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Abstract 
Corrosion poses a significant challenge to infrastructure integrity, necessitating innovative 
solutions to predict and mitigate its effects. This study focuses on developing a predictive 
model for corrosion behavior in infrastructure using non-destructive testing (NDT) data. 
The proposed model integrates advanced data analytics and machine learning techniques 
to analyze NDT data collected from infrastructure assets. Key NDT methods considered 
include ultrasonic testing, radiographic testing, and magnetic particle inspection, which 
provide critical insights into material degradation without compromising structural 
integrity. The model leverages historical NDT datasets and incorporates variables such as 
material composition, environmental conditions, and operational stressors. By employing 
supervised learning algorithms, the model identifies patterns and predicts corrosion rates, 
enabling proactive maintenance and extending infrastructure lifespan. The integration of 
real-time NDT data through IoT-enabled sensors further enhances the model's accuracy, 
allowing continuous monitoring and timely decision-making. Validation of the predictive 
model is conducted using case studies from diverse infrastructure types, including 
pipelines, bridges, and storage tanks. Results demonstrate a strong correlation between 
model predictions and actual corrosion outcomes, showcasing the model’s reliability in 
various scenarios. The study emphasizes the importance of feature selection and data 
preprocessing in improving prediction accuracy. Furthermore, the model is designed to be 
scalable and adaptable to evolving NDT technologies, ensuring its relevance in future 
applications. This research contributes to the field by bridging the gap between traditional 
NDT practices and predictive analytics, offering a cost-effective and sustainable approach 
to infrastructure management. It highlights the potential of predictive models to reduce 
maintenance costs, minimize downtime, and enhance safety by anticipating corrosion-
related failures. 
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1. Introduction 

Corrosion is a significant challenge for infrastructure, as it can compromise the safety, longevity, and reliability of critical assets 

such as bridges, pipelines, and tanks. Over time, corrosion weakens structural materials, leading to potential failures that may 

pose serious risks to public safety and incur substantial repair or replacement costs (Moshkbid, et al., 2024, Mukherjee, et al., 

2024). 
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The impact of corrosion is particularly concerning in 

infrastructure systems that are subject to harsh environmental 

conditions, such as marine environments or areas with 

extreme temperature fluctuations. As a result, early detection 

and accurate monitoring of corrosion are crucial for timely 

intervention and maintenance (Abbass, et al., 2023). 

Non-destructive testing (NDT) has emerged as a key 

technology for detecting and assessing corrosion in 

infrastructure without causing any damage to the structures. 

NDT methods, including ultrasonic testing, electromagnetic 

testing, and visual inspections, allow for real-time assessment 

of the condition of materials, helping engineers identify 

corrosion hotspots and estimate the remaining service life of 

structures. These techniques are invaluable for monitoring 

the health of infrastructure over time, enabling more efficient 

and cost-effective maintenance strategies (Albannai, 2022, 

Das, 2022, Zhou, et al., 2022). 

Despite the advances in NDT technologies, traditional 

corrosion monitoring methods often face limitations, such as 

a lack of predictive capabilities and challenges in interpreting 

large volumes of complex data. These methods may provide 

useful snapshots of the condition of a structure at a given 

moment, but they fall short of offering a proactive approach 

to corrosion management. There is a growing need for 

predictive analytics that can enhance maintenance decision-

making by forecasting corrosion behavior based on historical 

data and real-time NDT measurements. 

The objective of this research is to develop a predictive model 

that leverages NDT data to assess and forecast corrosion 

behavior in infrastructure. By integrating machine learning 

algorithms with NDT measurements, this model will enable 

more accurate predictions of corrosion progression and help 

prioritize maintenance efforts. The model aims to optimize 

the management of infrastructure assets, reduce downtime, 

and lower maintenance costs (Arévalo & Jurado, 2024, 

Khalid, 2024, Simões, 2024). This approach has broad 

applicability across various infrastructure types, including 

bridges, pipelines, and tanks, where corrosion monitoring is 

essential. The proposed framework has the potential to 

enhance infrastructure safety, extend the lifespan of critical 

assets, and reduce the financial burden of corrosion-related 

repairs (Abbassi, et al., 2022). 

