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Abstract 
To achieve the Sustainable Development Goals (SDGs), it is essential to monitor the 
Infant Mortality Rate (IMR) and Child Mortality Rate (CMR), as these indicators are 
critical for assessing child health. West Java Province recorded the highest number of 
IMR cases, with 5,234 infants and 299 children. Compared to 2022, when there were 
2,959 IMR-related fatalities and 173 CMR-related deaths, this represents a significant 
increase. The purpose of this study is to model the IMR and CMR using bi-response 
nonparametric regression model based on penalized spline estimators which has more 
flexibility to adapt pattern of data. The flexibility in penalized spline estimator is 
controlled by smoothing parameters, i.e. Lambda parameter, knot points and the 
number of knots. For determining the optimal smoothing parameter, we use criteria 
the minimum of Generalized Cross Validation (GCV) value. Based on the minimum 
GCV, we find that for an increase in the percentage of health facility deliveries, 
exclusive breastfeeding, and complete basic immunization tends to decrease IMR and 
CMR. Conversely, an increase in obstetric complications tends to increase IMR and 
CMR. The best model with Mean Squared Error (MSE) of 1.932198 and a coefficient 
of determination (𝑅²) of 0.8787218. It’s mean that the model satisfy goodness of fits 
criteria.
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Introduction 

The Under-Five Mortality Rate (U5MR) is the probability of a child dying between birth and their fifth birthday, expressed per 

thousand live births (Mutaqin et al., 2023) [1]. According to the Minister of Health Regulation No. 25 of 2014, infants are defined 

as children aged 0-11 months, while toddlers are children aged 12-59 months (Kementerian Kesehatan Republik Indonesia, 

2024) [2]. Reducing infant, toddler, and neonatal mortality is a key objective of child health initiatives aimed at ensuring survival 

and well-being (Kementerian Kesehatan Republik Indonesia, 2023) [3]. By 2030, Indonesia aims to reduce under-five mortality 

to 25 deaths per 1,000 live births, aligning with the third goal of the Sustainable Development Goals (SDGs), which promotes 

healthy lives and well-being for all (United Nations) [4]. 

In 2023, Indonesia recorded a total of 34,087 under-five deaths, with 32,445 of these being infants (0-11 months), accounting 

for 94.8% of all under-five deaths. Meanwhile, 1,781 deaths occurred in children aged 12-59 months, representing 5.2% of the 

total. These figures reflect a significant increase from 2022, when the total number of under-five deaths was 21,447 (Kementerian 

Kesehatan Republik Indonesia, 2023) [3]. West Java province recorded the highest number of Infant Mortality Rate (IMR) cases, 

with 5,234 deaths, and ranked second in Child Mortality Rate (CMR) with 299 deaths. The IMR in West Java for 2023 was 6.40 

per 1,000 live births (Dinkes Provinsi Jawa Barat, 2023) [5]. This figure has increased compared to 2022 where IMR cases 

occurred as many as 2959 deaths and CMR as many as 173 deaths (Dinkes Provinsi Jawa Barat, 2022) [6]. 
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Previous research has explored the factors affecting IMR and CMR. For instance, Dwiargatra and Purhadi (2020) [7] used 

bivariate gamma regression and identified low birth weight and poverty as significant predictor variables, though they did not 

find strong correlations between the predictors and outcomes. In regression analysis, both parametric and nonparametric methods 

can be used to model relationships between predictor variables and outcomes (Nurhuda, Wasono, & Nohe, 2022) [8]. Parametric 

regression is applied when the form of the relationship is well-defined, whereas nonparametric regression is preferred when the 

shape of the relationship is uncertain, providing greater flexibility in estimating the regression curve (Suparti, Prahutama, & 

Santoso, 2018; Lestari et al., 2019) [9, 10]. Therefore, in this study, the factors influencing IMR and CMR will be modeled using 

a bi-response nonparametric regression approach. 

