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Article Info Abstract _ _ _
Time series anomaly detection has ever existed as a fundamental analysis approach.

The early time series anomaly detection techniques are mainly statistical and machine
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detecting anomaly data instances. In this analysis, we proposed an unsupervised and
scalable framework for anomaly detection in time series data. The proposed technique
is established on a variational auto-encoder. A deep, productive model that
incorporates variational belief with deep learning. Also, real-time analysis has been
performed for the time-series data. We used LSTM networks to process, make
predictions, and classify based on time series data.
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1. Introduction

Anomaly detection is one of the top research areas for its worldwide nature. In daily life, we notice the abnormalities that
highlight our concentration. When something differs from the remains of the allocation, it is labeled as an outlier or anomaly.
This paper uses anomalies and outliers interchangeably, as stated in M. Anomaly detection directs to finding exact data points
that do not work with the specific data set allocation. The most appropriate description of anomaly detection is given by Grubbs
I for computer science: __A remote comment, or _outlier,* is one that deviates markedly from other members of the instance
in which it happens‘‘. The word _anomaly‘ broadly refers to various issues in various domains. For instance, an anomaly in a
network protection method could be an activity correlated to a hacking attempt or malicious software [,

In the previous years, many techniques have been designed and utilized for anomaly detection in many applications, e.g., network
or traffic intrusion detection. They can be classified into three classes: (1) statistical modeling [, (2) information mining-based
approaches 1261 and (3) machine learning-based approaches *"-241. Many previous studies indicated that they had successfully
utilized the above approaches for anomaly classification [ 12 3I; therefore, the computational frameworks highlighting
unconventional subsequence detection in time series are yet under- construction. Currently, there is no unified definition of time-
series anomalies %1, and they are defined as unusual patterns that do not conform to expected behavior. The anomaly can be
defined as a data point wildly dissimilar to other data points ¢, Anomalies can be categorized into three areas 1 contextual,
energy, and collective. Point anomalies are when the data of a single sample are abnormal likened to other data, which can
happen in any data. A contextual anomaly defines that the data are unusual in a specific scenario but typical in another system,
which can only occur in correlative data. In a time series, time is a context attribute that defines the class of models in the whole
sequence.
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A combined anomaly means that there may be no relationship
among numerous individual examples, but they may be
abnormal as a group. Each data sample's contextual and
behavioral features are considered and define a point
anomaly of multivariate time series based on the relationship
between a single instance and its historical data.
Identification of multidimensional time series inconsistencies
is inseparable from multivariate time-series data.

Anomaly detection, the procedure of determining
unpredicted objects or events from information, has evolved
into a field of attraction for numerous researchers and
practitioners and is currently one of the significant studies in
data mining and quality assurance [?81. It has been analyzed in
various application domains and has experienced significant
progress. Classical approaches, adding linear model-based
approaches 2%, distance-based approaches %, density-based
approaches B4, and support vector machines 2, are always
possible options for the algorithm. Moreover, as target
approaches become larger and more complex, those methods
face limitations, namely an inability to manage
multidimensional information or address an insufficiency of
labeled anomalies. Moreover, detecting anomalies in time-
series data is problematic because it must jointly consider the
order and the causality between observations along the time
axis. Currently, multiple methods have been designed to
manage these challenges. For example, Hu et al. &l offered a
novel computational technique utilizing a recurrence plot
(RP), a square matrix consisting of the times at which a state
of a dynamic system recurs. They calculate the local
recurrence rates (LREC) by inspecting the RP with a sliding
window and detecting anomalies by analogizing similarities
between the statistics of the LREC curves.

Deep learning, a subfield of machine learning algorithms
inspired by the structure and function of the brain, has been
getting attention in recent years. Deep-learning methods learn
the complex dynamics in the data while making no
assumptions about the underlying patterns. This property
makes them the most attractive choice for time-series
analysis these days. For example, Yan et al. 1 proposed to
combine ensembled long short-term memory (LSTM) neural
networks, which memorize long-term patterns in time series,
with the stationary wavelet transform (SWT), to forecast the
energy consumption. Their experimental outcomes showed
that the proposed deep-learning method outperforms classical
computational methods.