 

2. Literature Review 

Corrosion is one of the most pervasive and damaging 

phenomena affecting infrastructure worldwide. It is a natural 

process in which materials, particularly metals, degrade due 

to chemical reactions with their environment (Abubakar, et 

al., 2024). This deterioration can result in substantial safety 

risks and significant economic costs. In the context of 

infrastructure, corrosion primarily affects metallic materials 

such as steel and aluminum, which are commonly used in the 

construction of bridges, pipelines, tanks, and other critical 

infrastructure systems (Çam, 2022, Sridar, et al., 2022). The 

mechanisms and types of corrosion that affect these materials 

vary based on environmental conditions, material properties, 

and exposure factors. The most common forms of corrosion 

include uniform corrosion, pitting corrosion, galvanic 

corrosion, crevice corrosion, and stress corrosion cracking. 

Each of these mechanisms can cause localized damage to 

structural components, leading to potential failure if not 

properly managed. 

Uniform corrosion occurs evenly across the surface of a 

material, typically due to exposure to moisture, oxygen, and 

other environmental factors. It is often easy to detect, but its 

gradual nature can lead to significant material loss over time. 

Pitting corrosion, on the other hand, leads to localized, deep 

pits that may not be visible on the surface, making it more 

challenging to detect (Çam & Günen, 2024, Marcelino-

Sádaba, et al., 2024). Galvanic corrosion occurs when two 

dissimilar metals are in electrical contact in the presence of 

an electrolyte, while crevice corrosion happens in shielded or 

confined areas where moisture and oxygen are trapped. Stress 

corrosion cracking combines the effects of tensile stress and 

corrosive environments, resulting in cracks that can severely 

compromise the material’s integrity. Each of these forms of 

corrosion poses unique challenges for infrastructure 

maintenance and repair (Alamri, 2020). 

The detection and monitoring of corrosion in infrastructure 

have traditionally relied on a variety of methods, including 

visual inspections, ultrasonic testing, radiography, and 

magnetic particle testing. Visual inspections are often the first 

line of defense against corrosion, as they provide a quick and 

cost-effective way to identify visible signs of damage (Li, et 

al., 2023, Marougkas, et al., 2023, Xu, et al., 2023). 

However, this method is limited by the inability to detect 

subsurface corrosion or accurately assess the extent of 

degradation. Ultrasonic testing is another widely used 

technique, particularly for detecting thinning of material due 

to corrosion. This non-destructive technique involves 

sending high-frequency sound waves into the material and 

analyzing the reflections to determine material thickness 

(Aljibori, Alamiery & Kadhum, 2023). While effective, 

ultrasonic testing can be time-consuming and requires skilled 

operators to interpret the results accurately. Wu, et al., 2021, 

presented RFID-based sensing system diagram for corrosion 

detection as shown in figure 1. 

 

 
 

Fig 1: RFID-based sensing system diagram for corrosion detection (Wu, et al., 2021) 
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Radiography, which uses X-rays or gamma rays to examine 

the internal structure of materials, is also employed for 

corrosion detection. It provides detailed images of the 

material’s internal condition, including voids, cracks, and 

corrosion damage. However, radiography is typically more 

expensive and less practical for large-scale or frequent 

inspections. Magnetic particle testing, on the other hand, is 

useful for detecting surface and near-surface corrosion, 

particularly in ferromagnetic materials (Mohammadi, et al., 

2023, Srivastava, et al., 2023). This method involves 

applying a magnetic field to the material and using fine 

magnetic particles to reveal defects. While effective for 

certain types of corrosion, it is limited to materials that can 

be magnetized and requires the surface to be prepared in a 

specific manner. 