Nonparametric regression models can be estimated using various estimators, including Kernel (Lestari et al., 2019; Astuti et al., 

2018) [10, 11], Local Linear (Darnah et al., 2019) [12], Local Polynomial (Chamidah & Lestari, 2019)[13], Truncated Spline (Juniar 

et al., 2024) [14], Least Square Spline (Massaid et al., 2019) [15], and Penalized Spline (Chamidah, Rifada, & Amelia, 2022; 

Sulistianingsih, Kurniasari, & Kusnandar, 2019) [16, 17]. Penalized spline estimators, as noted by Zia et al. (2017) [18], offer an 

advantage in spline regression by focusing on key knot points in the data, which are critical for model accuracy. However, 

identifying the optimal knot points can be time-consuming and resource-intensive. Penalized splines address this challenge by 

placing knots at quantile points of the predictor variable, simplifying the process. In a study by Putri (2017) [19] using poverty 

data from Indonesia, the nonparametric model performed better than the parametric model in terms of R². Thus, this study aims 

to estimate the factors affecting IMR and CMR in West Java in 2023 using a bi-response nonparametric regression model with 

Penalized Spline estimators. 

 

Materials 

1. Bi-response Nonparametric Regression 

According to Ampulembang et al. (2015) [20], The following equation represents the bi-response nonparametric regression 

model: 

 

𝑦𝑖
(𝑟)

= 𝑓(𝑟)(𝑥𝑖) + 𝜀𝑖
(𝑟)

, 𝑟 = 1,2 ; 𝑖 = 1,2, … , 𝑛  (1) 

 

The variables 𝑦, 𝑥, 𝑓, and 𝜀 represent the response variable, predictor variable, regression function, and random error, 

respectively. An alternative expression for Equation (1), applied to the 𝑖-th observation of the 𝑟-th response variable, is as 

follows: 

 

𝒚𝒊 = 𝒇(𝒙𝒊) + 𝜺𝒊, 𝑖 = 1,2, … , 𝑛  (2) 

 

where 𝒇(𝒙𝒊) = (𝑓(1)(𝑥𝑖), 𝑓(2)(𝑥𝑖)) is the vector of the regression function, and 𝒚𝒊 =  (𝑦𝑖
(1)

, 𝑦𝑖
(2)

) represents the bi-response 

variables. The error term 𝜺𝒊 =  (𝜀𝑖
(1), 𝜀𝑖

(2)) is a vector of random errors with a mean of zero and variance matrix Σ for each index 

i. This model assumes that multiple observations on the two response variables, 𝑦𝑖
(1)

 and 𝑦𝑖
(2)

, exhibit correlation. The correlation 

between these response variables is quantified by the coefficient: 

 

𝜌
𝑦𝑖

(1)
,𝑦𝑖

(2) =
𝑐𝑜𝑣(𝑦𝑖

(1)
, 𝑦𝑖

(2)
)

√𝑉𝑎𝑟(𝑦𝑖
(1)

)𝑉𝑎𝑟(𝑦𝑖
(2)

)

≠ 0  

 

where 𝜌
𝑦𝑖

(1)
,𝑦𝑖

(2) reflects the degree of association between the two correlated response variables 𝑦𝑖
(1)

 and 𝑦𝑖
(2)

. 

 

2. Bi-response Nonparametric Regression based on Penalized Spline Estimator  

According to Lestari et al. (2018) [21], the nonparametric regression model based on penalized spline estimator for bi-response 

response is represented by the following equation: 

 

𝑦𝑖
(𝑟) = 𝜃𝑜𝑗

(𝑟)
+ ∑ (∑ 𝜃𝑗ℎ

(𝑟)
𝑥𝑗𝑖

(ℎ)
+

𝑞𝑗𝑟
ℎ=1 ∑ 𝜙𝑗𝑙

(𝑟)
(𝑥𝑗𝑖 − 𝐾𝑗𝑙)

+

𝑞𝑗𝑟𝑚𝑗

𝑙=1 )
𝑝
𝑗=1 + 𝜀𝑖

(𝑟)
  (3) 

 

where 𝜃𝑜𝑗
(𝑟)

 represents the intercept coefficient for the j-th predictor variable within the r-th response variable, 𝜃𝑗ℎ
(𝑟)

 and 𝜙𝑗𝑙
(𝑟)

 

denote the coefficients for the predictor variables and the knots in the spline function for the r-th response variable, respectively. 