Due to the growth of industry and the Internet of Things [,
multivariate time-series anomaly detection technology has
made significant progress. We can receive faithful time-
series data from the devices by configuring a multisensor
approach. Moreover, processing these data from sensors is a
major problem. First, the data gathered by different sensors
may have other particulars, frequencies, and reliance"s.
However, the pre-processing of these data is very time-
consuming and may require some domain knowledge. Jin et
al. B presented a creative learning framework for
multivariate air pollutant attention projection. This approach,
which split the particulars and trends by decomposing the
actual data into high-frequency and low-frequency parts to
learn them in a multi-channel module, delivered a fantastic
concept for us to collect the elements of multivariate time
series. Moreover, there are some unavoidable problems with
the above-said difficulties; for instance, it is challenging to
set an exact limit for abnormal and normal data, or the data
gathered by other detectors may include noise due to other
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aspects. Another problem is that the amount of standard data
is much more significant than the amount of abnormal
information. The issue of highly unbalanced data has become
another major problem in time- series anomaly detection 71,
Researchers have tried many ways to process multivariate
time-series data.

This analysis goal is to study state-of-the-art deep learning-
based anomaly detection methods for time-series data. We
know that earlier studies I 2, %843 on this topic do no better
than categorizing approaches according to their tools and
describing their attributes. In addition to classifying the
models according to their methodologies in this article, we
further study how they describe interrelationships between
variables, learn the temporal context, and identify anomalies
in multivariate time series. Therefore, we give instructions to
practitioners based on relative practical studies utilizing
different standard datasets. Our studies offer practitioners
helpful insights for determining the best-suited method(s) for
the problem(s) they are trying to solve.

2. Literature review

In Anomaly detection, along with supervised learning ©4,
needs a dataset where every example is labeled, and
generally, it affects the training of a classifier on the training
set. Semi- supervised algorithms like as [ build a system to
present the normal behavior from an input dataset; following
the system is utilized to estimate the possibility of the testing
dataset to be created by the system. Non-supervised systems
like as 46l don‘t need a labelled dataset and perform under the
guessing that the maximum of the data points are standard
(e.g., utilizing clustering approaches) 71 and return the
remaining ones as outliers.

Yamanishi et al. suggested a Gaussian combination system
by calculating every data point and determining the outlier
with maximum scores . Zhang and coworkers suggested a
mathematical standard to differentiate between normal and
abnormal data utilizing statistical algorithms [, Kosek et al.
created a regression model-based approach for anomaly
detection . Goldsein et al. suggested histogram-based
outlier detection (HBOS) algorithm, which considers the
freedom of the elements, creating it much speedy than
multivariate anomaly detection systems. The histogram is
needed if the outcomes of outlier detection are ready for use
immediately [/, These systems' limitations are that anomaly
detection depends on estimating that the data is generated in
a relevant statistical distribution [,

Resolutions to causing anomaly detection more useful are by
utilizing data mining processes, including clustering, or
classification. Researchers utilized K-means clustering for
similar data points (% 1! sg that the data center found outside
of these groups were thought as anomalies. These systems
perform in a non-supervised method; moreover, they may not
propose correct insights at the demanded class of detail in
shorter datasets. Classification-based anomaly detection was
also broadly analyzed for real-world applications, e.g.,
intrusion, traffic, or network detection [*2-%1, The objective of
classification is to understand from labeled classes of training
data for determining classes of new or unknown models 81,
Moreover, good performance demands that the training set
must have well-defined labels.

LSTMs have grabbed the concentration of researchers
presently in anomaly detection. For example, ¥ uses LSTM
for forecasting time series and utilizes the forecast mistakes
for anomaly detection. They supposed that the resulting
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forecast errors have a Gaussian distribution, which was
utilized then to consider the likelihood of anomalous
behavior. Then a point is learned based on the verification
dataset to maximize the F-score, which was estimated based
on the golden labels within the verification dataset. The
method was verified on four-time series. However, [
follows a same method used to ECG time series, where the
forecast errors are appropriate to a Gaussian distribution, and
then the threshold is specified based on optimizing the F-
score on the verification set, which similarly was estimated
based on the provided golden labels. Also, B uses an LSTM-
based encoder- decoder for multi-sensor anomaly detection.
When sufficient anomalous sequences are available, a
threshold is learned by maximizing accuracy and memory.
The utilize of recurrent neural networks is also typical for
intrusion detection, such as in 2, with the aim of identifying
and classifying attacks. Moreover, the methods specified
above use the golden labels for optimizing the threshold
against the prediction errors or building classifiers.