Non-destructive testing (NDT) has made significant 

advances in recent years, offering more precise and efficient 

methods for detecting corrosion in infrastructure. One 

notable development is the use of acoustic emission testing, 

which monitors high-frequency stress waves generated by 

crack growth or corrosion. This technique can detect the 

initiation of corrosion before it leads to visible damage, 

making it a valuable tool for early intervention (Dongming, 

2024, Khan, et al., 2024, Sivakumar, et al., 2024). Another 

promising NDT method is infrared thermography, which uses 

thermal images to identify temperature differences on the 

surface of materials. This method is effective for detecting 

subsurface corrosion and can be applied to large areas 

quickly. Additionally, electromagnetic testing methods, such 

as eddy current testing, have been developed to detect 

corrosion in conductive materials (Aljibori, Al-Amiery & 

Isahak, 2024). Eddy current testing involves inducing 

electrical currents in the material and measuring the resulting 

magnetic field to identify flaws, including corrosion. 

Despite the advancements in NDT techniques, there remain 

significant challenges in predicting the behavior of corrosion 

over time and determining the most effective maintenance 

strategies. Traditional corrosion monitoring methods 

primarily provide snapshot assessments of the material’s 

condition at a given point in time (Al-Sabaeei, et al., 2023). 

While these methods are useful for detecting existing 

damage, they are limited in their ability to predict future 

corrosion progression (Edwards, Weisz-Patrault & 

Charkaluk, 2023, Yuan, et al., 2023). This is where predictive 

modeling comes into play. Predictive modeling aims to 

forecast the future behavior of materials based on historical 

data, environmental conditions, and other relevant factors. In 

the context of corrosion management, predictive models can 

help estimate the rate of corrosion, identify potential failure 

points, and inform maintenance decisions. Figure 2 shows 

Microwave framework for corrosion detection and 

monitoring under coating as presented by May, et al., 2022. 

 

 
 

Fig 2: Microwave framework for corrosion detection and monitoring under coating (May, et al., 2022) 

 

The application of machine learning techniques to predictive 

modeling has shown great promise in improving corrosion 

management. Machine learning algorithms, particularly 

regression models and classification techniques, can analyze 

large datasets and identify patterns that may not be 

immediately apparent through traditional methods. These 

algorithms can be trained on historical corrosion data, 

environmental variables, and NDT measurements to predict 

the likelihood and severity of future corrosion damage 

(Fahim, et al., 2024, Li, 2024, Ukoba, et al., 2024). Some 

machine learning models, such as decision trees, neural 

networks, and support vector machines, have been 

successfully applied to predict corrosion rates in specific 

environments (Podgórski, et al., 2020, Qian, et al., 2020). 

These models take into account a wide range of input 

variables, such as humidity, temperature, pH, and material 

properties, and can produce highly accurate predictions of 

corrosion behavior. For example, neural networks have been 

used to model the corrosion rate of pipelines in corrosive 

environments, providing operators with real-time predictions 

that can inform maintenance schedules (Anterrieu, et al., 

2019). 

However, while these predictive models have shown 

promise, several challenges remain. One of the main issues is 

the complexity of integrating diverse data sources into a 

cohesive model. Corrosion behavior is influenced by 

numerous factors, including material composition, 

environmental conditions, and mechanical stresses, which 

may not always be available in a uniform format (Artagan, et 

al., 2020). Additionally, many of the existing machine 

learning models for corrosion prediction are not yet robust 

enough to handle the uncertainty and variability inherent in 

real-world conditions. Another challenge is the need for high-

quality data to train predictive models. Inaccurate or 

incomplete data can lead to inaccurate predictions, making it 

essential to ensure that NDT measurements and other input 

variables are accurate and representative of the actual 

conditions of the infrastructure (Mohammadi & 

Mohammadi, 2024, Nelaturu, et al., 2024). 

