
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1053 | P a g e  

 

 

 
Modeling the risk of Nutritional Status Wasting with Nonparametric Ordinal Logistic 

Approach Based on Spline 
  

Muhammad Syahrie Khamdani 1, Umi Habibah 2, Nur Chamidah 3*, Lailatul Muniroh 4 
1-4 Magister of Management Study Program, Faculty of Economics and Business, Universitas Islam Bandung, Indonesia 

 

* Corresponding Author: Nur Chamidah 

 

 

 

Article Info 

 
ISSN (online): 2582-7138 

Volume: 06  

Issue: 01 

January-February 2025 

Received: 29-11-2024  

Accepted: 30-12-2024 

Page No: 1053-1065 

Abstract 
The nutritional status of toddlers is an important indicator in assessing public health 
quality, especially among children. Nutrition problems in toddlers are still a challenge 
for the Indonesian nation, including the high prevalence of stunting, underweight, and 
wasting. These various nutritional problems can be one of the factors that inhibit 
Indonesia's chances of becoming a developed country. Kediri Regency is one of the 
regions in East Java, Indonesia that has a high rate of malnutrition status. The 
nutritional status of toddlers in Kediri Regency which has a prevalence rate lower than 
the average prevalence of East Java is in stunting incidence. Meanwhile, the 
prevalence of other malnutrition events, such as wasting, underweight, and overweight 
is still above the average prevalence rate in East Java. This study was conducted aims 
to model and predict the nutritional status of toddlers in Kediri Regency, especially 
Ngasem District so that later appropriate policies can be made for the control of 
malnutrition problems in Kediri Regency using ordinal logistic regression approach. 
The developed model shows good performance in predicting nutritional status with 
classification accuracy of 74.41% on insample data and 73.81% on outsample data. In 
addition, the Macro AUC value of 71.56% shows that this model has a good ability to 
distinguish between different classes of nutritional status, with a classification error of 
28.44%. The nonparametric ordinal logistic regression model developed in this study 
showed good results in the classification of the nutritional status of children under five.
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Introduction 

Toddlers' nutritional status is a crucial metric for evaluating the quality of public health, especially among children. Until now, 

the nutritional problem of toddlers is still a big concern in Indonesia, especially in rural areas and areas with limited access to 

health. From Indonesian Ministry of Health, nutrition problems in toddlers are still a challenge for the Indonesian nation, 

including the high prevalence of stunting, underweight, and wasting. These various nutritional problems can be one of the factors 

that inhibit Indonesia's chances of becoming a developed country.  

UNICEF (2021) [1] in its press release, stated that “… children under the age of two are most vulnerable to all forms of 

malnutrition …”. Rahmi H.G (2017) [2] developed malnutrition problems in toddlers that are not treated immediately can hinder 

growth and development, raise the chance of disease and death and affect toddlers' future lives in the long run. Various internal 

factors of toddler growth, such as age, weight, and height, can significantly affect the nutritional status of toddlers. The age of 

toddlers is when growth and development occur very rapidly. The first 1000 days of human life are a "golden period" known as 

the Window of Opportunity because children will grow optimally (Evania Yafie, 2018) [3]. In addition to age, height and weight 

factors are also closely related to determining nutritional status because they are related to the nutrients consumed by a person 

so they affect physical growth, metabolism, and overall body function.  

Based on information from Zierle-Ghosh & Jan (2022) [4], Body Mass Index (BMI) is used to classify people into four general 

categories based on their height and weight: underweight, normal weight, overweight, and obesity. BMI calculations can help 

identify nutritional problems in toddlers early so that appropriate nutritional interventions can be carried out to support optimal  
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growth. Thus, BMI measurement is an important tool in efforts to prevent and handle nutritional problems.  

One of the East Javan regions with a high rate of malnutrition is Kediri Regency, using data obtained from Indonesian Ministry 

of Health, in his book entitled "Survei Kesehatan Indonesia (SKI) 2023" [5], the nutritional status of toddlers in Kediri Regency 

which has a prevalence rate lower than the average prevalence of East Java is in stunting incidence, which is 16.8, this value is 

smaller than the average of East Java province of 17.7. Meanwhile, the prevalence of other malnutrition events, such as wasting, 

underweight, and overweight is still above the average prevalence rate in East Java. The prevalence of wasting in Kediri Regency 

is 7.9%, higher than the provincial average of 6.8%. The prevalence of underweight was also high, at 14.2%, surpassing the East 

Java average of 13.3%. Likewise, overweight, whose prevalence reaches 5.5%, exceeds the provincial average of only 4.3%. 

This fact shows that although efforts to reduce stunting rates have been successful, health policies in Kediri Regency in dealing 

with other malnutrition problems have not been optimal.  

There are previous studies that have discussed the nutritional status of toddlers. For example, a study conducted by Siregar et al. 

(2019) [6], this study was conducted in Padang City which showed that the factors that affect the incidence of stunting in toddlers 

are parental knowledge, exclusive breastfeeding, diarrhea, and parental income. This study emphasizes more on external factors 

and only discusses the incidence of malnutrition in the form of stunting. Another study conducted by Rahmadeni (2023) [7], 

found that most toddlers have good nutritional status, and that maternal education and weight have the biggest effects on toddlers' 

nutritional status. In this study, it discusses more about external and internal factors that affect the nutritional status of toddlers.  

Based on the facts about the nutritional status of toddlers in Kediri Regency and several previous studies on the nutritional status 

of toddlers in several locations in Indonesia, it is necessary to conduct further studies on the nutritional status of toddlers in 

Kediri Regency and what internal factors influence. This study was conducted aims to model and predict the nutritional status 

of toddlers in Kediri Regency, especially Ngasem District so that later appropriate policies can be made for the control of 

malnutrition problems in Kediri Regency. One statistical technique that describes the association between a response variable 

(Y) and multiple predictor variables (X) in which the response variable has more than two categories and the measurement scale 

is ordinal logistic regression is used in this study (Hosmer et al., 2013) [8]. In this study, nutritional status became a response 

variable with those categorized ordinally, namely normal, risk of malnutrition, and wasting. Ordinal logistic regression was 

chosen in this study because it allows us to model the relationship between various predictor variables and response variables 

that are categorized as ordinal. 

 

Materials 

1. Nutritional Status 

Nutritional status is a depiction of food security needed by the body (Anggraeni et al., 2021) [9]. One way to determine nutritional 

status is by anthropometric measurements, which is to calculate the weight index according to height and weight index according 

to body length. From this anthropometric calculation, a person's nutrition can be classified into obese, overweight, normal, or 

underweight.  

2. Malnutrition 

Malnutrition is a condition if the body experiences a deficiency or excess of nutrients, although it is often used to describe a 

condition of malnutrition (Muhammad Iqbal & Sartono, 2018) [10]. According to Suryani et al. [11] his study's findings, inadequate 

nutrition during toddlerhood can result in stunted growth, make children lazy to perform energy-producing tasks, disrupt their 

immune systems, making them more vulnerable to infectious diseases, prevent their brains from developing to their full potential, 

and alter their behavior by making them agitated, prone to crying, and influencing their continued apathetic behavior. 

3. Wasting 

Wasting is a condition in which toddlers suffer from malnutrition with a diagnosis that is established based on a height per 

weight assessment. This indicates a deficit or lack of weight proportion when compared to the height of toddlers. (Anggraeni et 

al., 2021) [9]. 

