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Abstract 
The rapid adoption of Internet of Things (IoT) technologies in smart manufacturing 
has revolutionized production processes but has also introduced significant 
cybersecurity challenges. Cyber-physical systems, integral to modern manufacturing, 
are increasingly vulnerable to unauthorized access, data breaches, and operational 
disruptions. This paper explores the role of artificial intelligence (AI) in enhancing 
intrusion detection and threat modeling to secure these networks. By leveraging 
machine learning, deep learning, and predictive analytics, AI-driven solutions offer 
adaptive and real-time responses to evolving threats. The study highlights 
cybersecurity challenges, reviews state-of-the-art AI methodologies, and examines 
real-world implementations in diverse manufacturing environments. It also identifies 
key insights from successful deployments and discusses the potential for future 
advancements in scalability, real-time responsiveness, and resilience. This paper 
concludes by emphasizing the transformative potential of AI in building robust, 
secure, and efficient smart manufacturing systems while addressing the critical need 
for ongoing research and collaboration. 
 
DOI: https://doi.org/10.54660/.IJMRGE.2024.5.1.1197-1202 

  

Keywords: Artificial intelligence, intrusion detection systems, threat modeling, smart manufacturing, cybersecurity, internet of 

things 

 

 

 

Introduction 

Smart manufacturing represents the convergence of advanced manufacturing techniques and cutting-edge digital technologies 

(Solanki, 2023) [45]. With the advent of the Internet of Things (IoT), manufacturers can now achieve unprecedented levels of 

efficiency, automation, and precision. IoT facilitates interconnected devices, sensors, and systems that communicate and 

collaborate in real time, enabling predictive maintenance, production optimization, and resource management. This rapid 

adoption of IoT has become a hallmark of Industry 4.0, revolutionizing traditional manufacturing practices (Nain, Pattanaik, & 

Sharma, 2022) [25]. 

However, the increased reliance on interconnected networks also introduces significant vulnerabilities. Cyber-physical systems 

(CPS), which merge physical processes with computational controls, are particularly susceptible to unauthorized access 

(Humayed, Lin, Li, & Luo, 2017) [17]. Such vulnerabilities stem from IoT devices' open nature, extensive interconnectivity, and 

limited built-in security features. Addressing these security challenges is vital for ensuring manufacturing networks' integrity, 

availability, and confidentiality (Yaacoub et al., 2020) [47]. 

As the industrial sector integrates IoT on a larger scale, the risk of cyberattacks has risen exponentially. Unauthorized access to 
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manufacturing networks can result in data theft, operational disruptions, or even sabotage of physical processes (Stellios, 

Kotzanikolaou, Psarakis, Alcaraz, & Lopez, 2018) [46].  

The highly dynamic nature of manufacturing environments, 

with their heterogeneous devices and real-time 

communication requirements, exacerbates the difficulty of 

detecting and mitigating threats. Traditional security 

mechanisms designed for static IT infrastructures often fail to 

address these evolving challenges, exposing smart factories 

to sophisticated cyber threats (Djenna, Harous, & Saidouni, 

2021) [16]. 

Artificial intelligence (AI) offers transformative potential in 

enhancing cybersecurity for smart manufacturing networks. 

By leveraging machine learning (ML), deep learning, and 

other AI-based techniques, intrusion detection systems (IDS) 

can identify and respond to threats with greater accuracy and 

adaptability (Manoharan & Sarker, 2023) [24]. Additionally, 

AI-driven threat modeling enables manufacturers to 

proactively anticipate potential attack vectors and reinforce 

vulnerable points in their networks. This paper explores how 

these technologies can be harnessed to secure IoT-enabled 

manufacturing environments (De Azambuja et al., 2023) [15]. 