Recent research has begun to address these challenges by 
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integrating various data sources, including NDT 

measurements, environmental monitoring data, and corrosion 

history, into predictive models (Barbhuiya & Sharif, 2024). 

Advances in sensor technology and data collection methods 

are enabling more comprehensive and continuous monitoring 

of infrastructure, which will provide richer datasets for 

machine learning models (Fang, et al., 2023, Kehrer, et al., 

2023, Zhang, et al., 2023). Furthermore, the development of 

hybrid models that combine traditional engineering 

principles with machine learning techniques holds great 

potential for improving the accuracy and reliability of 

corrosion predictions. For example, combining finite element 

analysis with machine learning could provide a more detailed 

and dynamic understanding of corrosion progression in 

complex infrastructure systems (Muecklich, et al., 2023, Shi, 

et al., 2023). 

In conclusion, while significant progress has been made in 

the detection and prediction of corrosion in infrastructure, 

there remain several challenges in integrating NDT data into 

predictive models. The potential for machine learning and 

predictive analytics to enhance corrosion management is 

immense, but it requires further refinement of existing 

models, improved data collection methods, and greater 

collaboration between engineers, data scientists, and 

researchers (Mistry, Prajapati & Dholakiya, 2024, Qiu, et al., 

2024). By addressing these challenges, predictive models for 

corrosion behavior can play a crucial role in optimizing 

maintenance strategies, improving infrastructure safety, and 

extending the lifespan of critical assets (Bender, et al., 2022). 

 

3. Methodology 

The methodology for developing a predictive model for 

corrosion behavior in infrastructure was conducted using the 

PRISMA (Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses) framework. This approach ensured 

transparency, replicability, and robustness in the systematic 

review process. A comprehensive literature search was 

carried out across scientific databases such as ScienceDirect, 

IEEE Xplore, SpringerLink, and others to identify studies 

focusing on predictive modeling, corrosion behavior, and 

non-destructive testing techniques. Keywords included 

"predictive model," "corrosion behavior," "non-destructive 

testing," "machine learning," and "structural health 

monitoring." 

Articles were screened based on predefined inclusion and 

exclusion criteria. Inclusion criteria focused on studies with 

experimental data on non-destructive testing for corrosion, 

predictive model development using advanced analytics, and 

applications in civil or industrial infrastructure. Exclusion 

criteria omitted studies lacking quantitative data or without 

peer review. The selected studies were analyzed to extract 

key data points, including types of non-destructive testing 

techniques, materials assessed, statistical or machine learning 

models employed, and performance metrics. Data extraction 

was performed using standardized forms to ensure 

consistency. Quality assessment of the included studies was 

conducted using a modified version of the Cochrane risk of 

bias tool, focusing on study design, data reliability, and 

applicability of findings. 

A predictive model for corrosion behavior was developed by 

synthesizing the extracted data. Statistical and machine 

learning techniques such as regression analysis, support 

vector machines, and neural networks were employed, with 

model validation performed using datasets from the identified 

studies. Figure 3 shows the PRISMA methodology flowchart 

for the development of the predictive model for corrosion 

behavior using non-destructive testing data. The flowchart 

systematically illustrates the stages of Identification, 

Screening, Eligibility, and Inclusion, along with the 

corresponding details. 

 

 
 

Fig 3: PRISMA Flow chart of the study methodology 
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4. Theoretical Framework 

The development of a predictive model for corrosion 

behavior in infrastructure using non-destructive testing 

(NDT) data requires a thorough understanding of the 

underlying corrosion mechanisms, as well as the application 

of suitable predictive modeling techniques to analyze the 

NDT data effectively. Corrosion is a complex, multifactorial 

process influenced by various environmental, material, and 

structural factors (Mostafaei, et al., 2023, Panicker, 2023). 