The truncated function (𝑥𝑗𝑖 − 𝐾𝑗𝑙)
+

𝑞𝑗𝑟
 is defined as: 

 

 (𝑥𝑗𝑖 − 𝐾𝑗𝑙)+

𝑞𝑗𝑟
= {

(𝑥𝑗𝑖 − 𝐾𝑗𝑙)
+

𝑞𝑗𝑟
, if 𝑥𝑗𝑖 ≥ 𝐾𝑗𝑙

 0,  if 𝑥𝑗𝑖 < 𝐾𝑗𝑙  
 

 

3. Penalized Spline Estimator 

The function of Penalized Least Square (PLS), as described by Ruppert et al. (2003) [22], can be formulated as follows: 
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𝑃𝐿𝑆(𝜆) =
1

𝑛
∑ (𝑦𝑖

(𝑟)
− 𝑓(𝑥𝑗𝑖))

2
+ 𝜆 (∑ ∑ (𝜙𝑗𝑙

(𝑟)
)

2𝑚𝑗

𝑙=1
𝑝
𝑗=1 ) 𝑛

𝑖=1 , 𝜆 ≥ 0  (4) 

where 𝜆 represents the smoothing parameter. According to Wood (2006) [23], the smoothing parameter can be estimated using 

the following expression: 

 

𝜆 =
1.5ℎ−1

108   (5) 

 

where 𝜆 is constrained, with ℎ = 1, 2, 3, … , 𝐻 representing specific tuning values for optimization. Minimizing the PLS function 

can also be achieved by utilizing the PLS functional matrix, as shown in Equation (6): 

 

𝑄 =
1

𝑛
(𝒚 − 𝑻𝜷)𝑇(𝒚 − 𝑻𝜷) + 𝜆𝜷𝑻𝑫𝜷  (6) 

 

In this formulation, 𝑄 represents the penalized objective function, 𝑻 is the matrix of predictor variables, 𝜷 is the vector of 

coefficients, and 𝑫 is a matrix associated with the penalty applied to the spline coefficients. This framework enables effective 

smoothing in the penalized spline estimation process, balancing the fit of the model with the complexity of the spline. 

 

4. Weighted Least Square (WLS) Parameter Estimation and Penalized Spline Nonparametric Regression Model 

Parameter Estimation  

In bi-response regression, the Weighted Least Squares (WLS) method is employed to minimize the weighted sum of squared 

errors, which is particularly useful when the assumption of constant error variance is violated (Greene, 2003) [24]. The WLS 

objective function can be formulated as follows: 

 

𝜺𝑻𝑾𝜺 = (𝒚 − 𝑻𝜷)𝑻𝑾(𝒚 − 𝑻𝜷)  (7) 

 

In this context, the variation-covariance matrices of Respondents 1 and 2 are inverted, as the WLS estimator uses the weight 

matrix 𝑾: 

 

𝑾 = [Σ]−1 = [
Σ11 Σ12

Σ21 Σ22
]

−1

  

 

A penalized spline estimator model without weights is then applied in the nonparametric regression estimation for the bi-

response. The model estimation can be expressed mathematically as: 

 

𝒚̂ = 𝑻(𝑻𝑻𝑻 + 𝒏𝜆𝑫)−1 𝑻𝑻𝑦 = 𝑯(𝜆)𝒚  (8) 

 

where 𝑯(𝜆) represents the smoothing matrix that incorporates the penalty parameter 𝜆. 

Furthermore, parameter estimation in bi-response nonparametric spline regression is obtained by minimizing the PLS function 

using the WLS method. To achieve optimal estimation, the function Q must satisfy the condition ∂Q/∂β=0, ensuring that Q 

attains its minimum value. 

 

𝒚̂ = 𝑻(𝑻𝑻𝑾𝑻 + 𝒏𝜆𝑫)−1 𝑻𝑻𝑾𝑦 = 𝑯(𝜆)∗𝒚  (9) 

 

The choice of the smoothing parameter (λ) and knot points determines the smoothness level of the penalized spline nonparametric 

regression. The smallest Generalized Cross Validation (GCV) value provides the ideal smoothing parameter. The formula for 

determining the GCV value in bi-response regression, as stated by Eubank, is: 

 

𝐺𝐶𝑉(𝜆) =
𝑀𝑆𝐸

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒(𝑰−𝑯(𝜆)]

2  (10) 

 

where 𝑯(𝜆) = 𝑻(𝑻𝑻𝑾𝑻 + 𝒏𝜆𝑫)−1 𝑻𝑻𝑾 and 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 . 