This review focuses on key intrusion detection and threat 

modeling aspects within smart manufacturing networks. It 

examines the role of AI techniques in identifying 

unauthorized access, discusses contemporary approaches to 

threat modeling, and highlights the challenges and 

opportunities presented by integrating AI into manufacturing 

cybersecurity frameworks. Through this exploration, the 

paper aims to comprehensively understand how AI-driven 

methods can address the pressing need for robust and 

adaptive security solutions. 

 

2. State of the Art in Smart Manufacturing Cybersecurity 

2.1 Cybersecurity Challenges in Smart Manufacturing 

and Existing Solutions 

The integration of IoT and cyber-physical systems (CPS) in 

smart manufacturing has introduced unique cybersecurity 

challenges. Unlike traditional IT systems, these environments 

operate at the intersection of physical and digital domains, 

where security breaches can have both digital and physical 

consequences (Kayan, Nunes, Rana, Burnap, & Perera, 2022) 

[23]. The diversity and scale of connected devices in 

manufacturing networks create numerous entry points for 

attackers. Many of these devices, designed for efficiency and 

functionality, often lack robust security protocols, making 

them prime targets for exploitation (Chukwurah, Ige, 

Idemudia, & Adebayo, 2024) [14]. 

One critical vulnerability is the heterogeneity of devices, 

which often originate from multiple vendors with varying 

security standards. This lack of standardization complicates 

the implementation of unified security measures. 

Additionally, real-time data transmission between devices 

and systems is essential for manufacturing operations but 

opens pathways for attacks such as data interception, 

spoofing, and denial-of-service. The dynamic nature of 

manufacturing processes, which frequently involve changes 

in production lines and the addition of new devices, further 

amplifies these risks (Onoja & Ajala, 2024) [37]. 

Another key challenge lies in the convergence of IT and 

operational technology (OT). While IT systems traditionally 

focus on data confidentiality and integrity, OT systems 

prioritize availability and uptime. This fundamental 

difference in priorities creates security gaps that 

cybercriminals can exploit. Furthermore, the consequences of 

a successful attack in smart manufacturing extend beyond 

financial loss, including production downtime, compromised 

product quality, and risks to personnel safety (Afolabi, Ige, 

Akinade, & Adepoju, 2023; Alonge, Dudu, & Alao, 2024b) 

[11, 25]. 

Traditional intrusion detection systems (IDS) have been 

deployed in manufacturing networks to address these 

challenges. These systems aim to monitor network activity, 

detect anomalies, and flag potential threats. IDS operate 

using either signature-based detection, which relies on known 

patterns of malicious behavior, or anomaly-based detection, 

which identifies deviations from established baselines 

(Osundare, Ike, Fakeyede, & Ige, 2024e) [48]. 

While effective in conventional IT environments, traditional 

IDS face significant limitations in the dynamic and 

heterogeneous context of smart manufacturing. Signature-

based detection systems struggle to keep up with the rapid 

evolution of attack techniques, often missing new or 

unknown threats. Anomaly-based systems, while more 

adaptable, can generate high rates of false positives, leading 

to alert fatigue and reduced efficiency. Moreover, traditional 

IDS are not well-equipped to handle the volume and velocity 

of data generated in manufacturing environments. Real-time 

monitoring and analysis of such vast datasets require 

computational capabilities beyond what conventional 

methods can provide. These limitations highlight the need for 

more adaptive and intelligent solutions tailored to the specific 

demands of smart manufacturing cybersecurity (Ishola, 

Odunaiya, & Soyombo, 2024; Onoja & Ajala, 2023b) [22, 36]. 

 

2.2 Emerging Trends 

To overcome the shortcomings of traditional approaches, the 

adoption of artificial intelligence (AI) and machine learning 

(ML) has emerged as a promising trend in smart 

manufacturing cybersecurity. AI-driven systems bring a level 

of adaptability and intelligence essential for managing 

modern manufacturing networks' complexities (Bécue, 

Praça, & Gama, 2021) [13]. One key advantage of AI is its 

ability to process and analyze large volumes of data in real 

time, identifying patterns and anomalies that might indicate a 

potential threat. Unlike traditional methods, AI can learn 

from data over time, improving its accuracy and reducing 

false positives. For example, ML algorithms can be trained 

on historical data to recognize normal operational behavior 

and flag deviations that may signify unauthorized access or 

malicious activity (Ike et al., 2021; Oladosu et al., 2022c) [24]. 