4. Multinomial Distribution 

The multinomial distribution is an extended version of the binomial distribution. Let 𝑛κi denote the number of observations of 

𝑌 = 𝑘 values appearing at 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗), for 𝑘 = 1,2, … , 𝑞 − 1 then [𝑌𝑖 , 𝑖 = 1,2, … , 𝑛] is an independent random 

variable with multinomial distribution. Suppose 𝑌𝑖 = (𝑦1𝑖 , 𝑦2𝑖 , . . . , 𝑦𝑞𝑖) then 𝑌𝑖 ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝜋𝑖); 𝑛𝑖 = (𝑛1𝑖 , 𝑛2𝑖 , . . . , 𝑛𝑞𝑖) 

, 𝜋𝑖 = (𝜋1𝑖 , 𝜋2𝑖 , . . . , 𝜋𝑞𝑖) and 𝜋1𝑖 + 𝜋2𝑖 + ⋯+ 𝜋𝑞𝑖 = 1. The probability function for the multinomial distribution is as following 

equation (1):  

 

𝑝(𝑛1, 𝑛2, … , 𝑛𝑞−1) = (
𝑛!

𝑛1! 𝑛2! … 𝑛𝑞!
) 𝜋1

𝑛3𝜋2
𝑛2 …𝜋𝑞

𝑛𝑞 (1) 

 

(Agresti, 2007) [12]. 

 

5. Nonparametric Regression 

To figure out the connection between the predictor and the response that does not have the assumption that the relationship has 

a certain shape, nonparametric regression will be used. When the data regression curve's form or the structure of the association 

between variables are uncertain, nonparametric regression will be used. Suppose an observation is obtained in the form of paired 

data (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛) which follow the following model: 

 
𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜀𝑖𝑗  𝑖 = 1,2, . . , 𝑛 (2) 

In the i-th observation, 𝑦𝑖  is the response variable, 𝑥𝑖 is a predictor variable, 𝜀𝑖 is a random error that is presumed to be 
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independent with zero mean and variance. The regression function to be estimated is represented by 𝜎2 and 𝑔. It is assumed that 

the nonparametric regression function is only smooth or contained in a certain function space so that the nonparametric regression 

model has high flexibility (Eubank, 1999; Wang, 2011) [13, 14]. 

 

6. Nonparametric Ordinal Logistic Regression 

The development of the ordinal logistic regression model with a non-parametric approach resulting nonparametric ordinal 

logistic regression model. According (Hastie & Tibshirani, 1987) [15], a model that can estimate nonparametric models by 

replacing the linear form into an additive form is the Generalized Additive Models (GAM) so that the additive nonparametric 

ordinal logistic regression model is 

 

𝑔(𝛾𝑘(𝑥𝑖)) =  𝜃𝑘 + ∑ 𝑔𝑗

𝑝

𝑗=1

(𝑥𝑖𝑗), 𝑘 = 1,2, … , 𝑞 − 1; 𝑖 = 1,2, … , 𝑛 (3) 

 

with 𝑔𝑗 is the j-th predictor variable's unpredictable regression function, 𝑥𝑖𝑗  is the j-th predictor variable's i-th observation. 

predictor variable and p indicates how many predictor variables there are. The g function is the link function for the cumulative 

logit model, which is 𝑙𝑛 (
𝛾𝑘(𝑥𝑙)

1−𝛾𝑘(𝑥𝑙)
), so that 𝛾𝑘(𝑥𝑖) can be obtained as follows: 

𝑙𝑛 (
𝛾𝑘(𝑥𝑖)

1 − 𝛾𝑘(𝑥𝑖)
) = 𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗) 

𝛾𝑘(𝑥𝑖)

1 − 𝛾𝑘(𝑥𝑖)
= exp (𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗)) 

 

𝛾𝑘(𝑥𝑖) = exp (𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗)) − 𝛾𝑘(𝑥𝑖) exp (𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗)) 

 

𝛾𝑘(𝑥𝑖)[1 + exp (𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗))] = exp (𝜃𝑘 + ∑  

𝑝

𝑗=1

𝑔𝑗(𝑥𝑖𝑗)) 

 

𝛾𝑘(𝑥𝑖) =
exp (𝜃𝑘 + ∑  

𝑝
𝑗=1 𝑔𝑗(𝑥𝑖𝑗))

1 + exp (𝜃𝑘 + ∑  
𝑝
𝑗=1 𝑔𝑗(𝑥𝑖𝑗))

, 𝑘 = 1,2, … , 𝑞 − 1; 𝑖 = 1,2, … , 𝑛 (4) 

 

(S. Meyers & Guarino, 2006) [16]. 

7. Least Squared Spline Estimator 

The Least Square Spline Estimator The least square spline estimator is one of the estimation techniques in nonparametric 

regression with a smooth segmented or truncated polynomial model that uses a truncated basis function. Least square spline is a 

polynomial model that has higher flexibility than ordinary polynomial models, causing least square spline regression to adjust 

more effectively to the local characteristics of a data function, in other words, it can produce a regression function that fits the 

data. Least square spline in nonparametric regression has the ability to estimate data behavior that tends to be different at different 

intervals (Eubank, 1999) [13]. In general, the function f in the space of least square spline of degree p with knots. 𝜏1, 𝜏2, . . . , 𝜏𝑘 is 

an arbitrary function that can be expressed as the following equation: 

 

𝑔(𝑥𝑖) = ∑𝛽𝑗

𝑝

𝑗=0

𝑥𝑗 + ∑𝛽𝑗+𝑝

𝑘

𝑗=1

(𝑥 − 𝜏𝑗)+
𝑝
 (5) 

with 

(𝑥 − 𝜏𝑗−𝑝)+

𝑝
= {

(𝑥 − 𝜏𝑗−𝑝)
𝑝

, 𝑥 ≥ 𝜏𝑗−𝑝

0 , 𝑥 < 𝜏𝑗−𝑝

 (6) 

 

with 𝑖 = 1,2, . . . , 𝑛, 𝑗 = 1,2, . . . , 𝑘, 𝜏𝑗 is knot node, 𝛽 are the nonparametric model parameters (real constants), p is the degree of 

polynomial order, k is the number of knots, and 𝜆 = (𝜏1, 𝜏2, . . . , 𝜏𝑘). By taking n paired samples (𝑥𝑖 , 𝑦𝑖), based on equation (4) 

can be written as follows: 

𝑔(𝑥𝑛) = 𝛽0(𝑥𝑛)0 + 𝛽1(𝑥𝑛)1 + ⋯+ 𝛽𝑝(𝑥𝑛)𝑝 + 𝛽(𝑝+1)(𝑥𝑛 − 𝜏1)+
𝑝

+ ⋯+ 𝛽(𝑝+𝑘)(𝑥𝑛 − 𝜏𝑘)+
𝑝
 (7) 

The least square spline function in equation (7) can be expressed in matrix form as follows. 
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(

 
 
 

𝑔(𝑥1)

𝑔(𝑥2)

𝑔(𝑥3)
.
.

𝑔(𝑥𝑛))

 
 
 

=

(

 
 
 
 
 

1 𝑥1𝑥1
2𝑥1

3 … 𝑥1
𝑝(𝑥1 − 𝜏1)+

𝑝
… (𝑥1 − 𝜏𝑘)+

𝑝

1 𝑥2𝑥2
2𝑥2

3 … 𝑥2
𝑝(𝑥2 − 𝜏1)+

𝑝
… (𝑥2 − 𝜏𝑘)+

𝑝

1 𝑥3𝑥3
2𝑥3

3 … 𝑥3
𝑝(𝑥3 − 𝜏1)+

𝑝
… (𝑥3 − 𝜏𝑘)+

𝑝

.