 

The bi-response regression model can be represented nonparametrically if the smoothing parameter and knot values are selected 

using the minimal GCV criterion. The fit of the resulting bi-response regression model can be evaluated using the coefficient of 

determination, as shown in the following equation: 

 

𝑅2 = 1 −
∑ ∑ ((𝑦𝑖

(𝑗)
−𝑦̂𝑖

(𝑗)
))

2
𝑛
𝑖=1

2
𝑗=1

∑ ∑ ((𝑦
𝑖
(𝑗)

−𝑦̅(𝑗)))
2

𝑛
𝑖=1

2
𝑗=1

  (11) 

 

This is achieved by representing the actual value of the j-th response variable, 𝑦𝑖
(𝑗)

, in the i-th observation. Meanwhile, 

𝑦̅(𝑗) denotes the mean of the j-th response variable across all observations, and 𝑦̂𝑖
(𝑗)

 represents the estimated mean of the j-th 

response variable for the i-th observation. 
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Methods 

The 2023 West Java Health Profile and data from the West Java Central Statistics Agency were used in this study. The research 

employed 27 cities/regency in West Java Province in 2023 as its observation units. The dataset comprised two response variables 

and four predictor variables. Table 1 provides a list of all variables utilized in this research. 

 
Table 1: List of the Research Variables 

 

Variable Description 

𝒀𝟏 Infant Mortality Rate (IMR) 

𝒀𝟐 Child Mortality Rate (CMR) 

𝑿𝟏 Percentage of Health Facility Deliveries 

𝑿𝟐 Percentage of Exclusive Breastfeeding 

𝑿𝟑 Percentage of Complete Basic Immunization 

𝑿𝟒 Percentage of Obstetric Complications 

 

The parameters for Infant Mortality Rate (IMR) and Child Mortality Rate (CMR) are estimated using the Weighted Least Squares 

(WLS) method within a penalized spline multipredictor nonparametric regression framework. 

 

Results and Discussion 

1. Descriptive Statistics 

A descriptive statistical analysis was conducted to provide an overview of the research variables, with the results presented in 

Figure 1, Figure 2, and Table 2 below. 

 

 
 

Fig 1: Infant Mortality Rate (IMR) Distribution across Cities in West Java 

 

 
 

Fig 2: Child Mortality Rate (CMR) Distribution across Cities in West Java 
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Table 2: Descriptive Statistics of the Research Variables 
 

Variable Mean St.Dev Median Min Max 

IMR (𝑌1) 7.56 2.63 7.26 2.35 13.57 

CMR (𝑌2) 0.56 0.77 0.33 0.00 4.03 

Percentage of Health Facility Deliveries (𝑋1) 95.96 6.9 96.8 84.7 121.4 

Percentage of Exclusive Breastfeeding (𝑋2) 74.35 16.51 73.90 41.6 133.60 

Percentage of Complete Basic Immunization (𝑋3) 98.07 7.53 98.40 82.7 123.8 

Percentage of Obstetric Complications (𝑋4) 108 43.51 102 28 242 

 

Based on Table 2, the Infant Mortality Rate (IMR) has an average of 7.56 with a standard deviation of 2.63, while the Child 

Mortality Rate (CMR) shows a lower mean of 0.56 with a standard deviation of 0.77, suggesting higher variability in IMR. 

Health facility deliveries are notably high, averaging 95.96%, reflecting substantial access to healthcare facilities. Exclusive 

breastfeeding rates are moderate, with an average of 74.35% and greater variability with standard deviation of 16.51, indicating 

differences in breastfeeding practices. Basic immunization coverage is also high, with a mean of 98.07%, signifying robust 

immunization efforts. However, the percentage of obstetric complications is relatively high, averaging 108, and showing 

significant variability, i.e standard deviation of 43.51, which might indicate healthcare challenges related to maternal health. 

 

2. Correlation Test  

The Pearson correlation test between the Infant Mortality Rate (IMR) and Child Mortality Rate (CMR) yielded a correlation 

coefficient of 0.5768, with a p-value of 0.0016, which is below the significance level of α = 5%. This result leads to the rejection 

of the null hypothesis (H₀), suggesting a significant positive association between IMR and CMR. This correlation supports the 

application of a biresponse regression analysis, as both response variables are related and may share predictive factors. To further 

explore these relationships, a scatterplot was generated to visualize the influence of the four predictor variables (health facility 

deliveries, exclusive breastfeeding, basic immunization, and obstetric complications) on IMR and CMR, providing a basis for 

examining potential predictive patterns. 