Deep learning, a subset of AI, offers even greater potential 

for enhancing intrusion detection. By leveraging neural 

networks, deep learning models can identify subtle and 

complex patterns in data that traditional systems might 

overlook. These models can adapt to evolving threats, 

making them particularly effective in dynamic manufacturing 

environments. 

In addition to intrusion detection, AI is being integrated into 

threat modeling to anticipate and mitigate potential 

vulnerabilities. Predictive analytics powered by AI allows 

manufacturers to simulate attack scenarios, identify weak 

points in their systems, and implement proactive security 

measures. This forward-looking approach enhances the 

resilience of manufacturing networks and reduces the risk of 

costly and disruptive attacks (Manoharan & Sarker, 2023) [24]. 

Another notable trend is the incorporation of AI with edge 
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computing. In manufacturing environments, where latency 

and real-time responsiveness are critical, processing data 

locally at the network's edge enables faster detection and 

response to threats. This approach minimizes the reliance on 

centralized systems, which can become bottlenecks or single 

points of failure (George, Idemudia, & Ige, 2024b; Oladosu 

et al., 2022b) [33, 48]. 

Despite its promise, integrating AI in cybersecurity is not 

without challenges. The development and deployment of AI-

driven systems require significant expertise and resources. 

Additionally, these systems are not immune to adversarial 

attacks, where attackers manipulate input data to deceive the 

AI models. Addressing these challenges is essential for 

realizing the full potential of AI in securing smart 

manufacturing networks. In summary, while smart 

manufacturing faces significant cybersecurity challenges, the 

evolution from traditional methods to AI-driven solutions 

marks a transformative shift. These emerging technologies 

address existing systems' limitations and pave the way for 

more robust and adaptive security frameworks, ensuring the 

resilience of manufacturing operations in an increasingly 

connected world (Oladosu et al., 2022a; Osundare & Ige, 

2024b) [32, 48]. 

 

3. AI-Driven Intrusion Detection and Threat Modeling 

3.1 AI Techniques for Intrusion Detection 

Artificial intelligence has revolutionized how intrusion 

detection systems (IDS) function by enhancing their ability 

to detect, analyze, and respond to cyber threats. Among the 

core techniques used in AI-driven intrusion detection are 

supervised, unsupervised, and reinforcement learning 

approaches, each contributing uniquely to improving system 

performance (Aminu, Akinsanya, Dako, & Oyedokun, 2024). 

Supervised learning relies on labeled datasets to train models 

that can classify network activities as benign or malicious. 

This method identifies known attack patterns, making it 

highly effective in environments with well-documented 

threats. However, its dependency on labeled data limits its 

ability to detect novel threats. In contrast, unsupervised 

learning does not require labeled data and instead focuses on 

identifying anomalies within network activity (Afolabi, 

Hussain, Austin-Gabriel, Adepoju, & Ige, 2023) [11]. By 

clustering similar patterns and flagging deviations, 

unsupervised methods can detect previously unknown 

threats, though they may produce false positives. 

Reinforcement learning, which involves training an agent to 

make decisions by rewarding desirable outcomes, offers a 

dynamic approach to intrusion detection. It can adapt to 

changes in network behavior and optimize its responses over 

time, making it suitable for highly dynamic environments 

(Alonge, Dudu, & Alao, 2024a; Onoja & Ajala, 2022) [33, 8]. 