.

.
1 𝑥𝑛𝑥𝑛

2𝑥𝑛
3 … 𝑥𝑛

𝑝(𝑥𝑛 − 𝜏1)+
𝑝

… (𝑥𝑛 − 𝜏𝑘)+
𝑝
)

 
 
 
 
 

(

 
 
 
 

𝛽0

𝛽1

𝛽2

.

.

.
𝛽(𝑝+𝑘))

 
 
 
 

(8) 

 

for more than one predictor variable or multiple predictors, the following model is obtained 

 

𝑦𝑖 = ∑  

𝑠

𝑗=1

𝑔𝑗(𝑥𝑖𝑗) + 𝜀𝑖 (9) 

 

For the extension of the equation (5) with a predictor variable of more than one called least square splinemultipredictor can be 

expressed as follows: 

 

𝑔𝑠(𝑥𝑖𝑠) = 𝛽0𝑠 + ∑  

𝑝𝑠

ℎ=1

𝛽𝑠ℎ𝑥𝑖𝑠
ℎ + ∑  

𝑘𝑠

𝑚=1

𝛽(𝑝𝑠+𝑚)𝑠(𝑥𝑖𝑠 − 𝜏𝑚𝑠)+
𝑝𝑠 (10) 

 

Based on equation (9) and the model in equation (10), the least square splinemultipredictor function can be simplified as follows. 

 

𝑦𝑖 = ∑[𝛽0𝑗 + ∑ 𝛽𝑗ℎ

𝑝𝑗

ℎ=1

𝑥𝑖𝑗
ℎ + ∑ 𝛽(𝑝𝑗+𝑚)𝑗

𝑘𝑗

𝑚=1

(𝑥𝑖𝑗 − 𝜏𝑚𝑗)+

𝑝𝑗
] + 𝜀𝑖

𝑠

𝑗=1

(11) 

 

8. Selection of Number and Location of Knot Nodes 

The least square spline is a series of polynomials consisting of different segments, which are joined at knots, which are 

transitional nodes where the function changes its behavior. The choice of the number and location of knots is very important in 

this model. One way to select the optimal knot nodes is by Generalized Cross Validation (GCV), which is used to minimize the 

model error. The best knot node is obtained when the GCV value is the smallest, which also indicates an optimal least square 

spline model. 

𝐺𝐶𝑉(𝑝, 𝜏1, 𝜏2, … , 𝜏𝑘) =
𝑀𝑆𝐸(𝑝, 𝜏1, 𝜏2, … , 𝜏𝑘)

(
1
𝑛

𝑡𝜏(𝐥 − 𝐀(𝑝, 𝜏1, 𝜏2, … , 𝜏𝑘)))

2  (12)
 

 

𝑀𝑆𝐸(𝑝, 𝜏1, 𝜏2, … , 𝜏𝑘) =
1

𝑛
∑(𝑦𝑖 − 𝑔̂(𝑥𝑖))

2
𝑛

𝑖=1

 (13) 

 

where p is the order of the polynomial,𝜏 is the knot node and 𝐀(𝛕) s obtained by the relationship of 𝑦̂ = 𝐀(𝜏)𝐲.  
The Quantiles are location measures that indicate the position of part of the data relative to the entire dataset. For a continuous 

random variable, the concept of quantile can be defined as the value 𝜉𝑞  for the random variable 𝑋 such that  

 

Pr(𝑋 ≤ 𝜉𝑞) = 𝐹(𝜉𝑞) = 𝑞 (14) 

 

where 𝑞 represents the probability that the value of 𝑋 is less than or equal to 𝜉𝑞 . The quantile can be denoted by the symbol 𝜉𝑞 . 

Example: The quantile of order 
1

2
 is the median of the distribution, thus Pr(𝑋 ≤ 𝜉0.5) =

1

2
. To determine the position of quantiles 

or knot nodes in data, one method involves using an index to sample quantiles in data as knot nodes, defined as  

 
𝜏𝑗 = 𝑋

([
𝑗(𝑛+1)
𝑘+1

])
 with 𝑗 = 1,2, … , 𝑘 (15)

 

 

where 𝑋(𝑗) represents the order statistic of the 𝑗-th position. This method suggests intervals such as 𝑗 = ⌊𝑛/5⌋ to 𝑗 = ⌊𝑛/3⌋ (Wu 

& Zhang, 2006) [17]. 

 

9. Maximum Likelihood Estimator 

The maximum likelihood estimator method is a method that maximizes the likelihood function. The likelihood function is the 

joint probability function of the random sample 𝑌1, 𝑌2, . . . , 𝑌𝑛 which is identically independent (iid) and is a function of the 

parameters 𝜃. The likelihood function in  
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nonparametric regression has the following equation: 

 

𝐿(𝛽, 𝜃) = ∏ 𝑓

𝑛

𝑖=1

(𝑦𝑖|𝑥𝑖) (16) 

 

after getting the likelihood function, then calculate the log-likelihood function as follows: 

 

ℓ = ln{𝐿(𝛽, 𝜃)} = ∑ln

𝑛

𝑖=1

(𝑓(𝑦𝑖|𝑥𝑖)) (17) 

 

The estimator β̂ is obtained by lowering the log-likelihood function in equation (16) against β and then equating to 0 as in the 

following equation 

 
∂ℓ(𝛽, 𝜃)

∂𝛽
= 0 (18) 

 

While the estimator 𝜃̂ s obtained by lowering the log-likelihood function in equation (16) to 𝜃 and then equalizing 0 as in the 

following equation: 

 
∂ℓ(𝛽, 𝜃)

∂𝜃
= 0 (19) 

 

After getting the first derivative, the second derivative of 𝛽 and 𝜃 negative definite matrix is a guarantee that the result is 

maximum (Hogg et al., 2019) [18]. 

 

10. Newton Raphson for Non-linear Equation 

Newton Raphson's method is a numerical iteration method used to solve equations that cannot be solved directly because they 

are not linear. This method uses a one point approach as the initial value (Agresti, 2007) [12]. For non-linear equation iteration is 

performed using the following equation (20) until a sufficiently precise value is reached 

 

𝜑(𝑖+1) = 𝜑(𝑖) − (𝑯(𝑖))
−1

𝑟(𝑖) (20) 

 

Iteration end until fulfiled max |𝜑(𝑖+1) − 𝜑(𝑖)| < 𝛿, where 𝛿 is precise value and 

 

𝝋 = (𝜽𝑇 , 𝜷𝑇)𝑇 = (𝜃1, 𝜃2, … , 𝜃𝑞−1, 𝛽1, 𝛽2, … , 𝛽𝑝)
𝑇

(21) 

 

𝑟 =
∂ℓ

∂𝝋
=

(

 
 
 
 
 
 
 

∂ℓ

∂𝜃3

∂ℓ

∂𝜃2

⋮
∂ℓ

∂𝜃𝑞−1

∂ℓ

∂𝜷 )

 
 
 
 
 
 
 

 (22) 

 

𝑯 =
∂2ℓ

∂𝝋∂𝝋′
=

(

 
 
