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Abstract 
Time series anomaly detection has ever existed as a fundamental analysis approach. 
The early time series anomaly detection techniques are mainly statistical and machine 
learning. For the practical processes of the deep neural network being constantly 
prospected by experimenters, the result of the deep neural network in anomaly 
detection tasks has been remarkably more helpful than conventional methods. 
Conventional models use commanded machine learning algorithms. In the proposed 
applications, organizing and annotating such a vast number of datasets is challenging, 
time-consuming, or too costly, and it needs specialization learning from professionals 
in the field. Hence, anomaly detection has become a significant challenge for 
investigators and practitioners. Anomaly detection is directed as the process of 
detecting anomaly data instances. In this analysis, we proposed an unsupervised and 
scalable framework for anomaly detection in time series data. The proposed technique 
is established on a variational auto-encoder. A deep, productive model that 
incorporates variational belief with deep learning. Also, real-time analysis has been 
performed for the time-series data. We used LSTM networks to process, make 
predictions, and classify based on time series data. 
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1. Introduction 

Anomaly detection is one of the top research areas for its worldwide nature. In daily life, we notice the abnormalities that 

highlight our concentration. When something differs from the remains of the allocation, it is labeled as an outlier or anomaly. 

This paper uses anomalies and outliers interchangeably, as stated in [1]. Anomaly detection directs to finding exact data points 

that do not work with the specific data set allocation. The most appropriate description of anomaly detection is given by Grubbs 
[2] for computer science: ‗‗A remote comment, or ‗outlier,‘ is one that deviates markedly from other members of the instance 

in which it happens‘‘. The word ‗anomaly‘ broadly refers to various issues in various domains. For instance, an anomaly in a 

network protection method could be an activity correlated to a hacking attempt or malicious software [3]. 

In the previous years, many techniques have been designed and utilized for anomaly detection in many applications, e.g., network 

or traffic intrusion detection. They can be classified into three classes: (1) statistical modeling [4-9], (2) information mining-based 

approaches [10–16], and (3) machine learning-based approaches [17–24]. Many previous studies indicated that they had successfully 

utilized the above approaches for anomaly classification [5, 12, 13]; therefore, the computational frameworks highlighting 

unconventional subsequence detection in time series are yet under- construction. Currently, there is no unified definition of time- 

series anomalies [25], and they are defined as unusual patterns that do not conform to expected behavior. The anomaly can be 

defined as a data point wildly dissimilar to other data points [26]. Anomalies can be categorized into three areas [27]: contextual, 

energy, and collective. Point anomalies are when the data of a single sample are abnormal likened to other data, which can 

happen in any data. A contextual anomaly defines that the data are unusual in a specific scenario but typical in another system, 

which can only occur in correlative data. In a time series, time is a context attribute that defines the class of models in the whole 

sequence.  
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A combined anomaly means that there may be no relationship 

among numerous individual examples, but they may be 

abnormal as a group. Each data sample's contextual and 

behavioral features are considered and define a point 

anomaly of multivariate time series based on the relationship 

between a single instance and its historical data. 

Identification of multidimensional time series inconsistencies 

is inseparable from multivariate time-series data. 

Anomaly detection, the procedure of determining 

unpredicted objects or events from information, has evolved 

into a field of attraction for numerous researchers and 

practitioners and is currently one of the significant studies in 

data mining and quality assurance [28]. It has been analyzed in 

various application domains and has experienced significant 

progress. Classical approaches, adding linear model-based 

approaches [29], distance-based approaches [30], density-based 

approaches [31], and support vector machines [32], are always 

possible options for the algorithm. Moreover, as target 

approaches become larger and more complex, those methods 

face limitations, namely an inability to manage 

multidimensional information or address an insufficiency of 

labeled anomalies. Moreover, detecting anomalies in time- 

series data is problematic because it must jointly consider the 

order and the causality between observations along the time 

axis. Currently, multiple methods have been designed to 

manage these challenges. For example, Hu et al. [33] offered a 

novel computational technique utilizing a recurrence plot 

(RP), a square matrix consisting of the times at which a state 

of a dynamic system recurs. They calculate the local 

recurrence rates (LREC) by inspecting the RP with a sliding 

window and detecting anomalies by analogizing similarities 

between the statistics of the LREC curves. 