Deep learning, a subset of AI, has emerged as a powerful tool 

in intrusion detection. Neural networks used in deep learning 

models can process vast amounts of data to identify complex 

patterns and correlations that traditional methods might 

overlook. These models are particularly effective in anomaly 

detection, where they analyze network activity to establish 

baselines of normal behavior and flag deviations. By 

leveraging techniques such as autoencoders and 

convolutional neural networks, deep learning can enhance the 

accuracy and efficiency of IDS, reducing false positives and 

improving threat detection capabilities (Adepoju et al., 2022; 

Osundare, Ike, Fakeyede, & Ige, 2024d) [50]. 

 

3.2 Threat Modeling in Smart Manufacturing 

Threat modeling is crucial in identifying, assessing, and 

mitigating potential vulnerabilities in smart manufacturing 

networks. It provides a systematic approach to understanding 

how adversaries might exploit weaknesses in a system and 

enables the development of proactive security measures. 

Several established frameworks and methodologies, such as 

STRIDE (Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service, Elevation of Privilege) and 

ATT&CK (Adversarial Tactics, Techniques, and Common 

Knowledge), are widely used in this context (Ofoegbu, 

Osundare, Ike, Fakeyede, & Ige, 2024) [47]. 

STRIDE offers a structured way to identify potential threats 

by categorizing them into specific types, each associated with 

a set of mitigation strategies. For example, it highlights risks 

such as data tampering and unauthorized access, which are 

particularly relevant to IoT-enabled manufacturing 

environments. ATT&CK, on the other hand, provides a 

comprehensive knowledge base of adversarial tactics and 

techniques. By mapping observed attack patterns to the 

framework, manufacturers can gain valuable insights into 

attackers' behavior and strengthen their defenses accordingly 

(Oladosu et al., 2024; Osundare, Ike, Fakeyede, & Ige, 

2024c) [49, 35]. 

AI enhances threat modeling by enabling predictive analytics 

and automating the identification of vulnerabilities. 

Predictive models powered by machine learning can simulate 

potential attack scenarios and provide actionable insights into 

areas requiring immediate attention. This capability allows 

manufacturers to proactively address vulnerabilities before 

they can be exploited, reducing the risk of breaches. 

Additionally, AI algorithms can continuously analyze threat 

intelligence data from multiple sources, ensuring that the 

threat model remains up-to-date with emerging risks 

(Osundare & Ige, 2024a) [47]. 

 

3.3 Integration of AI and IoT in Smart Manufacturing 

The integration of AI with IoT has brought significant 

advancements in real-time security mechanisms for smart 

manufacturing networks. AI-driven systems excel at 

processing and analyzing the large volumes of data generated 

by IoT devices, enabling timely detection and response to 

security incidents. This capability is critical in manufacturing 

environments where a brief disruption can result in 

substantial financial losses or safety hazards (Sharma, 

Sharma, & Grover, 2024) [44]. 

One key advantage of AI-driven security mechanisms is their 

ability to adapt to the dynamic nature of IoT-enabled 

manufacturing networks. Unlike traditional systems 

requiring manual updates to address new threats, AI systems 

can learn and evolve autonomously. For instance, anomaly 

detection models can adjust to changes in network behavior 

caused by the addition of new devices or shifts in production 

processes. This adaptability ensures that the security 

framework remains effective in the face of constant changes 

(Alao, Dudu, Alonge, & Eze, 2024; George, Idemudia, & Ige, 

2024a) [8, 48]. 

However, the integration of AI and IoT also presents 

challenges. The resource-intensive nature of AI algorithms, 

particularly those used in deep learning, demands significant 

computational power. Implementing such systems in 

resource-constrained environments may require the adoption 

of edge computing, where data processing occurs locally 

rather than in centralized servers. While edge computing 
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reduces latency and enhances real-time responsiveness, it 

also introduces new security considerations, such as ensuring 

the integrity of data processed at the edge (Onoja & Ajala, 

2023a) [34]. 

Additionally, the effectiveness of AI-driven systems depends 

on the quality and diversity of the data used for training. 

