13),i.e
2 —
A2 +CA+C, =0 (49)
2 —
A~ +bA+b,=0 (50)

Where b1 >0 21+ a>e, b, >0 sl + u)>s(u+2a)

€, >0, G +G, > 5, c,>0=R,>1

and

Then by Routh Hurwitz criteria, the remaining four eigenvalues are negative. Hence, the disease free equilibrium is locally
asymptotically stable.

2.3.5  Global asymptotic stability of endemic equilibrium
Theorem 5: The global asymptotic stability of the HIV model (1) around the endemic equilibrium point is globally
asymptotically stable in the region D whenever the basic reproduction number is greater than one.

L:DeR® »R

Proof: Consider a quadratic Lyapunov function + defined by

e L PR B I 5 P |

The time derivative of the Lyapunov function (51) is given by

(51)

s ) la ) (0 ST (A A Yo s 41, 41, 4T 4 A)

dt dt
%:{(S—s**ﬁ(la e =) =T e (A A W (S 1, 41, 4T 4 A))
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——ufs =) (1, =1, ) (1 =17 )+ (=T )+ (A A**)}{(S L 4T 4 A)—”}

“ (52)
N™ <
Since H then, the following result is obtained
- - - - . WS+ + 1L+, +T +A)-
%S—y{(S—S v v e (1 =1, (1, =1, e =T )+ (A=A )}{((S:+J+1|}2++IZ:+T)** +A**)}

*k

1,1, )+(T—T**)+(A—,1A**)

:_u{(s_s**)+(\/—V**)+(I1—I1H)+(|z—'zﬁ)+(T +T**XA—A**)}X{((S_S**)+(V_V**)Jr -1 H)+}

Hok ok Fk ok o s |2
— s =87 v v (1 =17 ), =1, (T =T ) (A A 53)
dL
Since the time derivative of the continuously differentiable function G is negative semi-definite i.e., E <0, then, the function

S=S",V=V", A=A" 1, =1, , 1,=1,",T=T"

dL
Lisa Lyapunov function. Therefore, E =0 provided that and

o dL
A= A" Then, by LaSalle’s invariance principle (LaSalle, 1976), the largest invariance set for which E =0 is the singleton
set {8** } which implies that the endemic equilibrium point of the HIV/AIDS model (1) is globally asymptotically stable.

2.3.6 Global Asymptotic Stability of the Disease free Equilibrium

Theorem 6: The disease free equilibrium point of the model is globally asymptotically stable whenever the basic reproduction
number is less than unity.

Proof: Following the approach given in the global asymptotic stability of the HIV model (1) is investigated. Re-writing the HIV
model (1) in a compact form as follows

dX

E_F(x, Z),
d—zze(x, Z), G(x, 0)=0,
dt (54)

Where X is the uninfected class of the HIV model and £ is the infected classes of the model ie. X =S e Rf and
- 4 *
Z= (Il’ 2. T, A)e R, . Also, let the disease-free equilibrium point of the HIV model be denoted by &, = (X ,0). Then, the

following properties must be satisfied

. dXx -
H, : Fora = F(X ,O), X" is globally asymptotically stable

H, :6(X,2)=AZ-G(X, 2)>0

Where A=0G/oz , which is an M-matrix evaluated at (X " O) with non-negative off diagonal entries.
Theorem 7: The disease-free ¢, = (x*,o) of the HIV model (1) is globally asymptotically stable if the properties H, and H,
are satisfied.

4 G(X, 2)

Proof: F(X, Z)an are obtained from the HIV model (1) as

S(0)=S¢,V(0) =Vo, 1,(0) =1, 1,(0) =1, , A0) = A,
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F(X, 7)- =B, +71,)S - 4S8 —aS +&V
oS —(u+eN
(55)
ﬂ(|1+77|2)s_(9+ﬂ+5)|1
A, —(u+s+d)l,
G(X, z2)=
( ) ndl, +ol, —(w+ )T
@-n)dl, + T —(u+d)A (56)
Such that,
F(X, 0)=(r— 45-0a8)
ds
E—ﬂ—(,u+a)8 (57)
Simplifying Equation (57) gives
sit)=Z+ [s(o)—sz—“”“)t
H H (58)

Also, for F(X, 0)=—(u+&

(ii_\'[/+(ﬂ+8)\/ =0

V (t) =V (0)e “+e)t
Irrespective of the initial sizes of the variables ast —> 00 then, S(t) — 2,V (t) — 0. Therefore, the DFE (X y 0) is
y7

globally asymptotically stable satisfying property H;.

