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Abstract 
This paper delves into the intricate study of expansion mappings within the frameworks of 
controlled metric spaces and extended B-metric spaces. Expansion mappings, known for 
their crucial role in fixed-point theory and iterative processes, are examined under the lens 
of these generalized metric spaces to uncover their distinct properties and extended 
applicability. Controlled metric spaces, which incorporate a dynamic control function to 
modulate the distance measurements, offer a refined approach to traditional metric space 
concepts. This flexibility allows for a more nuanced understanding of spatial relationships 
and convergence behaviors. Extended B-metric spaces, by relaxing the stringent 
requirements of the triangle inequality, open new avenues for theoretical exploration and 
practical application, accommodating broader classes of functions and sequences. In this 
study, we aim to provide a comprehensive analysis of the behavior of expansion mappings 
in these sophisticated metric frameworks. We will present new theoretical results that 
extend and generalize existing principles, highlighting the interplay between the control 
functions in controlled metric spaces and the relaxed conditions in extended B-metric 
spaces. Additionally, we explore practical applications of these findings in various fields, 
including optimization, computational mathematics, and the analysis of iterative methods. 
By bridging the gap between classical metric spaces and their generalized counterparts, 
this paper contributes to a deeper understanding of the mathematical foundations and 
potential applications of expansion mappings. The results presented herein pave the way 
for further research and development in this vibrant area of mathematical analysis. 
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1. Introduction 

In the realm of mathematical analysis, metric spaces serve as the cornerstone for various theoretical and applied studies. They 

provide a structured environment for understanding and measuring distances, which is crucial for analyzing convergence, 

continuity, and other fundamental concepts. However, traditional metric spaces, with their rigid distance functions, may not be 

sufficiently adaptable for certain complex scenarios. This limitation has led to the development of more generalized metric 

spaces, such as controlled metric spaces and extended B-metric spaces, which offer enhanced flexibility and broader 

applicability. 

 

Controlled Metric Spaces 

Controlled metric spaces are an evolution of conventional metric spaces, introduced to incorporate a control function that 

dynamically adjusts the distance between points. This control function, often context-dependent, allows for a more refined 

analysis of spatial relationships. By modulating the distance based on specific criteria, controlled metric spaces enable the study 

of systems where traditional metrics fall short, such as in scenarios with varying or context-specific distance measures.  

This flexibility is particularly beneficial in applications involving dynamic or adaptive systems, where fixed metrics may not 

adequately capture the intricacies of the environment. 
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Extended B-Metric Spaces 

Extended B-metric spaces, on the other hand, relax the classical triangle inequality condition of metric spaces. In an extended 

B-metric space, the distance function satisfies a generalized form of the triangle inequality, which broadens the scope of spaces 

that can be analyzed. This relaxation allows for the inclusion of a wider array of functions and sequences, thereby providing a 

more versatile framework for various mathematical explorations. The extended B-metric spaces have proven to be especially 

useful in fixed-point theory, iterative methods, and other areas where traditional metric constraints are too limiting. 

 

Expansion Mappings 

Expansion mappings, a subset of mappings that increase the distance between points, play a significant role in the analysis of 

controlled metric spaces and extended B-metric spaces. These mappings are fundamental in fixed-point theory, where they are 

used to demonstrate the existence and uniqueness of fixed points under certain conditions. In the context of controlled metric 

spaces, expansion mappings interact with the control function to provide deeper insights into the behavior of iterative processes 

and convergence. Similarly, in extended B-metric spaces, they facilitate the study of more complex systems by leveraging the 

relaxed triangle inequality to explore new theoretical results and applications.The objective of this paper is to explore the 

properties and applications of expansion mappings within the frameworks of controlled metric spaces and extended B-metric 

spaces. By examining these mappings in detail, we aim to extend existing theories and introduce new perspectives on their utility 

in both theoretical and practical contexts. Through this comprehensive analysis, we hope to contribute to the broader 

understanding of metric space generalizations and their potential to address complex mathematical and real-world challenges. 

 

2. Preliminaries 

Definition 1. ([7]) Let X be a nonempty set and θ : X × X −→ [1,∞). A function dθ : X ×X −→ [0,∞) is called an extended b-

metric space if, for all x,y,z ∈ X, it satisfies the following properties: 

 

• dθ(x,y) = 0 iff x = y; 

 

• dθ(x,y) = dθ(y,x); 

 

• dθ(x,z) ≤ θ(x,z)[dθ(x,y) + dθ(y,z)]. 