Deep learning, a subfield of machine learning algorithms 

inspired by the structure and function of the brain, has been 

getting attention in recent years. Deep-learning methods learn 

the complex dynamics in the data while making no 

assumptions about the underlying patterns. This property 

makes them the most attractive choice for time-series 

analysis these days. For example, Yan et al. [34] proposed to 

combine ensembled long short-term memory (LSTM) neural 

networks, which memorize long-term patterns in time series, 

with the stationary wavelet transform (SWT), to forecast the 

energy consumption. Their experimental outcomes showed 

that the proposed deep-learning method outperforms classical 

computational methods. 

Due to the growth of industry and the Internet of Things [35], 

multivariate time-series anomaly detection technology has 

made significant progress. We can receive faithful time-

series data from the devices by configuring a multisensor 

approach. Moreover, processing these data from sensors is a 

major problem. First, the data gathered by different sensors 

may have other particulars, frequencies, and reliance‘s. 

However, the pre-processing of these data is very time-

consuming and may require some domain knowledge. Jin et 

al. [36] presented a creative learning framework for 

multivariate air pollutant attention projection. This approach, 

which split the particulars and trends by decomposing the 

actual data into high-frequency and low-frequency parts to 

learn them in a multi-channel module, delivered a fantastic 

concept for us to collect the elements of multivariate time 

series. Moreover, there are some unavoidable problems with 

the above-said difficulties; for instance, it is challenging to 

set an exact limit for abnormal and normal data, or the data 

gathered by other detectors may include noise due to other 

aspects. Another problem is that the amount of standard data 

is much more significant than the amount of abnormal 

information. The issue of highly unbalanced data has become 

another major problem in time- series anomaly detection [37]. 

Researchers have tried many ways to process multivariate 

time-series data. 

This analysis goal is to study state-of-the-art deep learning- 

based anomaly detection methods for time-series data. We 

know that earlier studies [1, 2, 38-43] on this topic do no better 

than categorizing approaches according to their tools and 

describing their attributes. In addition to classifying the 

models according to their methodologies in this article, we 

further study how they describe interrelationships between 

variables, learn the temporal context, and identify anomalies 

in multivariate time series. Therefore, we give instructions to 

practitioners based on relative practical studies utilizing 

different standard datasets. Our studies offer practitioners 

helpful insights for determining the best-suited method(s) for 

the problem(s) they are trying to solve. 

 

2. Literature review 

In Anomaly detection, along with supervised learning [44], 

needs a dataset where every example is labeled, and 

generally, it affects the training of a classifier on the training 

set. Semi- supervised algorithms like as [45] build a system to 

present the normal behavior from an input dataset; following 

the system is utilized to estimate the possibility of the testing 

dataset to be created by the system. Non-supervised systems 

like as [46] don‘t need a labelled dataset and perform under the 

guessing that the maximum of the data points are standard 

(e.g., utilizing clustering approaches) [47] and return the 

remaining ones as outliers. 

Yamanishi et al. suggested a Gaussian combination system 

by calculating every data point and determining the outlier 

with maximum scores [4]. Zhang and coworkers suggested a 

mathematical standard to differentiate between normal and 

abnormal data utilizing statistical algorithms [5]. Kosek et al. 

created a regression model-based approach for anomaly 

detection [6]. Goldsein et al. suggested histogram-based 

outlier detection (HBOS) algorithm, which considers the 

freedom of the elements, creating it much speedy than 

multivariate anomaly detection systems. The histogram is 

needed if the outcomes of outlier detection are ready for use 

immediately [7]. These systems' limitations are that anomaly 

detection depends on estimating that the data is generated in 

a relevant statistical distribution [8]. 

Resolutions to causing anomaly detection more useful are by 

utilizing data mining processes, including clustering, or 

classification. Researchers utilized K-means clustering for 

similar data points [10, 11] so that the data center found outside 

of these groups were thought as anomalies. These systems 

perform in a non-supervised method; moreover, they may not 

propose correct insights at the demanded class of detail in 

shorter datasets. Classification-based anomaly detection was 

also broadly analyzed for real-world applications, e.g., 

intrusion, traffic, or network detection [12–15]. The objective of 

classification is to understand from labeled classes of training 

data for determining classes of new or unknown models [48]. 

Moreover, good performance demands that the training set 

must have well-defined labels. 

LSTMs have grabbed the concentration of researchers 

presently in anomaly detection. For example, [49] uses LSTM 

for forecasting time series and utilizes the forecast mistakes 

for anomaly detection. They supposed that the resulting 
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forecast errors have a Gaussian distribution, which was 

utilized then to consider the likelihood of anomalous 

behavior. Then a point is learned based on the verification 

dataset to maximize the F-score, which was estimated based 

on the golden labels within the verification dataset. The 

method was verified on four-time series. However, [50] 

follows a same method used to ECG time series, where the 

forecast errors are appropriate to a Gaussian distribution, and 

then the threshold is specified based on optimizing the F-

score on the verification set, which similarly was estimated 

based on the provided golden labels. Also, [51] uses an LSTM-

based encoder- decoder for multi-sensor anomaly detection. 