Two primary constraints exist in recent approaches: 1) Most
methods, such as statistical and probabilistic methods, are
generally appropriate only for univariate datasets where one
metric is observed at a time. It can expand to numerous
metrics by producing a method for every metric. Moreover,
this would not consider any relations between metrics. So,
these systems can‘t smoothly be grown to multivariate
research where relations among metrics can be utilized to
determine possible anomalous behavior. This is bypassed as
Deep AD and can accept as input multiple attributes since it
can utilize a single LSTM method that can grab anomalies
across numerous attributes, which causes it multivariate. 2)
Existing methods normally depend on datasets that include
the ground truth labels, where the anomalies are particularly
specified to a data point. It is challenging to pick in real-life
techniques as labelled data is costly and needs expert
knowledge which eventually power be impacted by human
errors in labelling the data. Therefore, the quantity of data to
be observed and labelled would be unrealistic. Therefore, the
primary method might not generalize to new types of
anomalies unless retrained and hence needs expert
knowledge for the full time of the deployment of the anomaly
detection method, causing these techniques unrealistic to be
deployed in dynamic environments. The dynamic threshold-
based anomaly detection method bypasses this since no labels
are required for training or detecting the thresholds 31,
Presently, machine learning approaches are broadly utilized
for anomaly detection, involving fuzzy logic "1, Bayesian
method [?%24, genetic algorithm 8221 and neural network 23
24 Nakano et al. offered a fuzzy logic- based anomaly
detection approach for network anomaly detection 7],
Hamamto and coworkers generated a mixed strategy for
network anomaly detection by utilizing genetic algorithms
and fuzzy logic 8, Mascaro et al. analyzed the usage of
Bayesian networks for studying vessel behavior and detecting
anomalies 211, Mixing the dynamic and static networks, they
confirmed that their method enhanced the detecting precision
in vessel tracks. With the quick growth of artificial
intelligence, different neural network methods, e.g., recurrent
neural network (RNN) 4 and back propagation neural
network (BPNN) 31, were created to observe the anomalies
of a difficult method. These methods perform better in some
applications; moreover, generalization is difficult.
Compared with standard machine learning approaches, deep
learning (DL) has a stronger learning capability and can
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achieve more precision 4. The systematic deep learning
approaches are malicious productive network (GAN) [,
autoencoder 81, convolutional neural network (CNN) 57,
and Long Short-Term Memory (LSTM) B8, Earlier analyses
display that nearly all of the above approaches were applied
to anomaly classification [%®3: moreover, the work
highlighting on DL-based abnormal subsequence detection in
time series is rarely reported. There are multiple chances to
execute anomaly detection in time series utilizing different
statistical or SVM-based approaches, with MFAD ! and
LRRDS 3, Moreover, some endeavors perfectly forecast the
unusual sequence in time series utilizing LSTM. However, an
excellent deep learning process is needed to execute anomaly
detection utilizing LSTM.

There are multiple time-series data, but only a tiny part of the
data has been labeled as abnormal or not. It is challenging to
develop a clear limit between normal and abnormal data
cause they are comparative and connected to the factors in
which the information is located. Also, the amount of
anomalous data in a sequence is tiny and linked with the
desired data. Moreover, multiple researchers have proposed
unsupervised techniques for anomaly detection. One of these
famous approaches is clustering approaches, e.g., One-Class
Support Vector Machine (OCSVM). Ma and Perkins [
utilized OCSVM to method the training information and
determine whether the trial data was abnormal or normal. The
mentioned method solves the issue perfectly in many
applications. It does not function better on time-series
information. The technique only pays attention to the data's
knowledge but has nothing to do with capturing the
correlation of temporal data. Other system is machine
learning approaches, e.g., Isolation Forest (iForest).