 

 
 

Fig 3: Scatterplot of response variables 𝑌1 against predictor variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 
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Fig 4: Scatterplot of response variables 𝑌2 against predictor variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 

 

The scatterplots reveal that there is no strong linear association between the Child Mortality Rate (CMR) and the four predictor 

variables. In each plot, data points are widely dispersed, particularly around lower CMR values, without clear trends indicating 

that higher levels of these health indicators correspond to lower or higher CMR. This lack of observable patterns suggests that 

the relationship between CMR and these predictors cannot be identified. The next step is to examine the linear relationships 

between the response variables and predictors to determine if significant associations exist. The results of this analysis are 

presented in Table 3. 

 
Table 3: Results of the Correlation Analysis between Response Variables and Predictors 

 

Variable 
P-value Alpha Decision Conclusion 

Response Predictor 

𝒀𝟏 

𝑋1 0.9104 0,05 Accept 𝐻0 Not Linear 

𝑋2 0.5219 0,05 Accept 𝐻0 Not Linear 

𝑋3 0.7751 0,05 Accept 𝐻0 Not Linear 

𝑋4 0.0378 0,05 Reject 𝐻0 Linear 

𝒀𝟐 

𝑋1 0.5625 0,05 Accept 𝐻0 Not Linear 

𝑋2 0.9079 0,05 Accept 𝐻0 Not Linear 

𝑋3 0.9960 0,05 Accept 𝐻0 Not Linear 

𝑋4 0.2762 0,05 Accept 𝐻0 Not Linear 

 

Based on the results in Table 3, it was implied that only obstetric complications may have a direct linear effect on the Infant 

Mortality Rate (Y1), while no linear associations were found for the other predictors with either Y1 or Y2. Given the lack of 

significant linear relationships for most predictors, a nonparametric approach would be more appropriate. Nonparametric 

methods can capture complex, nonlinear associations that may exist between the response variables and predictors, providing a 

more flexible framework that does not rely on the strict assumptions of linearity. This approach could yield more accurate 

insights into the underlying relationships in the data. 

 

3. Multipredictor Biresponse Nonparametric Regression Modelling Based on Penalized Spline Estimator 

Based on the analysis of IMR and CMR in relation to each influential predictor variable, the optimal smoothing parameters were 

identified using the criterion of minimal Generalized Cross-Validation (GCV) value, as shown in Table 4. These parameters 

include the order of the smoothing function, the number of knots, and the specific knot points for each predictor variable. By 

minimizing the GCV value, the chosen parameters provide the best balance between model fit and complexity, ensuring a smooth 

yet flexible representation of the relationship between IMR, CMR, and their predictors. 

 
Table 4: Optimal Order and Number of Knots for Each Predictor Variable Based on GCV value 

 

Predictor 
Orde 

Total of Knot Knot Point Minimum GCV Value 
𝑌1 𝑌2 

𝑋1 1 1 1 96.8 4.173423 

𝑋2 1 1 1 73.9 4.349335 

𝑋3 1 1 1 98.4 4.31414 

𝑋4 1 1 1 102 3.758504 
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The analysis results in Table 4 indicate that the spline model for each predictor yields distinct knot points and minimum GCV 

values. For predictor 𝑋1, a spline model with a single knot at 96.8 achieves a minimum GCV value of 4.1734. For predictor 𝑋2, 

the spline model with one knot at 73.9 yields a minimum GCV value of 4.3493. Similarly, the spline model for predictor 𝑋3  

with a knot at 98.4 results in a minimum GCV value of 4.3141. Lastly, the model for predictor 𝑋4  with a knot at 102 produces 

the lowest GCV value at 3.7585. These results highlight that each predictor has a unique optimal knot point. 

The estimation of the multi-predictor bi-response nonparametric regression model will be conducted using weight W based on 

the optimal smoothing parameters identified in Table 4. After gathering the smoothing parameters (order, number of knots, and 

knot points) for each predictor, these weights will guide the model fitting process to capture the complex relationships between 

the predictors and response variables effectively. The results of this model estimation are presented in Table 5, providing the 

optimum lamda for each predictor within the bi-response framework. 