Manufacturing networks often involve proprietary processes 

and unique configurations, making developing customized 

models tailored to specific environments essential. 

Addressing these challenges requires collaboration between 

manufacturers, cybersecurity experts, and AI researchers to 

design solutions that balance security, efficiency, and 

scalability (Adebayo, Ige, Idemudia, & Eyieyien, 2024) [1]. 

 

4. Real-world Applications 

4.1 Practical Implementations 

The application of artificial intelligence (AI) in intrusion 

detection systems (IDS) and threat modeling has seen 

growing adoption in smart manufacturing, with several 

notable real-world implementations demonstrating its 

effectiveness. These case studies illustrate how AI-driven 

security solutions address the unique challenges of modern 

manufacturing networks (Alohali et al., 2022). 

One such example is deploying AI-powered security systems 

in automotive manufacturing facilities, where interconnected 

robots and sensors are integral to production processes. In 

these environments, machine learning (ML) algorithms 

monitor network traffic, identify anomalies, and prevent 

potential breaches. By leveraging historical data, these 

systems detect deviations from normal communication 

patterns between devices, allowing operators to respond to 

threats before they escalate. This proactive approach has 

significantly reduced downtime caused by cyberattacks, 

ensuring uninterrupted production workflows (Osundare, 

Ike, Fakeyede, & Ige, 2024a) [48]. 

Similarly, deep learning-based IDS have been implemented 

in the electronics manufacturing industry to safeguard 

sensitive intellectual property. With manufacturing networks 

often targeted by attackers seeking to steal proprietary 

designs, companies have employed AI models capable of 

identifying subtle patterns indicative of advanced persistent 

threats. These systems continuously analyze vast data 

streams, including encrypted communications, to detect 

suspicious activities that traditional methods might overlook. 

This has enhanced the protection of intellectual property 

while maintaining the efficiency of production processes 

(Adepoju et al., 2022; Austin-Gabriel, Hussain, Ige, Adepoju, 

& Afolabi, 2023) [11]. 

Another noteworthy implementation is the use of AI in 

pharmaceutical manufacturing, where regulatory compliance 

and product integrity are critical. Threat modeling 

frameworks, augmented by AI, are applied to simulate 

potential attack scenarios and prioritize vulnerabilities based 

on their likelihood and impact. For example, predictive 

analytics tools can identify risks associated with unauthorized 

access to process control systems, enabling manufacturers to 

implement targeted security measures. The integration of 

these tools has improved cybersecurity and demonstrated 

compliance with stringent regulatory standards, bolstering 

the industry's resilience against cyber threats (Ige, 

Chukwurah, Idemudia, & Adebayo, 2024) [14]. 

 

4.2 Key Insights 

The success of these implementations provides valuable 

lessons and insights into deploying AI-based IDS and threat 

modeling in smart manufacturing. One key takeaway is the 

importance of customization. Manufacturing networks are 

highly diverse, with each facility possessing unique 

configurations, device ecosystems, and operational 

workflows. As a result, off-the-shelf AI solutions often fail to 

address specific security needs. Successful deployments have 

involved tailoring AI models to the nuances of the target 

environment, including training algorithms on facility-

specific data and integrating them with existing security 

protocols. 

Another critical insight is the necessity of balancing 

automation with human oversight. While AI systems excel at 

identifying patterns and anomalies, they are not infallible. 

Though reduced compared to traditional methods, false 

positives remain a challenge, particularly in environments 

with highly dynamic network behaviors. To address this, 

many manufacturers have adopted a hybrid approach, where 

AI systems handle initial threat detection, and human analysts 

review flagged incidents for accuracy. This collaboration 

enhances the overall reliability of the security framework and 

builds trust in AI-driven solutions (Ojukwu et al., 2024; 

Oladosu et al., 2021) [32, 37]. 