Liu et al. 4 offered an approach based on iForest to notice
anomalies in sequence data. This method establishes a binary
tree by random selection of attributes and cannot receive the
connection between different elements, which leads to an
inconsistent detection impact. Few researchers considered
utilizing predictive approaches to capture temporal data.
These predictive methods can forecast what data will occur
at the next phase before new data reach. The few usual ideals
are the Autoregressive approaches (AR) %1, Moving Average
(MA) 81 Autoregressive Moving Average (ARMA) 71 and
its variants. These methods perform well in time-series
anomaly detection, but they are smoothly impacted by noise.
So, there are showing multiple false negative and false
positive outcomes when data have serious noise. Nowadays,
anomaly detection techniques based on deep learning have
made significant improvements. One of the typical deep
learning models for processing time series is Long Short-
Term Memory (LSTM). An LSTM-based method can
forecast the data at the next time step and estimate the
distance between forecasted data and actual time-series data
to determine whether it is abnormal. Ergen and Kozat [
suggested an approach based on the LSTM structure to detect
product quality. Lindemann et al. 9 utilized the LSTM
system to receive the elements of these fixed-length
sequences and confirmed an anomaly detection method based
on OCSVM.

Li et al. ™ integrated the features of SAE and LSTM and
suggested an anomaly detection approach based on
unsupervised deep learning. The LSTM design that can learn
the nonlinear relationship of short-term or long-term time-
series data is also sensitive to noise, which may expand the
risk of misclassification in anomaly detection. Liang et al. ["1]
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estimated the feature matrices and included a forgetting
mechanism in the system to reduce the influence of noise.
Zhang et al. "2 suggested a system integrating wavelet
denoising and primary element analysis to process data noise.
The autoencoder approach is another famous noise-friendly
approach for detecting sequence data anomalies. It considers
whether abnormal by considering the difference between
encoded and actual data. Vincent et al. ! developed a self-
encoding noise decrease system that can recover the input
data with noise to the data without noise. Borghesi et al. ['4
utilized a semi-supervised anomaly detection approach based
on an autoencoder. The autoencoder utilizes the concept of
encoding and decoding to reduce the noise in time series,
making the system more robust. The autoencoder is
theoretically better at managing one-dimensional time series
[711 because this configuration can't get the relation between
multidimensional time-series data. AnoGAN ["®l s the initial
framework introduced in unsupervised anomaly detection
and effectively finds diseased photos from sets of unknown
images. Plakias ["® presented GANs based one-class fault
detection system for the multi-dimensional issue, and
investigations demonstrated the suggested approach
outperforms One-class SVM and Isolation Forest. As said,
GANs-based architecture has slowly evolved in anomaly
detection fields. GAN architecture's main disadvantage is the
training fluctuation 2, If all the above approaches on various
techniques impact time-series anomaly detection, they all
require indicators to assess anomalies in standard.

3. Proposed Goal
The aim of this project is to detect anomaly in time series data
using Deep Learning.

4. Problem statement

Anomaly Detection is the identification of the data of a
variable or events that do not follow a specific pattern.
Anomaly detection helps to identify the data's unexpected
behavior with time so businesses and companies can make
strategies to overcome the situation. It also helps the firms
identify the mistake and scams that will occur at a particular
time, or it assists in learning from ex records of data
demonstrating typical behavior. We develop LSTM
Autoencoder to teach time-series data.

5. Dataset used

Daily price data for the S&P 500 index has been surprisingly

tricky over the years. Most public data only go back to the

2000s. If it is long-term, it is weekly instead of daily. This
dataset contains daily closing prices for SPY from 1986 to

2018. The folder contains the CSV file.

The measures follow to detect anomalies in Johnson &

Johnson stock price data utilizing an LSTM autoencoder:

e Teach an LSTM autoencoder on Johnson & Johnson‘s
stock value data from 1985-09-04 to 2013-09-03. We
suppose that there were no anomalies and that they were
predicted.

e Utilizing the LSTM autoencoder to rebuild the mistake
on the examination data from 2013-09-04 to 2020-09-
03.

o If the rebuild mistake for the examined data is above the
point, we mark the data point as an anomaly.
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6. Requirements
The main requirements are listed below:

A. Python 3.6.10

Python 3 is a newer version of the Python programming
language which was released in December 2008. This version
was mainly released to fix problems that exist in Python 2.
The nature of these changes is such that Python 3 was
incompatible with Python 2. It is backward incompatible. If
you see 3.6 or earlier, by the end of December 2021, you'll
no longer receive updates or bug fixes. To resolve that, you
must upgrade to the latest version of Python. Because 3.6 will
have reached End of Life (EOL), it will no longer receive bug
fixes, even if they are critical.