 
Table 5: Model Estimation Results using W Weighting 

 

Predictor 
Orde 

Total of Knot Optimum of Lamda Minimum of GCV 
𝑌1 𝑌2 

𝑿𝟏 1 1 1 

0.000001 4.250166 

0.050001 4.192245 

0.100001 4.164397 

0.150001 4.151618 

0.200001 4.147375 

0.250001 4.148340 

0.300001 4.152615 

0.350001 4.159034 

𝑿𝟐 1 1 1 

0.400001 4.166839 

0.450001 4.175519 

0.500001 4.184720 

0.550001 4.194193 

𝑿𝟑 1 1 1 

0.600001 4.203761 

0.650001 4.213297 

0.700001 4.222710 

0.750001 4.231937 

𝑿𝟒 1 1 1 

0.800001 4.240932 

0.850001 4.249665 

0.900001 4.258117 

0.950001 4.266276 

 

Based on Table 5, the minimum GCV value achieved is 4.1474, with the following optimal smoothing parameters for each 

predictor: (a) For predictor 1, both the first and second response orders are 1, with 1 knot. (b) For predictor 2, the first and second 

response orders are also 1, with a single knot. (c) For predictor 3, both response orders are set to 1, with 1 knot as well. (d) 

Predictor 4 has similar parameters, with both response orders at 1 and 1 knot. Additionally, the optimal smoothing parameter 

lambda is set at 0.20001. These parameters collectively contribute to minimizing the GCV value, optimizing the model fit for 

the multi-predictor bi-response framework. 

The estimation of the nonparametric bi-response multi-predictor regression model based on a penalized spline estimator, applied 

to IMR data in West Java, is as follows: 

 

𝑌̂(1) = −0.642 + 0.167𝑋1 − 0.354(𝑋1 − 96.8)+ − 0.642 − 0.05𝑋2 + 0.007(𝑋2 − 73.9)+ − 0.642 − 0.051𝑋3 −
0.124(𝑋3 − 98.4)+ − 0.642 + 0.03𝑋4 + 0.027(𝑋4 − 102)+  (12) 

 

The estimation of the nonparametric bi-response multi-predictor regression model based on a penalized spline estimator, applied 

to CMR data in West Java, is as follows:  

 

𝑌̂(2) = −1.446 + 0.063𝑋1 − 0.111(𝑋1 − 96.8)+ − 1.446 + 0.009𝑋2 − 0.017(𝑋2 − 73.9)+ − 1.446 + 0.004𝑋3 −
0.063(𝑋3 − 98.4)+  (13) 

 

−1.446 − 0.008𝑋4 + 0.027(𝑋4 − 102)+  

 

Based on equations (12) and (13), the variable Percentage of Health Facility Deliveries (𝑋1), assuming other variables are held 

constant, can be interpreted as follows: 

 

𝑓(1)(𝑋1) =  {
−0.642 + 0.167𝑋1, 𝑖𝑓 𝑋1 ≤ 96.8
33.625 − 0.187𝑋1, 𝑖𝑓 𝑋1 > 96.8

  (14) 

 

𝑓(2)(𝑋1) =  {
−1.446 + 0.063𝑋1, 𝑖𝑓 𝑋1 ≤ 96.8
9.299 − 0.048𝑋1 , 𝑖𝑓 𝑋1 > 96.8

  (15) 
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From the model above, it can be observed that when the percentage of health facility deliveries is below 96.8%, each one percent 

increase in health facility deliveries tends to increase IMR by 0.167 and CMR by 0.063. Conversely, when the percentage of 

health facility deliveries exceeds 96.8%, each additional one percent increase tends to decrease IMR by 0.187 and CMR by 

0.048. 

Based on equations (12) and (13), the variable Percentage of Exclusive Breastfeeding (𝑋2), assuming other variables are held 

constant, can be interpreted as follows: 

 

𝑓(1)(𝑋2) =  {
−0.642 − 0.05𝑋2, 𝑖𝑓 𝑋2 ≤ 73.9

−1.159 − 0.043𝑋2, 𝑖𝑓 𝑋2 > 73.9
  (16) 

 

𝑓(2)(𝑋2) =  {
−1.446 + 0.009𝑋2, 𝑖𝑓 𝑋2 ≤ 73.9

−0.1897 − 0.008𝑋2, 𝑖𝑓 𝑋2 > 73.9
  (17) 

 

From the model above, it can be observed that when the percentage of exclusive breastfeeding is below 73.9%, each one percent 

increase in exclusive breastfeeding tends to decrease IMR by 0.05 and increase CMR by 0.009. Conversely, when the percentage 

of exclusive breastfeeding exceeds 73.9%, each additional one percent increase tends to decrease IMR by 0.043 and CMR by 

0.008. 