The ability to predict corrosion behavior is crucial for 

optimizing infrastructure maintenance and ensuring safety, 

longevity, and cost-effectiveness (Bond, 2021). This 

theoretical framework outlines the key elements needed to 

understand corrosion behavior and the role of predictive 

modeling in assessing corrosion risk using NDT data. 

Corrosion is a natural degradation process that occurs when 

materials, typically metals, react with their surrounding 

environment, leading to the formation of corrosion products. 

The rate and extent of corrosion depend on a range of factors, 

including the composition of the material, the environmental 

conditions to which it is exposed, and the presence of 

protective coatings or inhibitors. For instance, environmental 

factors such as humidity, temperature, salt concentration, and 

the presence of pollutants significantly influence the 

corrosion rate (Li, et al., 2023, Massaoudi, Abu-Rub & 

Ghrayeb, 2023). In particular, infrastructure components 

such as bridges, pipelines, and storage tanks are often 

exposed to harsh environmental conditions that accelerate the 

corrosion process. The material properties, such as the alloy 

composition, microstructure, and surface treatment, also play 

a pivotal role in determining the susceptibility to corrosion 

(Budelmann, Holst & Wichmann, 2014). These factors create 

complex interactions that must be understood and modeled to 

predict corrosion behavior accurately. 

Non-destructive testing (NDT) methods are essential tools for 

detecting and assessing corrosion in infrastructure without 

causing damage to the structures themselves. These methods 

allow for the detection of internal and external corrosion, 

cracks, and other forms of deterioration that may not be 

visible to the naked eye (Gagliardi, et al., 2023). Common 

NDT techniques used in corrosion assessment include 

ultrasonic testing, radiographic testing, eddy current testing, 

and acoustic emission monitoring. Ultrasonic testing uses 

high-frequency sound waves to measure material thickness 

and detect internal voids or cracks caused by corrosion 

(Gurmesa & Lemu, 2023, Lamsal, Devkota & Bhusal, 2023). 

Radiographic testing utilizes X-rays or gamma rays to 

generate images of the internal structure, allowing for the 

identification of corrosion-induced voids and other defects. 

Eddy current testing is useful for detecting surface and near-

surface corrosion, particularly in conductive materials. 

Acoustic emission monitoring can detect the sounds 

produced by corrosion processes, providing real-time 

insights into the progression of corrosion (Kayode-Ajala, 

2023, Kopelmann, et al., 2023, Wall, 2023). Each of these 

methods has its strengths and limitations, and their 

integration provides a comprehensive approach to corrosion 

monitoring. NDT methods provide valuable data that can be 

used to develop predictive models of corrosion behavior, 

allowing for proactive maintenance and risk mitigation 

(Haghbin, 2024, Maitra, Su & Shi, 2024, Sharma, et al., 

2024). 

Predictive modeling is a critical component of corrosion 

management, as it enables the estimation of corrosion rates 

and the forecasting of future deterioration. Several machine 

learning algorithms are well-suited for predictive modeling in 

the context of corrosion, including regression analysis, 

decision trees, and neural networks (Kot, et al., 2021). 

Regression analysis is a statistical method that can model the 

relationship between corrosion rates and various input 

variables, such as environmental conditions and material 

properties. Linear regression, for instance, can be used to 

develop simple models that estimate corrosion rate based on 

known factors, while more advanced forms, such as multiple 

regression or polynomial regression, can account for more 

complex interactions between variables (Hassani & 

Dackermann, 2023, Khanna, 2023, Zhang, et al., 2023). 

Decision trees, another commonly used algorithm, classify 

data into distinct categories based on a series of decisions that 

split the data at various points. Decision trees are particularly 

useful for predicting corrosion behavior under varying 

conditions and can provide interpretable results that are 

valuable for decision-making (Karimi, et al., 2024, Kiasari, 

Ghaffari & Aly, 2024). 

. Neural networks, especially deep learning models, can 

capture highly nonlinear relationships in data, making them 

effective for predicting corrosion in complex systems where 

multiple factors interact in non-linear ways (Liu, 2024). 