The role of data quality cannot be overstated. Effective AI 

systems depend on diverse and high-quality datasets for 

training and validation. In several case studies, manufacturers 

highlighted the challenges of acquiring comprehensive 

datasets that accurately represent the complexity of their 

networks. Addressing this issue requires investing in robust 

data collection and preprocessing mechanisms to ensure that 

AI models perform optimally. Additionally, ongoing updates 

to datasets are essential for maintaining the relevance and 

accuracy of AI systems in evolving threat landscapes. 

Despite the successes, several challenges remain. One 

notable issue is the scalability of AI-based solutions in large 

manufacturing environments. Processing the vast amounts of 

data generated by IoT devices and control systems demands 

significant computational resources. Many organizations 

have addressed this by adopting distributed computing 

architectures, such as edge computing, to process data locally 

and reduce latency (Osundare, Ike, Fakeyede, & Ige, 2024b) 

[48]. However, implementing such architectures introduces 

new technical and security challenges that must be carefully 

managed. Furthermore, adversarial attacks on AI systems 

themselves pose a growing concern. Sophisticated attackers 

may exploit vulnerabilities in machine learning algorithms to 

manipulate their outputs or evade detection altogether. This 

has prompted the need for research into adversarial resilience, 

ensuring that AI systems remain robust against such tactics. 

Manufacturers must incorporate these considerations into 

their long-term cybersecurity strategies to maintain the 

effectiveness of their defenses (Akinade, Adepoju, Ige, 

Afolabi, & Amoo, 2022; Austin-Gabriel et al., 2021) [15]. 

 

5. Conclusion and Recommendations 

The adoption of artificial intelligence (AI) in intrusion 

detection and threat modeling represents a significant 

advancement in securing smart manufacturing networks. 

This paper has explored how AI-driven solutions address the 

unique cybersecurity challenges of integrating 

interconnected devices and systems in modern 

manufacturing. AI techniques, such as supervised, 

unsupervised, and reinforcement learning, enhance the 

detection of known and emerging threats, while deep learning 
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models provide sophisticated anomaly detection capabilities. 

Moreover, AI in threat modeling enables manufacturers to 

predict vulnerabilities and implement proactive security 

measures, improving overall network resilience. Real-world 

applications of these technologies have demonstrated their 

effectiveness in safeguarding manufacturing processes, 

intellectual property, and regulatory compliance despite the 

complexities of dynamic and heterogeneous environments. 

While the benefits of AI-driven solutions are undeniable, 

there are several areas for improvement to ensure their long-

term success and adoption. One key area is the refinement of 

AI methodologies to enhance their accuracy and reduce false 

positives. Developing advanced algorithms that distinguish 

between benign and malicious anomalies more effectively 

will minimize alert fatigue and improve operational 

efficiency. 

Another priority is scalability. As manufacturing networks 

grow in size and complexity, AI systems must be capable of 

processing and analyzing vast amounts of data in real time. 

This requires more efficient algorithms and innovative 

architectures, such as distributed or edge computing, to 

handle the computational demands. Ensuring seamless 

integration of AI systems with existing network 

infrastructures will also be essential for widespread adoption. 

Real-time responsiveness is another critical aspect that 

demands attention. Manufacturing environments operate on 

tight schedules, where even minor delays can lead to 

significant disruptions. AI systems must be optimized for 

timely threat detection and response without compromising 

performance. Additionally, enhancing the resilience of AI-

driven systems against adversarial attacks will be crucial to 

maintaining their effectiveness in the face of increasingly 

sophisticated cyber threats. 

To address these challenges, collaboration between 

academia, industry, and government agencies is necessary. 

Research initiatives should focus on developing standardized 

frameworks for AI implementation in manufacturing 

cybersecurity, ensuring interoperability and consistency 

across different systems. Training programs and knowledge-

sharing platforms can also help bridge the skills gap, enabling 

manufacturers to effectively deploy and manage AI-based 

security solutions. 
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