 

The pair (X,dθ) is called an extended b-metric space. 

 

Remark 2. If we take θ(x,y) = s for s ≥ 1, then we obtain the definition of a b- metric space. 

 

Example 3. Let X = {2,3,4}. Define θ : X × X −→ [1,∞) and dθ : X × X −→ [0,∞) as follows: 

 

θ(x,y) = 2 + x + y, dθ(2,2) = 

 

dθ(3,3) = dθ(4,4) = 0, 

 

dθ(2,3) = dθ(3,2) = 30,dθ(2,4) = dθ(4,2) = 200, dθ(3,4) = dθ(4,3) = 2000. 

 

Then (X,dθ) is an extended b-metric space. 

 

The notions of a Cauchy sequence and a convergent sequence in extended 

b-metric spaces are defined as follows: 

 

Definition 4. ([7]) Let (X,dθ) be an extended b-metric space and (xn) be a sequence in X. 

1. A sequence (xn) in X is said to converge to x ∈ X if, for every ǫ > 0, there exists Nǫ ∈ N such that dθ(xn,x) < ǫ for all n ≥ 

Nǫ. In this case, we write limn→∞ xn = x. 

2. A sequence (xn) in X is said to be Cauchy if, for every ǫ > 0, there exists Nǫ ∈ N such that dθ(xn,xm) < ǫ for all n,m ≥ Nǫ. 

 

An extended b-metric space (X,dθ) is said to be complete if every Cauchy sequence in X is convergent. 

 

Example 5. [7] Let X = C([a,b],R) be the space of all continuous real valued functions define on [a,b]. X is a complete extended 

b-metric space by considering dθ(x,y) = sup |x(t) − y(t)|2, t∈[a,b] 

 

with θ(x,y) = |x(t)| + |y(t)| + 2, where θ : X × X −→ [1,∞). 

 

Definition 6. ([18]) Let A and B be two nonempty subsets of a space X. A mapping T : A ∪ B → A ∪ B is called cyclic if T(A) 

⊂ B and T(B) ⊂ A. 

Definition 7. [1] A continuous function F : [0,∞)2 → R is called an C-class function if it satisfies: 

1. F(s,t) ≤ s, 

2. F(s,t) = s implies that either s = 0 or t = 0 for all s,t ∈ [0,∞). 
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We denote the set of C-class by C. 

 

Example 8. ([1]) For s,t ∈ [0,∞), define the functions F : [0,∞)2 → R by 

• F(s,t) = s − t. 

• F(s,t) = αs for some α ∈ (0,1). 

• F(s,t) = s/(1 + t)r for some r ∈ (0,∞). 

• F(s,t) = (s − t)/(1 + t). 

 

Then these functions are elements of C. 

 

Definition 9. ([8]) Let ψ : [0,∞) → [0,∞) be a continuous, nondecreasing function. Then ψ is called an altering distance function 

if ψ(t) = 0 ⇔ t = 0. 

 

We denote the set of altering distance functions by Φa. 

 

Definition 10. ([1]) Let ϕ : [0,∞) → [0,∞) be a continuous mapping. Then ϕ 

is called an ultra altering distance function if ϕ(t) > 0 for all t > 0. We denote the set of ultra altering distance functions by Φu. 

 

3. Main Result 

In this section, we utilize the notion of C-class functions to introduce some fixed point results for a cyclic mapping. 

 

Theorem 11. Let (X,dθ) be a complete extended b-metric space. Let A and B be two nonempty closed subsets of X such that 

A∩B 6= ∅ and X = A∪B. Let f : A ∪ B → A ∪ B be a cyclic mapping. Suppose that there exist F ∈ C, ψ ∈ Φa and φ ∈ Φu such 

that: 

 

ψ(dθ(fx,fy)) ≤ F(ψ(dθ(x,y)),φ(dθ(x,y))) forallx,y ∈ X.  (1) 

Assume for x0 ∈ X, we have 

 

Lim θ(xn,xm) = 1, (2) 

 

n,m→∞ 

 

where xj = fjx0. If f is continuous, then f has a unique fixed point in A ∩ B. 

 

Proof. Let x0 ∈ A. Then x1 = fx0 ∈ B and x2 = fx1 ∈ A. Continuing this process, we obtain a sequence (xn) in X, such that fxn 

= xn+1 with x2n ∈ A and x2n+1 ∈ B for all n ∈ N. 