Based on equations (12) and (13), the variable Percentage of Complete Basic Immunization (𝑋3), assuming other variables are 

held constant, can be interpreted as follows: 

 

𝑓(1)(𝑋3) =  {
−0.642 − 0.051𝑋3, 𝑖𝑓 𝑋3 ≤ 98.4
11.56 − 0.175𝑋3, 𝑖𝑓 𝑋3 > 98.4

  (18) 

 

𝑓(2)(𝑋3) =  {
−1.446 + 0.004𝑋3, 𝑖𝑓 𝑋3 ≤ 98.4
−4.753 − 0.059𝑋3, 𝑖𝑓 𝑋3 > 98.4

  (19) 

 

From the model above, it can be observed that when the percentage of complete basic immunization is below 98.4%, each one 

percent increase in immunization coverage tends to decrease IMR by 0.051 and increase CMR by 0.004. Conversely, when 

immunization coverage exceeds 98.4%, each additional one percent increase tends to decrease IMR by 0.175 and CMR by 0.059. 

Based on equations (12) and (13), the variable Percentage of Obstetric Complications (𝑋4) with assuming other variables are 

held constant can be interpreted as follows: 

 

𝑓(1)(𝑋4) =  {
−0.642 + 0.03𝑋4, 𝑖𝑓 𝑋4 ≤ 102

−3.396 + 0.057𝑋4, 𝑖𝑓 𝑋4 > 102
  (20) 

 

𝑓(2)(𝑋4) =  {
−1.446 − 0.008𝑋4, 𝑖𝑓 𝑋4 ≤ 102

−4.2 + 0.019𝑋4, 𝑖𝑓 𝑋4 > 102
  (21) 

 

From the model above, it can be observed that when the percentage of obstetric complications is below 102%, each one percent 

increase in obstetric complications tends to increase IMR by 0.01 and decrease CMR by 0.004. Conversely, when the percentage 

of obstetric complications exceeds 102%, each additional one percent increase tends to raise both IMR by 0.07 and CMR by 

0.021. 

Furthermore, the observed and estimated values for IMR and CMR across various cities or regencies are presented in Figure 5 

and Figure 6. The red dots represent the actual observed values, while the blue line indicates the estimated values based on the 

model. Both Figure 5 and Figure 6 indicate minimal to no discrepancies between the observed data and the model estimates, 

suggesting a strong agreement between the two data sets across all response variables. 

 

 
 

Fig 5: The Observed and Estimated Values for IMR across various cities/regencies 
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Fig 6: The Observed and Estimated Values for CMR across various cities/regencies 

 

A comparison was conducted between parametric linear regression methods and bi-response nonparametric regression with 

multiple predictors to assess the effectiveness of each model. This analysis aims to evaluate the Mean Squared Error (MSE) and 

𝑅2 values, which indicate how well the four predictor variables explain the IMR and CMR response variables. The results of 

this comparison are presented in Table 6. 

 
Table 6: Comparison of Parametric and Nonparametric Regression Model Results 

 

Method MSE 𝑹𝟐 

Bi-response Nonparametric Regression 1.932198 0.8787218 

Bi-response Linear Parametric Regression 5.304398 0.2683264 

 

Based on the analysis of both methods, the parametric regression model has an MSE of 5.3044 and an 𝑅2 of 0.2683, indicating 

that it explains only 26.8% of the variation. In contrast, the nonparametric model achieves an MSE of 1.9322 and an 𝑅2 of 

0.8787, explaining approximately 87.8% of the variation. These results suggest that nonparametric regression is significantly 

more effective in capturing the complex relationships between the predictor and response variables. 

 

Conclusion 

The analysis demonstrated that the nonparametric regression model with a penalized spline estimator for modeling IMR and 

CMR in West Java in 2023 yielded a GCV of 3.5227, an MSE of 1.9322, and an 𝑅2 of 0.8787. This model accounted for 87.87% 

of the variability in IMR and CMR, with the remaining 12.13% attributable to factors outside the model. According to the 

nonparametric model, an increase in the percentage of health facility deliveries, exclusive breastfeeding, and complete basic 

immunization is associated with reductions in IMR and CMR, while a rise in obstetric complications is associated with increases 

in these rates. 

In comparison, a parametric regression model applied to the same dataset resulted in an MSE of 5.304398 and an 𝑅2 of 

0.2683264. These findings suggest that the nonparametric model performs more effectively in minimizing MSE and 

maximizing 𝑅2, thereby providing a better fit for the nonlinear relationships between the predictor variables and IMR and CMR 

than the parametric model. 
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