H

Now, to establish the second property " "2’ recall that

ﬁ(|1+77|2)s_(9+ﬂ+0)|1
A, —(u+s+d)l,

G(X, Z)=
(. ) ndl, +ol, —(w+ )T
@-n)dl, + T —(u+d)A (59)
An M-matrix whose off diagonal entries are non-negative is obtained as

B —(0+u+o)  pSTn 0 0

A_9G _ 0 —(u+5+d) 0 0

0z o no —(w+ 1) 0
0 & 1) —(u+d) (60)

Where S* = 1. Then, from
yz;

G(X,Z)=AZ-G(X,Z)
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A1, +m,)s" -5)

G(X, 2)= 0 (61)
0
0
A A A A
Since0 < S <22, clearly, it is obvious that G(X.,Y)20,G,(X,Y)=0,G5(X.Y) :O, G,(X,Y)=0
y7i
H

Hence, property * " 2 is satisfied. Therefore, the disease-free equilibrium of the HIV model (1) is globally asymptotically stable.
2.3.7  Sensitivity Analysis of the basic Reproduction number

Sensitivity analysis assesses how changes in model parameters, assumptions or input affect the outcomes and conclusions of the
model, providing insights into the robustness and reliability of the results. By identifying the most influential parameters,
sensitivity analysis informs policymakers and decision-makers on where to focus resources and efforts to maximize impact and
mitigate uncertainty.

Sensitivity analysis also allow us to measure the relative change in a state variable when a parameter changes. The normalized
forward sensitivity index of a variable to a parameter is a ratio of the relative change in the variable to the relative change in the
parameter. When a variable is differentiable function of the parameter, the sensitivity index may be alternatively defined using
partial derivatives.

Using the approach of (Chitnis, 2008) [], the normalized forward sensitivity index of a variable “b” that depends differentiable
on a parameter “m” is defined as

XbP .= ib*m
m -
om b (62)
As we have an explicit formula for R, in equation (46), and we derive an analytical expression for the sensitivity of Ro, as
ho= % — with respect to each of the parameters involved in * "%as computed in table 2 below:
g

Table 2: Sensitivity Result

Parameters Values Sensitivity Index Source

/] 0.0009 +1.0000 Alsheikh (2011)

T 300 +1.0000 Odebiyi et.al (2024) (1
y2/ 0.02 -0.70007719 Ibrahim et.al. (2006) (14
Po) 0.2 -0.00031059 Ratera et al. (2012) [*°]
d 1.0 -0.0015529 Alsheikh (2011) %]
(o) 0.2 -0.2797202 Ratera et al. (2012)
0 0.015 -0.01833895 Alsheikh (2021)

n 0.3 0.002640 Odebiyi et al. (2024) 4

2.3.8 Interpretation of Sensitivity Indices: Table 2 represents the sensitivity index for the base line parameter values and

it shows that recruitment rate ( %), transmission rate (ﬂ ), and infectivity rate (17) are the most sensitive parameters. When the
. . . R .
parameters 7 B and 7 increase while other parameters remain constant, the value of ~? also increases. More so, when the

. . . R
parameters 0,6,0,u and 9 increase while keeping other parameters constant, the value of ~ 0 also decreases. It should be
: : o _ _ _ X R =
targeted by intervention strategies in order to have a stable and disease free environment. For instance, = # ~ +1.0000 means

Ro
Xo‘

that increasing or decreasing B by 5% increases or (decreases) R, by 5% while ~-0.01833895 means that increasing or

(decreasing ) Ro by 0.09169475% as seen in table 2 below. Others can be calculated following same procedure.
3. Numerical simulations and discussion
Simulation of Simulation of the model was performed for better understanding of dynamical spread of transmission of HIV/AIDS

infection using Maple 18.0 software. The simulation demonstrates model equations and reveals the impact of these parameters
on the basic reproduction number.
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Fig 3.1: Graphical Representation of the Sensitivity indices of = ©

Fig 3.2: Sensitivity of the basic reproduction number to the parameters 77 and s
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Fig 3.3: Sensitivity of the basic reproduction number to the parameters Sand ©