B. Keres

Keres is a high-level, deep learning API developed by Google
for implementing neural networks. It is written in Python and
is used to make the implementation of neural networks easy.
It also supports multiple backend neural network
computation. Keres is relatively easy to learn and work with
because it provides a python frontend with a high level of
abstraction while having the option of multiple back-ends for
computation purposes. This makes Keres slower than other
deep learning frameworks, but extremely beginner-friendly.

C. Tensorflow

TensorFlow is an open-source framework developed by
Google researchers to run machine learning, deep learning
and other statistical and predictive analytics workloads.
TensorFlow provides a collection of workflows to develop
and train models using Python or JavaScript, and to easily
deploy in the cloud, on-prem, in the browser, or on-device no
matter what language you use. The tf. data APl enables you
to build complex input pipelines from simple, reusable
pieces.

D. Numpy

NumPy, meaning Numerical Python, is a library containing
multi-dimensional array entities and a group of exercises for
processing those arrays. Utilizing NumPy, mathematical and
logical functions on shows can be executed. It also has
procedures for working in the domain of linear algebra,
Fourier transform, and matrices. NumPy was developed in
2005 by Travis Oliphant. It is an open-source object, and you
can utilize it freely.

E. Pillow 6.1

Pillow 6.1 is a Python Imaging Library. It is a free and open-
source library for the Python programming language that
includes support services for saving many different image file
formats, opening, and manipulating. It is open for Linux,
Windows, and Mac OS X. The most recent version of PIL is
1.1.

F. Scikit-learn

Scikit-learn is an integral part of the Python machine learning
toolkit at JPMorgan. It is broadly utilized across all aspects
of the bank for Classification, estimate analytics, and many
other machine learning jobs. Scikit-learn is an open-source
data analysis library and the gold standard for Machine
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Learning (ML) in the Python ecosystem. The main visions
and elements contain Algorithmic decision-making methods,
including Classification: recognizing and classifying data
based on designs.

G. Pandas

Pandas is a Python library used for working with data sets. It
has functions for analyzing, cleaning, exploring, and
manipulating data. The name "Pandas" has a reference to both
"Panel Data", and "Python Data Analysis" and was created
by Wes McKinney in 2008. Pandas is an open-source Python
package that is most widely used for data science/data
analysis and machine learning tasks. It is built on top of
another package named Numpy, which provides support for
multi- dimensional arrays.

H. Seaborn

Seaborn is a Python data library established on matplotlib. It
delivers a high-level interface for creating gorgeous and
informative statistical graphics. You can study the
preliminary notes or the article for a quick preface to the
concepts behind the library.

I. Matplotlib

Matplotlib is the Python programming language for plotting
libraries for the numeric mathematical extension NumPy. It
uses general-purpose GUI toolkits such as wxPython,
Tkinter, GTK, or Qt. A systematic "Pylab" interface is based
on a state- of-the-art machine (such as OpenGL), providing
an object-based API for embedding stories in applications,
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which is similar to MATLAB, though its usage is
disheartened closely. SciPy creates the use of Matplotlib.

J. Tqdm

The name tqdm comes from the Arabic name takaddum,
which means 'progress.’ The Spanish acronym for "I love you
so much" (te quiero demasiado). Applying tqdm can be done
effortlessly on our loops, functions, or even pandas.

7. Experiment

Training

+ Data distribution: 80% Training & validation and 20%
Test.

*  Loss Function: Mean Absolute Error.

« Evaluation Metrics: Mean Absolute Error

»  Optimizer: Adam Optimizer.