 
 
 
 
 
 

∂2ℓ

∂𝜃1
2

∂2ℓ

∂𝜃1 ∂𝜃2

⋯
∂2ℓ

∂𝜃1 ∂𝜃𝑞−1

∂2ℓ

∂𝜃1 ∂𝜃′

∂2ℓ

∂𝜃2 ∂𝜃1

∂2ℓ

∂𝜃2
2

∂2ℓ

∂𝜃2 ∂𝜃𝑞−1

∂2ℓ

∂𝜃2 ∂𝜃′

⋮ ⋱ ⋮
∂2ℓ

∂𝜃𝑞−1 ∂𝜃1

∂2ℓ

∂𝜃𝑞−1 ∂𝜃2

∂2ℓ

∂𝜃𝑞−1
2

∂2ℓ

∂𝜃𝑞−1 ∂𝜃′

∂2ℓ

∂𝛽 ∂𝜃1

∂2ℓ

∂𝛽 ∂𝜃2

⋯
∂2ℓ

∂𝛽 ∂𝜃𝑞−1

∂2ℓ

∂𝛽 ∂𝛽′ )

 
 
 
 
 
 
 
 

(23) 

(Burden & Faires, 2010) [19]. 
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11. Model Fit Test 

Deviance is a statistical test used to test the suitability of the model by comparing the actual model to the estimated model. The 

ordinal logit model fit test using the deviance test statistic is carried out with the following hypothesis 

H0: Logistic regression model obtained is fit 

H1: Logistic regression model obtained is not fit 

To test this hypothesis, the deviance test statistic is used, which is defined as  

follows:

𝐷 = −2[ℓ(𝜋̂; 𝑦) − ℓ(𝜋; 𝑦)] (24) 

 

𝐷 = −2∑ [𝑛1𝑖ln (
𝜋̂1(𝑥𝑖)

𝑦𝑖1

) + 𝑛2𝑖ln (
𝜋̂2(𝑥𝑖)

𝑦𝑖2

) + ⋯+ 𝑛𝑞𝑖ln (
𝜋̂𝑞(𝑥𝑖)

𝑦𝑖𝑞

)]

𝑛

𝑖=1

 (25) 

 

with 𝜋̂𝑖𝑘 = 𝜋̂𝑘(𝑥𝑖) is the probability of the i-th observation in the k-th category. The critical regions are H0 rejected if 𝐷 >
𝑋𝛼,(𝑞−1)(𝐽−𝑝−1)

2 , where J is the number of combinations of levels of different predictor variables, p is the number of predictor 

variables and q is the number of categories (Hosmer et al., 2013) [8]. 

 

Methods 

The type of research used in this study is quantitative research. According to Sugiyono (2019) [20], quantitative research is a 

method rooted in the philosophy of positivism, used to investigate a population or a specific sample with data collected through 

certain instruments. The data in this study is primary data obtained from posyandu data under the auspices of the Ngasem Health 

Center, Kediri Regency from January 2023 to August 2024. In this study, the predictor variables used are: 

X1: Body weight at birth 

X2: Body height at birth 

X3: Age 

Y : Nutritional Status (1 = Normal, 2 = Risk od Malnutrition, 3 = Wasting) 

The parameters for Nutritional are estimated using the Nonparametric Ordinal Logistic Approach based on Spline. 

 

Results and Discussion 

1. Descriptive Statistics and Characteristics on Toddler Nutrition Status Data at Posyandu Ngasem District, Kediri 

Regency 

This study uses data obtained at the Posyandu Ngasem Kediri District with a total of 340 consisting of toddlers aged 0-60 months 

after birth recorded in August. From the toddler data obtained, a grouping was made in the form of classification 1 as a group of 

toddlers in the green area (the value of Z-score body weight/body height in the median or above), classification 2 as a group of 

toddlers in the yellow area (the value of Z-score body weight/body height is between -1 SD to -2 SD), and classification 3 as a 

group of toddlers in the red area (exceeding the limits of -2 SD). Furthermore, grouping writing is used according to each 

classification. The characteristics of nutritional status can be described through descriptive statistics for each predictor. Presented 

with a table that includes the mean, variance, min, median, and max can be seen as follows: 

 
Table 1: Descriptive Statistics Table for Toddler Nutrition Status Data at Posyandu Ngasem Sub-District, Kediri Regency 

 

Variable Classification Mean Variant Min Median Max 

Body 

Weight 

At Birth 

(𝑋1) 

1 3,29 0,207 1,7 3,3 4,8 

2 2,667 0,085 1,35 2,7 3,03 

3 2,607 0,108 1,69 2,6 3 

Body 

Height 

At Birth 

(𝑋2) 

1 49,88 0,599 41 50 54 

2 47,49 2,872 40 48 49 

3 47,24 2,618 42 48 49 

Age 

(𝑋3) 

1 28,22 267,749 0 26 59 

2 25,21 255,652 1 22 59 

3 30,42 362,142 0 34 59 

 

Based on the Table 1, the average birth weight of toddlers classified as 1 is 3.29 kg, with a variance of 0.207, a maximum value 

of 4.8 kg, a median value of 3.3 kg, and a minimum value of 1.7 kg. Furthermore, the average birth weight of toddlers classified 

as 2 is 2.667 kg, with a variance of 0.085, a maximum value of 3.03 kg, a median value of 2.7 kg, and a minimum value of 1.35 

kg. The average birth weight of toddlers classified as 3 is 2.607 kg, with a variance of 0.108, a maximum value of 3 kg, a median 

value of 2.6 kg, and a minimum value of 1.69 kg. 

 The average birth height of toddlers classified as 1 is 49.88 cm, with a variance of 0.599, a maximum value of 54 cm, a median 

value of 50 cm, and a minimum value of 41 cm. In classification 2, the average birth height of children under five was 47.49 

cm, with a variance of 2.872, a maximum value of 49 cm, a median value of 48 cm, and a minimum value of 40 cm. Classification 

3 showed an average birth height of 47.24 cm, with a variance of 2.618, a maximum value of 49 cm, a median value of 48 cm, 

and a minimum value of 42 cm. 

The average age of under-fives classified as 1 is 28.22 months, with a variance of 267.749, a maximum value of 59 months, a 
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median value of 26 months, and a minimum value of 0 months. For classification 2, the average age of under-fives is 25.21 

months, with a variance of 255.652, a maximum value of 59 months, a median value of 22 months, and a minimum value of 1 

month. Classification 3 showed an average age of 30.42 months, with a variance of 362.142, a maximum value of 59 months, a 

median value of 34 months, and a minimum value of 0 months. 

The characteristics of the nutritional status of toddlers according to BW based on age group in months can be described using a 

bar chart presented below in Figure 1 as follows: 

 

 
 

Fig 1: Nutritional Status of Toddlers According Age in Month 
 

Based on the bar chart that has been presented in Figure 2 obtained information in the form of interpretation, namely, that in the 

group of toddlers aged 0-10 months there are 26 toddlers classified 1, there are 23 toddlers classified 2 and there are 10 toddlers 

classified 3. The group of toddlers aged 11 - 20 months there are 45 toddlers classified 1, there are 31 toddlers classified 2 and 

there are 2 toddlers classified 3. The group of toddlers aged 21-30 months there are 40 toddlers classified 1, there are 22 toddlers 

classified 2 and there are 6 toddlers classified 3. Group of toddlers aged 31 - 40 months there are 24 toddlers classified 1, there 

are 20 toddlers classified 2 and there are 6 toddlers classified 3. Group of toddlers aged 41 - 50 months there are 26 toddlers 

classified 1, there are 10 toddlers classified 2 and there are 6 toddlers classified 3. Group of toddlers aged 51-60 months there 

are 24 toddlers classified 1, there are 11 toddlers classified 2 and there are 8 toddlers classified 3. 