Fig 3.4: Sensitivity of the basic reproduction number to the parameters © and o
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Fig 3.5: Sensitivity of the basic reproduction number to the parameters & and €
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Fig 3.6: Sensitivity of the basic reproduction number to the parameters € and s
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Fig 3.7: Sensitivity of the basic reproduction number to the parameters 0 and s
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Fig 3.8: Sensitivity of the basic reproduction number to the parameters € and 7%
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Fig 3.11: Plot of Fraction of Vaccinated susceptible placed on PrEp
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Discussion
Fig 3.1 shows the graphical representation of the basic reproduction in form of a bar chart. The most sensitive parameters are
recruitment rate , transmission rate and infectivity rate.

Fig 3.2 shows Both recruitment rate of susceptible 7z and /3. An increase in these parameter values increases the value of the

basic reproduction number. Similarly in fig 3.3, increases in progression rate from asymptomatic infective to AIDS class (4),

and progression rate from symptomatic class to treated and AIDS class respectively (o) , resulted in to a corresponding decrease
the value of basic reproduction number.

Fig 3.4 also shows the plot of Sensitivity of the basic reproduction number to the parameters () and ). It reveals that
increase in the value of (o) and (@) , resulted into a corresponding decrease in the basic reproduction number population. Figure
3.5 reveals the Sensitivity of the basic reproduction number to the parameters (@) and (&) Both parameters reveals that an

increase in the fraction of individuals placed on prep strategy (@) and fraction of vaccinated that become susceptible (‘9),
resulted into a corresponding decrease in the basic reproduction number population. An increase in the value of fraction of

vaccinated that become susceptible (5), decreases the basic reproduction number and increase in the transmission rate (B,
will lead to increase in the basic reproduction number as depicted in fig 3.6.

Fig. 3.7 depicts the Sensitivity of the basic reproduction number to the parameters ¢ and ('B). It was shown that increase in
pace at which asymptomatic infective population become aware of been infected after a screening process yields a decrease in
the basic reproduction and also an increase in the basic reproduction number as transmission rate also increase. Fig. 3.8

investigated the sensitivity of the basic reproduction number to the parameters (¢) and (”), and an increase in the fraction of

vaccinated that become susceptible (8), decreases the basic reproduction number and the basic reproduction number also
increases as the recruitment rate of susceptible increases.
The portrait of global stability of the disease free equilibrium with various initial conditions as illustrated in fig. 3.9. It simply

suggest that if the basic reproduction number Ro <l, the virus cannot sustain itself in the population and the number of new
cases will decrease over time. The HIV virus can be eradicated from the population, regardless of the number of people that are

initially infected and the disease will eventually die out, regardless of the initial number of infective individuals whenever Ro<1
and the system will always converge to the disease-free state.

Fig. 3.10 shows the proportion of susceptible individuals taking PrEP. However, the plot indicates that non-adherence to PrEP
leads to decrease in PrEP coverage among the susceptible population while in fig 3.11, reveals that as more individuals are
enlisted for PrEP uptake, there is a notable decline in the asymptomatic class as observed.

4. Conclusion

This research utilizes mathematical modelling to evaluate the effectiveness of Pre-Exposure Prophilaxis (PrEP) in preventing
HIV transmission and curtaining its spread at various stages of HIV infection. The nonlinear mathematical model provides a
robust framework for understanding HIV/AIDS transmission dynamics among the susceptible population, vaccinated
susceptible, asymptomatic, symptomatic, treated and AIDS infective population. The outcomes of both local and global stability
analysis of the disease-free equilibrium indicate a strong potential for achieving and maintaining a stable disease-free
environment. The results of this study highlight the importance of targeted interventions in achieving a disease-free environment.
The most sensitive parameters influencing the dynamics of the disease were revealed. However, increasing those parameters
would increase the basic reproduction number. Therefore, health policymakers and stakeholders are advised to prioritize

interventions that increase parameters with negative index values to effectively reduce Ro and achieve a disease free and
healthier environment.

In conclusion, we therefore recommend based on our findings, daily pre-Exposure Prophylaxis (PrEP) for susceptible
populations and vaccinated individuals at substantial risk of HIV infection. By doing so, we can significantly reduce the risk of
HIV transmission and prevent further spread of the disease. It is essential to emphasize that the effectiveness of PrEP relies
heavily on strict adherence to the prescribed treatment regimen.
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