When sufficient anomalous sequences are available, a 

threshold is learned by maximizing accuracy and memory. 

The utilize of recurrent neural networks is also typical for 

intrusion detection, such as in [52], with the aim of identifying 

and classifying attacks. Moreover, the methods specified 

above use the golden labels for optimizing the threshold 

against the prediction errors or building classifiers. 

Two primary constraints exist in recent approaches: 1) Most 

methods, such as statistical and probabilistic methods, are 

generally appropriate only for univariate datasets where one 

metric is observed at a time. It can expand to numerous 

metrics by producing a method for every metric. Moreover, 

this would not consider any relations between metrics. So, 

these systems can‘t smoothly be grown to multivariate 

research where relations among metrics can be utilized to 

determine possible anomalous behavior. This is bypassed as 

Deep AD and can accept as input multiple attributes since it 

can utilize a single LSTM method that can grab anomalies 

across numerous attributes, which causes it multivariate. 2) 

Existing methods normally depend on datasets that include 

the ground truth labels, where the anomalies are particularly 

specified to a data point. It is challenging to pick in real-life 

techniques as labelled data is costly and needs expert 

knowledge which eventually power be impacted by human 

errors in labelling the data. Therefore, the quantity of data to 

be observed and labelled would be unrealistic. Therefore, the 

primary method might not generalize to new types of 

anomalies unless retrained and hence needs expert 

knowledge for the full time of the deployment of the anomaly 

detection method, causing these techniques unrealistic to be 

deployed in dynamic environments. The dynamic threshold-

based anomaly detection method bypasses this since no labels 

are required for training or detecting the thresholds [53]. 

Presently, machine learning approaches are broadly utilized 

for anomaly detection, involving fuzzy logic [17–19], Bayesian 

method [20, 21], genetic algorithm [18, 22], and neural network [23, 

24]. Nakano et al. offered a fuzzy logic- based anomaly 

detection approach for network anomaly detection [17]. 

Hamamto and coworkers generated a mixed strategy for 

network anomaly detection by utilizing genetic algorithms 

and fuzzy logic [18]. Mascaro et al. analyzed the usage of 

Bayesian networks for studying vessel behavior and detecting 

anomalies [21]. Mixing the dynamic and static networks, they 

confirmed that their method enhanced the detecting precision 

in vessel tracks. With the quick growth of artificial 

intelligence, different neural network methods, e.g., recurrent 

neural network (RNN) [24] and back propagation neural 

network (BPNN) [23], were created to observe the anomalies 

of a difficult method. These methods perform better in some 

applications; moreover, generalization is difficult. 

Compared with standard machine learning approaches, deep 

learning (DL) has a stronger learning capability and can 

achieve more precision [54]. The systematic deep learning 

approaches are malicious productive network (GAN) [55], 

autoencoder [56], convolutional neural network (CNN) [57], 

and Long Short-Term Memory (LSTM) [58]. Earlier analyses 

display that nearly all of the above approaches were applied 

to anomaly classification [59–61]; moreover, the work 

highlighting on DL-based abnormal subsequence detection in 

time series is rarely reported. There are multiple chances to 

execute anomaly detection in time series utilizing different 

statistical or SVM-based approaches, with MFAD [9] and 

LRRDS [33]. Moreover, some endeavors perfectly forecast the 

unusual sequence in time series utilizing LSTM. However, an 

excellent deep learning process is needed to execute anomaly 

detection utilizing LSTM. 

There are multiple time-series data, but only a tiny part of the 

data has been labeled as abnormal or not. It is challenging to 

develop a clear limit between normal and abnormal data 

cause they are comparative and connected to the factors in 

which the information is located. Also, the amount of 

anomalous data in a sequence is tiny and linked with the 

desired data. Moreover, multiple researchers have proposed 

unsupervised techniques for anomaly detection. One of these 

famous approaches is clustering approaches, e.g., One-Class 

Support Vector Machine (OCSVM). Ma and Perkins [63] 

utilized OCSVM to method the training information and 

determine whether the trial data was abnormal or normal. The 

mentioned method solves the issue perfectly in many 

applications. It does not function better on time-series 

information. The technique only pays attention to the data's 

knowledge but has nothing to do with capturing the 

correlation of temporal data. Other system is machine 

learning approaches, e.g., Isolation Forest (iForest). 