From the bar chart, it can also be concluded that toddlers who are classified 1 are most in the age group 11-20 months with a 

total of 45 and the proportion is 57.69%. toddlers who are classified 1 are least in the age group 31-40 months and 51-60 months 

with a total of 24 for each and the proportion is 60% for the age group 31 - 40 months and 55.81% for the age group 51-60 

months. Toddlers who were classified 2 were most in the age group 11-20 months with a total of 31 and the proportion was 

39.74%. toddlers who were classified 2 were least in the age group 41-50 months with a total of 10 and the proportion was 

23.8%. Toddlers who are classified 3 most in the age group 0-10 months with a total of 10 and the proportion is 16.94%. toddlers 

who are classified 3 least in the age group 11-20 months with a total of 2 and the proportion is 0.02%. 

Furthermore, a bar chart is presented to determine the characteristics of the nutritional status of toddlers according to body 

weight/body height based on gender can be seen in the following Figure 2. 

 

 
 

Fig 2: Nutritional Status of Toddlers According Gender 
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 In the bar chart shown in Figure for male toddlers classified 1 amounted to 118 with a proportion of 58.41%, for male toddlers 

classified 2 amounted to 55 with a proportion of 27.22% and for male toddlers classified 3 amounted to 29 with a proportion of 

14.35%. For female toddlers classified 1 amounted to 113 with a proportion of 50.9%, for female toddlers classified 2 amounted 

to 91 with a proportion of 40.99% and for female toddlers classified 3 amounted to 18 with a proportion of 8.1%. From the bar 

chart also for toddlers classified 1 and 3 most in the male sex group and toddlers classified 2 most in the female sex group. 

 

2. Estimation of Ordinal Logistic Regression Model with Multipredictor Nonparametric Approach based on Least 

Square Spline Estimator 

Suppose that (𝑥𝑖 , 𝑦𝑖) = 1,2, … , 𝑛 is paired data with 𝒙𝒊 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑠𝑖)
𝑇is the predictor variable of the i-th observation and 

𝑦𝑖  is the ordinal scale response variable with q categories. It is assumed that the i-th observation is multinomially distributed, 

and the multinomial distribution equation model given below. 

 
𝑓(𝑦𝑖 ∣ 𝒙𝒊) = 𝜋1(𝒙𝒊)

𝑛1𝑖𝜋2(𝒙𝒊)
𝑛2𝑖 … 𝜋𝑞(𝒙𝒊)

𝑛𝑞𝑖

𝑓(𝑦𝑖 ∣ 𝒙𝒊) = (𝛾1(𝒙𝒊)
𝑛1𝑖[𝛾2(𝒙𝒊) − 𝛾1(𝒙𝒊)]

𝑛2𝑖 … [1 − 𝛾𝑞−1(𝒙𝒊)]
𝑛𝑞𝑖) (26)

 

 

Using a log link function, the following formula determines the cumulative probability of the response variable y in ordinal 

logistic regression, which is 𝛾𝑘  dependent on the predictor variable 𝒙𝒊 . 

 

𝛾𝑘 =
𝑒

(𝜃𝑘+∑  
𝑗
𝑗=1  𝒈𝒋(𝒙𝒊𝒋))

1 + 𝑒
(𝜃𝑘+∑  𝑠

𝑗=1  𝒈𝒋(𝒙𝒊𝒋))
, 𝑘 = 1,2, … , 𝑞 − 1 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑠 (27) 

 

A regression function with an unknown curve shape and an assumed smooth curve is ∑𝑗=1
𝑠  𝒈𝒋(𝒙𝒊𝒋). Based on the previous 

equation, substituted with equation (1) for q = 3, the equation 𝑓(𝑦𝑖 ∣ 𝒙𝒊) is obtained as follows 

 

𝑓(𝑦𝑖 ∣ 𝒙𝒊) = (
𝑒(𝜃1+∑  𝑓1𝒈𝒋(𝒙𝒊𝒋))

1 + 𝑒(𝜃1+∑  𝑗=1𝒈𝒋(𝒙𝒊𝒋))
)

𝑛1𝑖

(
𝑒(𝜃2+∑  𝑓1𝒈𝑗(𝒙𝒊𝒋))

1 + 𝑒(𝜃2+∑  𝑗=1𝒈𝑗(𝒙𝒊𝒋))
−

𝑒(𝜃1+∑  𝑓1𝒈𝒋(𝒙𝒊𝒋))

1 + 𝑒(𝜃1+∑  𝑗=1𝒈𝒋(𝒙𝒊𝒋))
)

𝑛2𝑖

(1 −
𝑒(𝜃2+∑  𝑓1𝒈𝑗(𝒙𝒊𝒋))

1 + 𝑒(𝜃2+∑  𝑗=1𝒈𝑗(𝒙𝒊𝒋))
)

𝑛3𝑖

 (28)

 

The function ∑𝑗=1
𝑠  𝒈𝒋(𝒙𝒊𝒋)is estimated by a nonparametric regression approach using the multipredictor least square spline 

estimator, with 𝒈𝑗(𝒙𝒊𝒋) as follows: 

𝒈𝒋(𝒙𝒊𝒋) = 𝛽0𝑗 + ∑  

𝑝𝑗

ℎ=1

 𝛽𝑗ℎ𝑥𝑖𝑗
𝜆 + ∑  

𝑘𝑗

𝑚=1

 𝛽(𝑝𝑗+𝑚)𝑗(𝒙𝒊𝒋 − 𝜏mj )+

𝑝𝑗; 𝑗 = 1,2, … , 𝑠 

with 

(𝒙𝒊𝒋 − 𝜏𝑚𝑗)+

𝑝𝑗 = {
(𝒙𝑖𝑗 − 𝜏𝑚𝑗)

𝑝𝑗 , 𝑥 ≥ 𝜏𝑗−𝑝

0 , 𝑥 < 𝜏𝑗−𝑝

𝒈𝟏(𝒙𝒊𝟏) = 𝛽01 + ∑  

𝑝1

𝑘=1

 𝛽1𝑛𝑥𝑖1
ℎ + ∑  

𝑘1

𝑚=1

 𝛽(𝑝1+𝑚)1(𝒙𝒊𝟏 − 𝜏𝑚1)+
𝑝1

𝒈𝟐(𝒙𝒊𝟐) = 𝛽02 + ∑  

𝑝𝑥

𝑛=1

 𝛽2ℎ𝑥𝑖2
ℎ + Σ𝑚=1

𝑘2 𝛽(𝑝2+𝑚)2(𝒙𝒊𝟐 − 𝜏𝑚2)+
𝑝2

𝒈𝒔(𝒙𝒊𝒔) = 𝛽0𝑠 + ∑  

𝑝𝑠

ℎ=1

 𝛽𝑠ℎ𝑥𝑖𝑠
ℎ + ∑  

𝑘𝑠

m=1

 𝛽(𝑝𝑠+𝑚)𝑠(𝒙𝐢𝐱 − 𝜏ms)+
𝑝𝑠  

(29) 

Based on the description of the least square spline function based on equation (29), the function ∑𝑗=1
𝑠  𝒈𝒋(𝒙𝒊𝒋) is converted into 

vector notation form, so the multipredictor least square spline function can be written as follows. 