8. Model

LSTM Autoencoder

LSTM Networks:

The LSTM network is a revised version of RNNs, efficiently
remembering the long-term allegiance in data. While this
issue solves in LSTM networks, RNNs confront the
vanishing gradient problem. The memory unit (or cell) is the
principal of the LSTM network, as shown in Figure 1. A cell
is made up of three sigmoid and a single tanh layer to
organize information outside and inside a cell. The forget
gate can reset the memory unit with a sigmoid function. To
manage the output and input data flow in the memory unit,
output and input gates are provided, respectively.
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Fig 1: The Architecture of an LSTM cell

A. Autoencoder

Fig. 1. An ANN that has two distinct parts is an autoencoder.
The encoder h = f (X) converts the original data, and the
decoder reconstructs the data, which formulates as x"

=g (h). Creating autoencoders aims to replicate the network's
input to its output. The system is pushed to prioritize the
valuable input factors; on the other hand, an autoencoder
plays a vital role in learning the valuable features of data.
Thus, the networks don't understand to copy correctly but
approximately, and they are limited in such a manner that
develops output that resembles the training information.

B. Autoencoder LSTM
In this suggested method, an autoencoder compresses and

encodes the data. Autoencoder is an unsupervised ANN that
creates a more miniature encoded expression of data and then
knows how to rebuild the data. The resemblance of the rebuilt
data to the initial input defines the efficacy of an autoencoder.
The predicted workflow utilized in this article is shown in
Fig.

3. The LSTM level consists of autoencoders with encoders
and decoders. After every LSTM layer, a put dropout layer to
protect the method from overfitting in the training process.
First, the autoencoder is taught. Next, the encoder part is
utilized as the element generator. The last phase is to train the
LSTM-based predictor to deliver the modified closing price
projection for the next day.
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Fig 2: The architecture of Autoencoder LSTM.

Table 1: Experiment Result Model: —sequentiall

Layer (type) Output shape | [Param #
Istm (LSTM) (None, 128) 66560
dropout (Dropout) (None, 128) 0
repeat_vector (None, 30, 0
(RepeatVector) 128)
Istm_1 (LSTM) (None,  [30,] 131584
128)
dropout_1 (Dropout) (None, 30, 0
128)

time distributed (None, 30, 129
(TimeDistributed) 1)
Total params: 198,273

Trainable params: 198,273
Non-trainable params: 0

We describe the rebuild LSTM Autoencoder architecture that

predicts input lines with 30-time phases and outputs a string
with 30-time actions and one element. Repeat Vector ()
repeats the inputs 30 times. Set return sequences=True, so the
output will still be a sequence. Time Distributed (Dense
(X_train.shape ™)) is added at the end to get the output,
where X_train.shape [ is the number of features in the input
data. The whole parameters are 198,273. All parameters are
trainable, and a dropout layer is utilized to bypass the
overfitting issue.

C. Training and Validation Loss

On the entire group of data, the LSTM closed teaching at
epoch 10. The project losses in the last epoch came at the
price of 0.0736, while the confirmation loss came at the value
of 0.0455. The training and verification losses for each period
are presented in Fig. 3.

0 s 4

— Tramning Loss

Validation Loss

6 8 10

Fig 3: Training and Validation Loss.

D. Train and Test Loss Histogram
Histogram prices of teaching data (members) and examine
data (non-members). We see the more significant divergence

between the loss allocation over members and non-members
in the powerful approach equivalent to the natural system.

885|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation

i
/

-0.1 0.0 01 02 03 D4 05 0.6 0.7
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Fig 5: Train and Test Loss Histogram.

E. Anomaly Detected

We will find anomalies by specifying how well the system detection.
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example. We will create this threshold for anomaly

rebuilds the input data. e If the rebuild loss, for example, is better than this

e Find MAE losing on teaching examples.
e Discover most MAE loss prices. This is the most harmful

our method has executed attempting to rebuild an example as an anomaly.

threshold price, then we can assume that the method sees
a pattern it isn't acquainted with. We will mark this

Fig 5: Train and Test Loss Histogram
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9. Conclusion

A total of 27 slender beams without transverse reinforce-
ment and 18 slender beams with transverse reinforcement
were tested experimentally to study the behaviour for dif-
ferent grades i.e. M1, M2 and M3 mixes.
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