Liu et al. [64] offered an approach based on iForest to notice 

anomalies in sequence data. This method establishes a binary 

tree by random selection of attributes and cannot receive the 

connection between different elements, which leads to an 

inconsistent detection impact. Few researchers considered 

utilizing predictive approaches to capture temporal data. 

These predictive methods can forecast what data will occur 

at the next phase before new data reach. The few usual ideals 

are the Autoregressive approaches (AR) [65], Moving Average 

(MA) [66], Autoregressive Moving Average (ARMA) [67], and 

its variants. These methods perform well in time-series 

anomaly detection, but they are smoothly impacted by noise. 

So, there are showing multiple false negative and false 

positive outcomes when data have serious noise. Nowadays, 

anomaly detection techniques based on deep learning have 

made significant improvements. One of the typical deep 

learning models for processing time series is Long Short-

Term Memory (LSTM). An LSTM-based method can 

forecast the data at the next time step and estimate the 

distance between forecasted data and actual time-series data 

to determine whether it is abnormal. Ergen and Kozat [68] 

suggested an approach based on the LSTM structure to detect 

product quality. Lindemann et al. [69] utilized the LSTM 

system to receive the elements of these fixed-length 

sequences and confirmed an anomaly detection method based 

on OCSVM. 

Li et al. [70] integrated the features of SAE and LSTM and 

suggested an anomaly detection approach based on 

unsupervised deep learning. The LSTM design that can learn 

the nonlinear relationship of short-term or long-term time- 

series data is also sensitive to noise, which may expand the 

risk of misclassification in anomaly detection. Liang et al. [71] 
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estimated the feature matrices and included a forgetting 

mechanism in the system to reduce the influence of noise. 

Zhang et al. [72] suggested a system integrating wavelet 

denoising and primary element analysis to process data noise. 

The autoencoder approach is another famous noise-friendly 

approach for detecting sequence data anomalies. It considers 

whether abnormal by considering the difference between 

encoded and actual data. Vincent et al. [73] developed a self- 

encoding noise decrease system that can recover the input 

data with noise to the data without noise. Borghesi et al. [74] 

utilized a semi-supervised anomaly detection approach based 

on an autoencoder. The autoencoder utilizes the concept of 

encoding and decoding to reduce the noise in time series, 

making the system more robust. The autoencoder is 

theoretically better at managing one-dimensional time series 
[71] because this configuration can't get the relation between 

multidimensional time-series data. AnoGAN [75] is the initial 

framework introduced in unsupervised anomaly detection 

and effectively finds diseased photos from sets of unknown 

images. Plakias [76] presented GANs based one-class fault 

detection system for the multi-dimensional issue, and 

investigations demonstrated the suggested approach 

outperforms One-class SVM and Isolation Forest. As said, 

GANs-based architecture has slowly evolved in anomaly 

detection fields. GAN architecture's main disadvantage is the 

training fluctuation [62]. If all the above approaches on various 

techniques impact time-series anomaly detection, they all 

require indicators to assess anomalies in standard. 

 

3. Proposed Goal 

The aim of this project is to detect anomaly in time series data 

using Deep Learning. 

 

4. Problem statement 

Anomaly Detection is the identification of the data of a 

variable or events that do not follow a specific pattern. 

Anomaly detection helps to identify the data's unexpected 

behavior with time so businesses and companies can make 

strategies to overcome the situation. It also helps the firms 

identify the mistake and scams that will occur at a particular 

time, or it assists in learning from ex records of data 

demonstrating typical behavior. We develop LSTM 

Autoencoder to teach time-series data. 

 

5. Dataset used 

Daily price data for the S&P 500 index has been surprisingly 

tricky over the years. Most public data only go back to the 

2000s. If it is long-term, it is weekly instead of daily. This 

dataset contains daily closing prices for SPY from 1986 to 

2018. The folder contains the CSV file. 

The measures follow to detect anomalies in Johnson & 

Johnson stock price data utilizing an LSTM autoencoder: 

• Teach an LSTM autoencoder on Johnson & Johnson‘s 

stock value data from 1985–09–04 to 2013–09–03. We 

suppose that there were no anomalies and that they were 

predicted. 

• Utilizing the LSTM autoencoder to rebuild the mistake 

on the examination data from 2013–09–04 to 2020–09–

03. 