 
𝒈(𝒙𝒊) = 𝒙𝒊𝜷 (30) 
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𝒈(𝒙𝒊) = [1 𝒙𝟏𝒊𝒙𝟐𝒊 ⋯ 𝒙𝒔𝒕]

[
 
 
 
 
 
 
∑  

𝒑

𝒋=𝟏

 𝜷𝟎

𝜷𝟏

𝜷𝒛

⋮
𝜷𝒔 ]

 
 
 
 
 
 

(31) 

with 

𝒙𝟏𝒕 = [𝑥1𝑖𝑥1𝑖
1 𝑥1𝑖

2 …𝑥1𝑖
𝑝1(𝑥1𝑖 − 𝜏11)+

𝑝1
…(𝑥1𝑖 − 𝜏1𝑖1)+

𝑝1
]

𝒙𝟐𝒊 = [𝑥2𝑖𝑥2𝑖
1 𝑥2𝑖

2 … 𝑥2𝑖
𝑝2(𝑥2𝑖 − 𝜏21)+

𝑝2
… (𝑥2𝑖 − 𝜏2𝑘2

)
+

𝑝2
]

 ⋮  

𝒙𝒔𝒊 = [𝑥𝑠𝑖𝑥𝑥𝑖
1 𝑥𝑠𝑖

2 … 𝑥𝑠𝑖
𝑝𝑠(𝑥𝑠𝑖 − 𝜏𝑠1)+

𝑝𝑠
…(𝑥𝑠𝑖 − 𝜏𝑠𝑘𝑑

)
+

𝑝𝑠
]  and

𝜷𝟏 = [𝛽11𝛽12 … 𝛽1𝑝1
𝛽1(𝑝1+1) ⋯𝛽1(𝑝1+𝑘1)]

𝜷2 = [𝛽21𝛽22 … 𝛽2𝑝2
𝛽2(𝑝2+1) … 𝛽2(𝑝2+𝑘2)]

⋮
𝜷𝑥 = [𝛽𝑥1𝛽𝑥2 … 𝛽𝑥𝑝𝑠

𝛽𝑥(𝑝𝑠+1) … 𝛽𝑥(𝑝𝑦+𝑘5)]

(32) 

So equation (5) can be substituted into equation (3) and can be written in another form as follows. 

 

𝑓(𝑦𝑖 ∣ 𝒙𝒊)  = (
𝑒(𝜃1+𝒙𝒊𝜷)

1 + 𝑒(𝜃1+𝒙𝒊𝜷)
)

𝑛1𝑖

(
𝑒(𝜃2+𝒙𝒊𝜷)

1 + 𝑒(𝜃2+𝒙𝑖𝜷)
−

𝑒(𝜃1+𝒙𝒊𝜷)

1 + 𝑒(𝜃1+𝒙𝒊𝜷)
)

𝑛2𝑖

(1 −
𝑒(𝜃2+𝒙𝒊𝜷)

1 + 𝑒(𝜃2+𝒙𝒊𝜷)
)

𝑛3𝑖

 = (
𝑒(𝜃1+𝒙𝒊𝜷)

1 + 𝑒(𝜃1+𝒙𝒊𝜷)
)

𝑛1𝑖

(
𝑒(𝜃2+𝒙𝒊𝜷) − 𝑒(𝜃1+𝒙𝒊𝜷)

(1 + 𝑒(𝜃2+𝒙𝒊𝜷))(1 + 𝑒(𝜃1+𝒙𝒊𝜷))
)

𝑛2𝑖

(
1

1 + 𝑒(𝜃2+𝒙𝒊𝜷)
)

𝑛3𝑖
(33) 

 

The ordinal logistic regression model in equation (6) can be written in another form as follows: 

𝑓(𝑦𝑖 ∣ 𝒙𝑖) = exp (ln(
𝑒(𝜃1+𝒙𝒊𝜷)

1 + 𝑒(𝜃1+𝒙𝒊𝜷)
)

𝑛1𝑖

(
𝑒(𝜃2+𝒙𝒊𝜷) − 𝑒(𝜃1+𝒙𝒊𝜷)

(1 + 𝑒(𝜃2+𝒙𝒊𝜷))(1 + 𝑒(𝜃1+𝒙𝒊𝜷))
)

𝑛2𝑖

(
1

1 + 𝑒(𝜃2+𝒙𝒊𝜷)
)

𝑛3𝑖

)

= exp {[𝑛1𝑖 ln (
𝑒(𝜃1+𝒙𝒊𝜷)

1 + 𝑒(𝜃1+𝒙𝒊𝜷)
) + 𝑛2𝑖 ln [

𝑒(𝜃2+𝒙𝒊𝜷) − 𝑒(𝜃1+𝒙𝒊𝜷)

(1 + 𝑒(𝜃2+𝒙𝒊𝜷))(1 + 𝑒(𝜃1+𝒙𝒊𝜷))
] +

𝑛3𝑖 ln (
1

1 + 𝑒(𝜃2+𝒙𝒊𝜷)
)]}

= exp {[𝑛1𝑖(ln(𝑒(𝜃1+𝒙𝒊𝜷)) − ln(1 + 𝑒(𝜃1+𝒙𝒊𝜷))) + 𝑛2𝑖 ((ln(𝑒(𝜃2+𝒙𝒊𝜷) −

𝑒(𝜃1+𝒙𝒊𝜷)) − (ln(1 + 𝑒(𝜃2+𝒙𝒊𝜷)) + ln(1 + 𝑒(𝜃1+𝒙𝒊𝜷)))) + 𝑛3𝑖(ln (1) −

ln(1 + 𝑒(𝜃2+𝒙𝒊𝜷))]}

(34) 

 

The method to estimate the parameters 𝜷, 𝜃1and 𝜃2in logistic regression is the Maximum Likelihood Estimator (MLE) method. 

The form of the multinomial distribution likelihood function with the least square spline approach is as follows. 

 

𝐿(𝜷, 𝜃) = ∏  

𝑛

𝑖=1

 𝑓(𝑦𝑖 ∣ 𝑥𝑖) (35) 

 

𝐿(𝜷, 𝜃) =  ∏  

𝑛

𝑖=1

  [ exp {[𝑛1𝑖(ln(𝑒(𝜃1+𝒙𝒅𝜷)) − ln(1 + 𝑒(𝜃1+𝑥𝑖𝜷))) + 𝑛2𝑖 ((ln(𝑒(𝜃2+𝒙𝟏𝜷) −

𝑒(𝜃1+𝑥𝑖𝝆)) − (ln(1 + 𝑒(𝜃2+𝒙𝒊𝜷)) + ln(1 + 𝑒(𝜃1+𝑥𝑖𝜷)))) + 𝑛3𝑖(ln (1) −

ln(1 + 𝑒(𝜃2+𝑥𝑖𝜷)))]}]

(36) 

 

Based on equation (9), the log-likelihood function is obtained as follows. 
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ℓ(𝜷, 𝜃) = ln(∏  