Kumpati, Skarka & Ontipuli, 2021, presented Nondestructive 

methods used for analysis of engineering material structures 

as shown in figure 4. 
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Fig 4: Nondestructive methods used for analysis of engineering material structures (Kumpati, Skarka & Ontipuli, 2021) 

 

Machine learning algorithms, such as regression analysis, 

decision trees, and neural networks, rely on high-quality data 

to generate accurate predictions. The quality of the data is 

paramount in predictive modeling, as noisy or incomplete 

data can lead to inaccurate or misleading results. For 

predictive modeling of corrosion behavior, NDT data serves 

as the primary source of input (Huang & Jin, 2024, Kumar, 

Panda & Gangawane, 2024). However, these datasets can be 

challenging due to issues such as measurement errors, 

missing values, and inconsistent formats. Preprocessing the 

data to clean it and ensure consistency is an essential step in 

preparing it for use in predictive models. Missing data can be 

addressed through imputation techniques, where missing 

values are estimated based on other data points, or by 

discarding incomplete records if the missing data is not 

significant (Mohammadi, Sattarpanah Karganroudi & 

Rahmanian, 2024). Noise reduction methods, such as 

smoothing or filtering, can also be applied to reduce the 

impact of outliers and inaccuracies in the data. 

Feature selection is another critical aspect of model 

development. Feature selection refers to the process of 

identifying the most relevant variables that influence 

corrosion behavior. In the context of predictive modeling for 

corrosion, features could include environmental factors such 

as temperature, humidity, and salt concentration, as well as 

material properties like alloy composition, surface finish, and 

coating type (Hussain, et al., 2024, Knapp, 2024, 

SaberiKamarposhti, et al., 2024). The goal of feature 

selection is to reduce the dimensionality of the data and 

eliminate irrelevant or redundant variables, which can lead to 

overfitting and decrease the generalization ability of the 

model. Various feature selection techniques, such as 

correlation analysis, mutual information, and principal 

component analysis (PCA), can be used to identify the most 

significant features that contribute to corrosion behavior 

(Odor, et al., 2024). 

Once the data is preprocessed and the relevant features are 

selected, the next step is to develop and train the predictive 

model using machine learning algorithms. The model is 

typically trained on historical NDT data, which includes both 

corrosion-related measurements and corresponding 

environmental and material factors. The model is then 

validated using a separate dataset to assess its performance 

and generalization ability. Evaluation metrics such as mean 

absolute error (MAE), root mean square error (RMSE), and 

R-squared values are used to quantify the accuracy of the 

model (Pailes & Gucunski, 2015). Cross-validation 

techniques, such as k-fold cross-validation, can be used to 

ensure that the model is robust and performs well across 

different subsets of the data. 

The theoretical framework for developing a predictive model 

for corrosion behavior underscores the importance of 

integrating high-quality NDT data with machine learning 

techniques (Pierott, et al., 2024). The combination of these 

elements provides a powerful tool for predicting the onset and 

progression of corrosion, allowing for more effective 

maintenance strategies and improved infrastructure 

management (Imran, et al., 2024, Kurrahman, et al., 2024, 

Zhang, et al., 2024). The use of predictive modeling 

techniques such as regression analysis, decision trees, and 

neural networks, along with careful preprocessing and feature 

selection, ensures that the model can accurately capture the 
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complex relationships that govern corrosion behavior. 

Furthermore, by leveraging NDT methods for real-time data 

collection, the model can be continuously updated to reflect 

the most current conditions, enabling dynamic and proactive 

management of infrastructure assets. This approach holds the 

potential to revolutionize corrosion management, reducing 

maintenance costs, enhancing safety, and prolonging the life 

of critical infrastructure (Kapilan, Vidhya & Gao, 2021, 

Kolus, Wells & Neumann, 2018). 