• If the rebuild mistake for the examined data is above the 

point, we mark the data point as an anomaly. 

 

 

6. Requirements 

The main requirements are listed below: 

 

A. Python 3.6.10 

Python 3 is a newer version of the Python programming 

language which was released in December 2008. This version 

was mainly released to fix problems that exist in Python 2. 

The nature of these changes is such that Python 3 was 

incompatible with Python 2. It is backward incompatible. If 

you see 3.6 or earlier, by the end of December 2021, you'll 

no longer receive updates or bug fixes. To resolve that, you 

must upgrade to the latest version of Python. Because 3.6 will 

have reached End of Life (EOL), it will no longer receive bug 

fixes, even if they are critical. 

 

B. Keres 

Keres is a high-level, deep learning API developed by Google 

for implementing neural networks. It is written in Python and 

is used to make the implementation of neural networks easy. 

It also supports multiple backend neural network 

computation. Keres is relatively easy to learn and work with 

because it provides a python frontend with a high level of 

abstraction while having the option of multiple back-ends for 

computation purposes. This makes Keres slower than other 

deep learning frameworks, but extremely beginner-friendly. 

 

C. Tensorflow 

TensorFlow is an open-source framework developed by 

Google researchers to run machine learning, deep learning 

and other statistical and predictive analytics workloads. 

TensorFlow provides a collection of workflows to develop 

and train models using Python or JavaScript, and to easily 

deploy in the cloud, on-prem, in the browser, or on-device no 

matter what language you use. The tf. data API enables you 

to build complex input pipelines from simple, reusable 

pieces. 

 

D. Numpy 

NumPy, meaning Numerical Python, is a library containing 

multi-dimensional array entities and a group of exercises for 

processing those arrays. Utilizing NumPy, mathematical and 

logical functions on shows can be executed. It also has 

procedures for working in the domain of linear algebra, 

Fourier transform, and matrices. NumPy was developed in 

2005 by Travis Oliphant. It is an open-source object, and you 

can utilize it freely. 

 

E. Pillow 6.1 

Pillow 6.1 is a Python Imaging Library. It is a free and open- 

source library for the Python programming language that 

includes support services for saving many different image file 

formats, opening, and manipulating. It is open for Linux, 

Windows, and Mac OS X. The most recent version of PIL is 

1.1. 

 

F. Scikit-learn 

Scikit-learn is an integral part of the Python machine learning 

toolkit at JPMorgan. It is broadly utilized across all aspects 

of the bank for Classification, estimate analytics, and many 

other machine learning jobs. Scikit-learn is an open-source 

data analysis library and the gold standard for Machine  
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Learning (ML) in the Python ecosystem. The main visions 

and elements contain Algorithmic decision-making methods, 

including Classification: recognizing and classifying data 

based on designs. 

 

G. Pandas 

Pandas is a Python library used for working with data sets. It 

has functions for analyzing, cleaning, exploring, and 

manipulating data. The name "Pandas" has a reference to both 

"Panel Data", and "Python Data Analysis" and was created 

by Wes McKinney in 2008. Pandas is an open-source Python 

package that is most widely used for data science/data 

analysis and machine learning tasks. It is built on top of 

another package named Numpy, which provides support for 

multi- dimensional arrays. 

 

H. Seaborn 

Seaborn is a Python data library established on matplotlib. It 

delivers a high-level interface for creating gorgeous and 

informative statistical graphics. You can study the 

preliminary notes or the article for a quick preface to the 

concepts behind the library. 

 

I. Matplotlib 

Matplotlib is the Python programming language for plotting 

libraries for the numeric mathematical extension NumPy. It 

uses general-purpose GUI toolkits such as wxPython, 

Tkinter, GTK, or Qt. A systematic "Pylab" interface is based 

on a state- of-the-art machine (such as OpenGL), providing 

an object-based API for embedding stories in applications, 

which is similar to MATLAB, though its usage is 

disheartened closely. SciPy creates the use of Matplotlib. 

 

J. Tqdm 

The name tqdm comes from the Arabic name takaddum, 

which means 'progress.' The Spanish acronym for "I love you 

so much" (te quiero demasiado). Applying tqdm can be done 

effortlessly on our loops, functions, or even pandas. 

 

7. Experiment 

Training 

• Data distribution: 80% Training & validation and 20% 

Test. 

• Loss Function: Mean Absolute Error. 

• Evaluation Metrics: Mean Absolute Error 

• Optimizer: Adam Optimizer. 