𝑛

𝑖=1

  [exp {[𝑛1𝑖(ln(𝑒(𝜃1+𝒙𝒅𝜷)) − ln(1 + 𝑒(𝜃1+𝑥𝑖𝜷))) + 𝑛2𝑖 ((l n(𝑒(𝜃2+𝒙𝟏𝜷) −

𝑒(𝜃1+𝑥𝑖𝝆)) − (ln(1 + 𝑒(𝜃2+𝒙𝒊𝜷)) + ln(1 + 𝑒(𝜃1+𝑥𝑖𝜷)))) + 𝑛3𝑖(ln (1) −

ln(1 + 𝑒(𝜃2+𝒙𝒊𝜷)))]}])

= ln(exp ∑  

𝑛

𝑖=1

  [𝑛1𝑖(ln(𝑒(𝜃1+𝑥𝑖𝛽)) − ln(1 + 𝑒(𝜃1+𝑥𝑖𝛽))) + 𝑛2𝑖 ((n(𝑒(𝜃2+𝑥𝑖 
𝑇𝛽) −

 ln(1 + 𝑒(𝜃2+𝑥𝑖𝜷)))]}]

=  ∑  

𝑛

𝑖=1

  [𝑛1𝑖(ln(𝑒(𝜃1+𝒙𝒊𝜷)) − ln(1 + 𝑒(𝜃1+𝒙𝒊𝜷
′))) + 𝑛2𝑖 ((ln (𝑒(𝜃2+𝒙𝒊𝜷 ) −

 

(37) 

𝑒(𝜃1+𝒙𝒊𝜷)) − (ln (1 + 𝑒(𝜃2+𝒙𝒊𝜷 )) + ln (1 + 𝑒(𝜃1+𝒙𝒊𝜷)))) + 𝑛3𝑡(ln (1) −

ln(1 + 𝑒(𝜃2+𝑥𝑖𝜷)))]

 

 

When the first derivative of the parameters 𝜷, 𝜃1 and 𝜃2 is reached, the values of 𝜷, 𝜃1 and 𝜃2that make up the log-likelihood 

function in equation (37) will be at their maximum. The log-likelihood function's first derivative with regard to parameter 𝜷 is 

as follows: first derivative of the log-likelihood function with respect to parameter 𝜷 is as follows: 

 

∂ℓ(𝜷, 𝜃)

∂𝜷
= ∑  

𝑛

𝑖=1

 {𝑛1𝑖 (𝑥𝑖 −
𝑥𝑖 exp(𝜃1 + 𝒙𝒊𝜷)

1 + exp(𝜃1 + 𝒙𝒊𝜷)
) + 𝑛2𝑖 (𝑥𝑖 −

𝑥𝑖 exp(𝜃1 + 𝒙𝒊𝜷)

1 + exp(𝜃1 + 𝒙𝒊𝜷)
−

𝑥𝑖 exp(𝜃2 + 𝒙𝒊𝜷)

1 + exp(𝜃2 + 𝒙𝒊𝜷)
) + 𝑛3𝑖 (−

𝑥𝑖 exp(𝜃2 + 𝒙𝒊𝜷)

1 + exp(𝜃2 + 𝒙𝒊𝜷)
)}

(38) 

 

The first derivative of the log-likelihood function for the parameters 𝜃1 and 𝜃2 is as follows: 

 

∂𝑅(𝜷, 𝜃)

∂𝜃1

= ∑  

𝑛

𝑖=1

  {(
𝑛1𝑖

1 + exp(𝜃1 + 𝒙𝒊𝜷)
) + 𝑛2𝑖 (−

exp(𝜃1)

exp(𝜃2) − exp(𝜃1)
−

exp(𝜃1 + 𝒙𝒊𝜷)

1 + exp(𝜃1 + 𝒙𝒊𝜷)
)}

=  ∑  

𝑛

𝑖=1

  {𝑛2𝑖 (−
exp(𝜃2)

exp(𝜃2) − exp(𝜃1)
−

exp(𝜃2 + 𝒙𝒊𝜷)

1 + exp(𝜃2 + 𝒙𝒊𝜷)
) + 𝑛3𝑖 (−

exp(𝜃2 + 𝒙𝒊𝜷)

1 + exp(𝜃2 + 𝒙𝒊𝜷)
)}

(39) 

 

A numerical method was required to obtain parameter estimates because the implicit derivative in the first derivative of the 

parameters 𝜷, 𝜃1 and 𝜃2 produced an unfeasible solution. As a result, the Newton-Raphson iteration method a numerical 

technique is employed. This approach necessitates a Hessian matrix (H). In the OSS-R program, the "optim" syntax is used for 

the second derivative of the log-likelihood function for parameters 𝜷, 𝜃1 and 𝜃2. 

 

3. Optimum Knot Count and Nodes Selection 

Determining the number of knots and the ideal knot nodes is the first stage in estimating a logistic regression model using a 

nonparametric method based on the least square spline estimator. The purpose of this study is to categorize toddlers' nutritional 

status at Ngasem Health Center in Kediri Regency according to their weight/height Z-score. Three predictor variables that were 

deemed significant in determining the number of knots and optimal knot nodes according to the Generalized Cross Validation 

(GCV) criteria were used in the analysis. By choosing the minimum GCV value, the number of knots and knot nodes are chosen. 

The following table shows the minimum GCV value, the number of knots, and the ideal knot nodes. 

 
Table 2: Optimum Knot Obtained 

 

Variable Number of Knots Knot Nodes Minimum GCV 

Body Weight At Birth 3 

2,435
2,93
3,395

 0,2675078 

Body Height At Birth 2 
45,333
49,667

 0,2677094 

Age 1 29,5 0,4731475 

 

4. Estimation Results of Nonparametric Ordinal Logistic Regression Model 

After obtaining the optimum smoothing parameters of each predictor variable, it can then be done by iterating the initial value 

with the Newton Raphson method to obtain an estimate of the nonparametric logistic regression model based on the least squared 
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spline estimator. From the output of the ordinal regression model estimation program with a nonparametric approach based on 

the least square spline estimator on the toddler data of the Ngasem health center in Kediri District, 𝜷, 𝜃1 and 𝜃2 are obtained as 

follows. 

𝜃̂1 = [−16,67341402]

𝜃̂2 = [−13,13673401]

𝛽̂0 = [−11,56843469]

𝜷̂𝟏 = [−1,54664975 7,34720729 − 0,20954320 − 7,96872797]

𝜷̂𝟐 = [ 0,63334465 − 0,81016696 3,22449459]

𝜷̂𝟑 = [0,01072471 − 0,02437810]

 

 

(40) 

 

For each predictor variable with n observations, the form of the least square spline estimator of the initial value function 𝒈̂𝒋(𝒙𝒊𝒋) 

can be described as follows based on the values of the parameters 𝜷, 𝜃1 and 𝜃2. 

The 1st predictor model, namely birth body weight on the nutritional status of toddlers by holding other variables constant, can 

be written as the following equation. 

 
𝑔̂1(𝑥𝑖1) = 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ − 0,20954320(𝑥𝑖1 − 2,93)+

−7,96872797(𝑥𝑖1 − 3,395)+

(40) 

can be parsed into 

𝑔̂1(𝑥𝑖1) = {

−1,54664975𝑥𝑖1 𝑥𝑖1 < 2,435
−3,766092 + 7,34720729𝑥𝑖1 2,435 < 𝑥𝑖1 < 2,93
17,76123 − 0,20954320𝑥𝑖1 2,93 < 𝑥𝑖1 < 3,395
17,04983 − 7,96872797𝑥𝑖1 𝑥𝑖1 > 3,395

(41) 

 

The 2nd predictor model, namely body height at birth on the nutritional status of toddlers by holding other variables constant, 

can be written as the following equation. 