 

First, we want to show that: limn→∞ dθ(xn,xn+1) = 0. Let n ∈ N, 

 

ψ(dθ(xn,xn+1)) = ψ(dθ(fxn−1,fxn)) 

 

≤ F(ψ(dθ(xn−1,xn)),φ(dθ(xn−1,xn))) 

 

≤ ψ(dθ(xn−1,xn)). (3) 

 

Since ψ ∈ Φa, then we have 

 

dθ(xn,xn+1) ≤ dθ(xn−1,xn) for all n ∈ N. (4) 

 

This shows that (dθ(xn,xn+1)) is decreasing. Then, there exists some r ≥ 0 such that lim dθ(xn,xn+1) = r. 

 

n→∞ (5) 

 

Assume that r > 0. Letting n → ∞ in (3). Since F, ψ and ϕ are continuous, we get 

 

ψ(r) ≤ F(ψ(r),φ(r)). (6) 

 

So ψ(r) = 0 or φ(r) = 0. Since φ(r) > 0, we have r = 0, which is a contradiction. Hence, r = 0 and so lim dθ(xn,xn+1) = 0.  (7) 

n→∞ 

 

Now, we want to show that (xn) is a Cauchy sequence. Assume (xn) is not a Cauchy sequence. Then, there exists ǫ > 0 and 

subsequences (xnk) and (xmk) of (xn) with nk > mk > k such that 
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dθ(xnk,xmk) ≥ ǫ. (8) 

 

Further, corresponding to mk, we can choose nk in such a way that it is the smallest integer with nk > mk and satisfying (8). So 

 

dθ(xnk−1,xmk) < ǫ. (9) 

 

Then we have 

 

0 < ǫ ≤ dθ(xnk,xmk) ≤ θ(xnk,xmk)[dθ(xnk,xnk−1) + dθ(xnk−1,xmk)] 

 

≤ θ(xnk,xmk)[dθ(xnk,xnk−1) + ǫ]. (10) 

 

Letting k → ∞ and using (7) and (2), we get 

 

lim dθ(xnk,xmk) = 0 (11) 

 

k→∞ 

 

Also 

 

dθ(xnk,xmk) ≤ θ(xnk,xmk)dθ(xnk,xnk−1) + θ(xnk,xmk)θ(xnk−1,xmk) [dθ(xnk−1,xmk−1) + dθ(xmk−1,xmk)] 

≤ θ(xnk,xmk)dθ(xnk,xnk−1) + θ(xnk,xmk)θ(xnk−1,xmk) θ(xnk−1,xmk−1)dθ(xnk−1,xnk) + θ(xnk,xmk) 

θ(xnk−1,xmk)θ(xnk−1,xmk−1)θ(xnk,xmk−1)dθ(xnk,xmk) 

 

+ θ(xnk,xmk)θ(xnk−1,xmk)θ(xnk−1,xmk−1) θ(xnk,xmk−1)dθ(xmk,xmk−1) + θ(xnk,xmk)θ(xnk−1,xmk) dθ(xmk−1,xmk). (12) 

 

As k → ∞ in the above inequalities and using (2), (7) and (11), we get: 

 

lim dθ(xnk−1,xmk−1) = ǫ. (13) 

 

k→∞ 

 

Then by (1), we have 

 

ψ(dθ(xnk,xmk)) ≤ F(ψ(dθ(xnk−1,xmk−1)),φ(dθ(xnk−1,xmk−1))) 

 

≤ ψ(dθ(xnk−1,xmk−1)). (14) 

 

Letting k → ∞, we obtain 

 

ψ(ǫ) ≤ F(ψ(ǫ),φ(ǫ)) ≤ ψ(ǫ). (15)  

 

So ψ(ǫ) = 0 or φ(ǫ) = 0. This implies that ǫ = 0, which is a contradiction. 

 

Hence, (xn) is a Cauchy sequence. So there exists u ∈ X such that limn→∞ xn= u. 

 

Since f is continuous, we have: limn→∞ fxn = fu. On the other hand: limn→∞ fxn 

 

= limn→∞ xn+1 = u, then by uniqueness of the limit, we have fu = u. 

 

Since (x2n) ∈ A and A is closed, we have u ∈ A. Also, since (x2n+1) ∈ B and B is closed, we have u ∈ B. Hence, u is a fixed 

point of f in A ∩ B. 