 

8. Model 

LSTM Autoencoder 

LSTM Networks: 

The LSTM network is a revised version of RNNs, efficiently 

remembering the long-term allegiance in data. While this 

issue solves in LSTM networks, RNNs confront the 

vanishing gradient problem. The memory unit (or cell) is the 

principal of the LSTM network, as shown in Figure 1. A cell 

is made up of three sigmoid and a single tanh layer to 

organize information outside and inside a cell. The forget 

gate can reset the memory unit with a sigmoid function. To 

manage the output and input data flow in the memory unit, 

output and input gates are provided, respectively. 

 

 
 

Fig 1: The Architecture of an LSTM cell 

 

A. Autoencoder 

Fig. 1. An ANN that has two distinct parts is an autoencoder. 

The encoder h = f (x) converts the original data, and the 

decoder reconstructs the data, which formulates as xˆ 

= g (h). Creating autoencoders aims to replicate the network's 

input to its output. The system is pushed to prioritize the 

valuable input factors; on the other hand, an autoencoder 

plays a vital role in learning the valuable features of data. 

Thus, the networks don't understand to copy correctly but 

approximately, and they are limited in such a manner that 

develops output that resembles the training information. 

 

B. Autoencoder LSTM 

In this suggested method, an autoencoder compresses and 

encodes the data. Autoencoder is an unsupervised ANN that 

creates a more miniature encoded expression of data and then 

knows how to rebuild the data. The resemblance of the rebuilt 

data to the initial input defines the efficacy of an autoencoder. 

The predicted workflow utilized in this article is shown in 

Fig. 

3. The LSTM level consists of autoencoders with encoders 

and decoders. After every LSTM layer, a put dropout layer to 

protect the method from overfitting in the training process. 

First, the autoencoder is taught. Next, the encoder part is 

utilized as the element generator. The last phase is to train the 

LSTM-based predictor to deliver the modified closing price 

projection for the next day. 
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Fig 2: The architecture of Autoencoder LSTM. 

 

Table 1: Experiment Result Model: ―sequential‖ 
 

Layer (type) Output shape  Param # 

lstm (LSTM) (None, 128) 66560 

dropout (Dropout) (None, 128) 0 

repeat_vector (None, 30, 0 

(RepeatVector) 128)   

lstm_1 (LSTM) (None, 30, 131584 

 128)   

dropout_1 (Dropout) (None, 30, 0 

 128)   

time_distributed (None, 30, 129 

(TimeDistributed) 1)   

Total params: 198,273 

Trainable params: 198,273 

Non-trainable params: 0 

 

We describe the rebuild LSTM Autoencoder architecture that 

predicts input lines with 30-time phases and outputs a string 

with 30-time actions and one element. Repeat Vector () 

repeats the inputs 30 times. Set return sequences=True, so the 

output will still be a sequence. Time Distributed (Dense 

(X_train.shape [2])) is added at the end to get the output, 

where X_train.shape [2] is the number of features in the input 

data. The whole parameters are 198,273. All parameters are 

trainable, and a dropout layer is utilized to bypass the 

overfitting issue.  

 

C. Training and Validation Loss 

On the entire group of data, the LSTM closed teaching at 

epoch 10. The project losses in the last epoch came at the 

price of 0.0736, while the confirmation loss came at the value 

of 0.0455. The training and verification losses for each period 

are presented in Fig. 3. 

 

 
 

Fig 3: Training and Validation Loss. 

 

D. Train and Test Loss Histogram 

Histogram prices of teaching data (members) and examine 

data (non-members). We see the more significant divergence 

between the loss allocation over members and non-members 

in the powerful approach equivalent to the natural system. 
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Fig 4: Train and Test Loss Histogram. 

 

 
 

Fig 5: Train and Test Loss Histogram. 

 

E. Anomaly Detected 

We will find anomalies by specifying how well the system 

rebuilds the input data. 

• Find MAE losing on teaching examples. 

• Discover most MAE loss prices. This is the most harmful 

our method has executed attempting to rebuild an 

example. We will create this threshold for anomaly 

detection. 

• If the rebuild loss, for example, is better than this 

threshold price, then we can assume that the method sees 

a pattern it isn't acquainted with. We will mark this 

example as an anomaly. 

 

 
 

Fig 5: Train and Test Loss Histogram 
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9. Conclusion 

A total of 27 slender beams without transverse reinforce- 

ment and 18 slender beams with transverse reinforcement 

were tested experimentally to study the behaviour for dif- 

ferent grades i.e. M1, M2 and M3 mixes. 
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