 
𝑔̂2(𝑥𝑖2) = 0,63334465𝑥𝑖2 − 0,81016696(𝑥𝑖2 − 45,333)+ + 3,22449459(𝑥𝑖2 − 49,667)+ (42) 

 

can be parsed into 

𝑔̂1(𝑥𝑖2) = {

 0,63334465𝑥𝑖12 𝑥𝑖2 < 45,333
28,7116 − 0,81016696𝑥𝑖12 45,333 < 𝑥𝑖2 < 49,667

−11,52696 + 3,22449459𝑥𝑖12 𝑥𝑖2 > 49,667
(43) 

 

The 3rd predictor model is age on the nutritional status of toddlers by holding other variables constant, so the following equation 

can be written. 

𝑔̂3(𝑥𝑖3) = 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+ (44) 

 

can be parsed into 

𝑔̂3(𝑥𝑖3) = {
 0,63334465𝑥𝑖13 𝑥𝑖3 < 29,5

18,68367 − 0,02437810𝑥𝑖13 𝑥𝑖3 > 29,5
 (45) 

 

From those equations that have been obtained, the following equation of odds can be obtained. 

 

𝜋̂1(𝒙𝒊) =
exp(−16,67341402 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

1 + exp(−16,67341402 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

𝜋̂2(𝒙𝒊) =
exp(−13,13673401 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

1 + exp(−13,13673401 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

𝜋̂2(𝒙𝒊) = −
exp(−16,67341402 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

1 + exp(−16,67341402 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

𝜋̂3(𝒙𝒊) =
1

1 + exp(−13,13673401 − 1,54664975𝑥𝑖1 + 7,34720729(𝑥𝑖1 − 2,435)+ …+ 0,01072471𝑥𝑖3 − 0,02437810(𝑥𝑖3 − 29,5)+)

(46) 

 

After obtaining the nonparametric logistic regression model, the next step is to test the suitability of the model by calculating 

the deviance value. The results of the deviance statistical test are presented in the following Table 3. 

 
Table 3: Criteria for Parametric and Nonparametric Model Fit 

 

Criteria for Model Fit 
Logistic Regression 

Parametric Nonparametric 

Deviance 473,5353 455,5851 

P-Value 1,00 1,00 
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The logistic regression model's fit criteria based on the deviance value were tested using the following hypothesis. 

H0: Logistic regression model obtained is fit. 

H1: Logistic regression model obtained is not fit. 

 

Based on the Table 3. It can be seen with a significance level (α) of 0.05 that the deviance test statistical value of the 

nonparametric logistic regression model is 455.5851 and the p-value is 1.00. That way the p-value > α, then the decision can be 

made to accept H0. So it is concluded that the nonparametric logistic regression model is suitable. In addition, the deviance test 

statistic value of logistic regression with a nonparametric approach has a smaller value than the deviance test statistic value of 

logistic regression with a parametric approach. So, it can also be concluded that logistic regression with a nonparametric 

approach provides better results than logistic regression with a parametric approach. 

 

5. Classification Accuracy Value for Insample and Outsample Data 

The classification accuracy value on insample data is obtained with the confusion matrix presented in the following table: 

 
Table 4: Performance of In-Sample Data Using Confusion Matrix 

 

  Prediction 

 Classification 1 2 3 

Observartion 

1 141 1 2 

2 41 109 33 

3 3 7 3 

Based on Table 4, the classification accuracy value for in-sample data can be calculated as follows. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
141 + 109 + 3

340
= 0,7441 (47) 

 

The accuracy value for the insample data, as determined by the calculation in the equation above, is 74.41%. This indicates that 

the estimated ordinal logistic regression model using a nonparametric approach based on the obtained least square spline 

estimator is valid for classifying the nutritional status of toddlers in the sample data. Furthermore, the stability of classification 

accuracy or model accuracy is carried out by calculating the Press'Q value which is compared to the Chi-Square value with a 

free degree of 1. The following hypothesis is used for the Press'Q test. 

𝐻0: Model classification results are inconsistent or unstable 
𝐻1: Model classification results are consistent or stable 

 

The Press'Q value must be greater than the Chi-Square value with a free degree of 1 in order to reject 𝐻0 and conclude that the 

model classification results are stable or consistent. In this study, 340 observations were used as sample data; 253 of these 

observations were correctly classified, and three groups were used. The Press'Q value is calculated as follows: 

 

𝑃𝑟𝑒𝑠𝑠′𝑄 =
(340 − (3 × (141 + 109 + 3)))

2

340(3 − 1)
= 248,17 (48) 

 

The Press'Q value is 248.17, while the Chi-square table value of degree 1 with a significance level (α) of 0.05 is 3.841459. Based 

on the calculation results, it is known that the Press'Q value > Chi-square table value, then a decision can be made to reject 𝐻0 

and it can be concluded that the model on insample data is stable or consistent. 

While, the classification accuracy value on the outsample data is obtained with the confusion matrix presented in the following 

table: 

 
Table 5: Performance of Out-Sample Data Using Confusion Matrix 

 

  Prediction 

 Classification 1 2 3 

Observation 

1 36 0 0 

2 10 26 9 

3 0 3 0 

 

Based on Table 5, the classification accuracy value can be calculated for the outsample data as follows. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
36 + 26 + 0

84
= 0,7381 (49) 

 

Based on the calculation in the equation above, the accuracy value for outsample data is 73.81%, so it can be seen that the 

estimated ordinal logistic regression model with a nonparametric approach based on the least square spline estimator obtained 

is valid for calculating the classification of nutritional status of toddlers in outsample data. On the other hand the sensitivity, 

specificity and AUC value for each classification of outsample data is as follows: 
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Table 6: The Sensitivity, Specificity and AUC Value for Each Classification 
 

Classification Sensitivity Specificity AUC 

1 0.7826 1.0000 0.8913 

2 0.8966 0.6545 0.7755 

3 0.000 0.9600 0.48 

Based on Table 6 the model performed well in classification 1, moderately well in classification 2, but very poorly in 

classification 3. And furthermore, it is obtained macro AUC as follows 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑈𝐶 =
1

3
∑𝐴𝑈𝐶𝑖 =

3

𝑖=1

 0.7156 (50) 

 

Based on the calculations obtained, the macro AUC value is 71.56% so that it gets a 'good' predicate. This indicates that the 

ordinal logistic regression model can avoid misclassification by 28.44%. 

 

Conclusion 

This study successfully built a nonparametric ordinal logistic regression model with a least squares spline estimator to classify 

the nutritional status of toddlers in the Ngasem Health Center area, Kediri. the nonparametric logistic regression model shows 

that this method is superior compared to the parametric approach in terms of model fit based on lower deviation values. The 

developed model shows good performance in predicting nutritional status with classification accuracy of 74.41% on insample 

data and 73.81% on outsample data. In addition, the Macro AUC value of 71.56% shows that this model has a good ability to 

distinguish between different classes of nutritional status, with a classification error of 28.44%. The nonparametric ordinal 

logistic regression model developed in this study showed good results in the classification of the nutritional status of children 

under five. For future research, it is recommended that this model be further developed by considering additional variables. 
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