 

To prove the uniqueness of u, we assume there exists v ∈ X such that fv = v. 

 

Then by (1), we have 

 

ψ(dθ(u,v)) = ψ(dθ(fu,fv)) ≤ F(ψ(dθ(u,v)),φ(dθ(u,v)))≤ ψ(dθ(u,v)). (16) 

 

So, ψ(dθ(u,v)) = 0 or φ(dθ(u,v)) = 0. This implies that dθ(u,v) = 0. Hence u = v. Thus, f has a unique fixed point in A ∩ B.  

By choosing A = B = X in Theorem 11 we get the following result: 

 

Corollary 12. Let (X,dθ) be a complete extended b-metric space, and let f : X → 
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X be a mapping. Suppose that there exist F ∈ C, φ ∈ Φa and φ ∈ Φu such that: 

 

ψ(dθ(fx,fy)) ≤ F(ψ(dθ(x,y)),φ(dθ(x,y))) for all x,y ∈ X. (17) 

 

Assume for x0 ∈ X, we have 

Lim θ(xn,xm) = 1, 

 

n,m→∞ (18) 

 

where xj = fjx0. If f is continuous, then f has a unique fixed point in X. 

 

Corollary 13. Let (X,dθ) be a complete extended b-metric space, and let f be a self mapping defined on X satisfying 

(1 + ϕ(dθ(x,y)))ψ(dθ(fx,fy)) ≤ ψ(dθ(x,y)) − ϕ(dθ(x,y)) for all x,y ∈ 
 

X, where ϕ ∈ Φu and ψ ∈ Φa. Assume for x0 ∈ X, we have 

 

Lim θ(xn,xm) = 1, n,m→∞ 

 

where xj = fjx0. If f is continuous, then f has a unique fixed point in X. 

 

Proof. Define F by F(s,t) = (s−t)/(1+t), the result follows from  

 

Theorem 11. 

Corollary 14. Let (X,dθ) be a complete extended b-metric space and f : A ∪B → A∪B be a cyclic mapping. Let A and B be two 

nonempty closed subsets of X such that A ∩ B 6= ∅ and X = A ∪ B. Assume that there exist ψ ∈ Φa and α ∈ [0,1) such that  

 

ψ(dθ(fx,fy)) ≤ αψ(dθ(x,y)) for all x,y ∈ X. 

Assume for x0 ∈ X, we have 

   (20) 

lim θ(xn,xm) = 1,    (21) 

 

n,m→∞ 

 

where xj = fjx0. If f is continuous, then f has a unique fixed point in A ∩ B. Proof. 

 

Define F by F(s,t) = αs, the result follows from Theorem 11. 

 

Corollary 15. Let (X,d) be a complete metric space and let f : X → X be a mapping. Suppose that there exist F ∈ C, ψ ∈ Φa and  

 

φ ∈ Φu such that ψ(d(fx,fy)) ≤ F(ψ(d(x,y)),φ(d(x,y))) for all x,y ∈ X.  (22) 

 

If f is continuous, then f has a unique fixed point in X. 

 

Example 16. Let X = [−1,1]. Define dθ : X × X → R+ by dθ(x,y) = |x − y| and θ : X 

× X → [1,∞) by θ(x,y) = |x| + |y| + 1. Let A = [−1,0], B = [0,1], and define f : X → X by fx = −x/2. Also, define F ∈ C by F(s,t) 

= s − t and φ ∈ Φu by φ(t) = t/4 and ψ ∈ Φa by φ(t) = t. Then 

(a) dθ is a complete extended b-metric space on X. 

(b) A and B are closed subsets of X. 

(c) f is continuous and cyclic. 

(d) f satisfy the inequality: 

 

ψ(dθ(fx,fy)) ≤ F(ψ(dθ(x,y)),φ(dθ(x,y))) for all x,y ∈ X. 

 

(e) Let x0 ∈ X, we have: limn,m→∞ θ(xn,xm) = 1. To prove (d), let x,y ∈ X. Then 

 

 
 

and 

 

 
 

So, 
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ψ(dθ(fx,fy)) ≤ F(ψ(dθ(x,y)),φ(dθ(x,y))) 

 

Now, to prove (e), let x0 ∈ X, then xn = (−1)nx0/2n and xm = (−1)mx0/2m and 

 

. 

 

The example satisfies all the hypotheses of Theorem 11. Hence, f has a unique fixed point in A ∩ B = {0}. 
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