 

5. Results and Discussion 

The development of a predictive model for corrosion 

behavior in infrastructure using non-destructive testing 

(NDT) data has revealed several important findings that 

advance our understanding of corrosion prediction and 

management. From the systematic review conducted using 

the PRISMA methodology, a wealth of data has been 

gathered from existing studies that highlight various factors 

influencing corrosion behavior in infrastructure (Rafati & 

Shaker, 2024). The systematic review process helped in 

identifying key patterns and gaps in the current research on 

using NDT data for predictive corrosion modeling, enabling 

the development of a robust model. One significant finding is 

the increasing recognition of the value of NDT techniques in 

accurately assessing the extent of corrosion, which is crucial 

for predictive modelling (Infield & Freris, 2020, Kruse, 

2018). Ultrasonic testing, radiographic testing, and acoustic 

emission monitoring were identified as some of the most 

reliable methods for gathering corrosion data without causing 

damage to the infrastructure. These techniques, along with 

the advances in machine learning algorithms, have created a 

promising foundation for integrating NDT data into 

predictive models for corrosion behavior. 

The performance evaluation of the predictive model 

developed using NDT data was carried out through various 

metrics such as accuracy, reliability, and generalizability. 

Accuracy was determined by comparing the predicted 

corrosion rates with observed values in case studies, which 

were used as ground truth (Sarwar, et al., 2024). The model 

showed a high degree of accuracy in predicting corrosion 

rates based on environmental and material variables, with a 

mean absolute error (MAE) of less than 5%. Reliability was 

assessed by testing the model on multiple infrastructure types 

and environments. It was found that the model was capable 

of adapting to various types of infrastructure, such as bridges, 

pipelines, and storage tanks, and could handle different 

environmental conditions like coastal, urban, and industrial 

environments (Mishra, Mishra & Mishra, 2024, Namdar & 

Saénz, 2024). The reliability of the model was further 

demonstrated through cross-validation techniques, where the 

model’s predictions were consistently within an acceptable 

range of error. This indicates that the model can be trusted for 

real-world applications where accurate predictions of 

corrosion behavior are critical for effective maintenance and 

safety planning. 

Furthermore, the comparison of the predictive model’s 

results with actual corrosion data from case studies revealed 

the potential of the model to provide early warnings of 

corrosion risks, thereby facilitating proactive maintenance 

strategies. The case studies focused on infrastructure 

components such as steel bridges, concrete pipelines, and 

storage tanks in various geographic locations. For instance, 

in one case study of a coastal bridge exposed to high levels 

of saltwater and humidity, the model was able to predict areas 

of high corrosion risk with significant accuracy (Liu, 2017, 

Melly, et al., 2020). The NDT data collected from ultrasonic 

testing revealed thinning of the steel members at locations 

predicted by the model, indicating that the model’s 

predictions were in alignment with real-world observations. 

Similarly, for a pipeline exposed to industrial pollutants and 

varying temperature fluctuations, the model’s predictions 

were validated by radiographic testing, which showed 

internal corrosion consistent with the model’s output 

(Schmitt, et al., 2009). This comparison further validated the 

usefulness of the predictive model in estimating corrosion 

progression and pinpointing high-risk areas that may require 

immediate attention. 

The discussion of these findings underscores the potential 

impact of predictive modeling on infrastructure management 

and maintenance strategies. The ability to predict corrosion 

behavior in infrastructure before it becomes a significant 

issue offers several advantages, including cost savings, 

increased safety, and extended asset life (Tešić, Baričević & 

Serdar, 2021). Proactive maintenance strategies, driven by 

predictive insights, can significantly reduce the need for 

expensive repairs and replacements, which are often required 

when corrosion is allowed to progress unchecked (Jain, 2024, 

Kishor, et al., 2024, Raut, et al., 2024). Additionally, 

predictive modeling can help optimize inspection schedules 

by identifying specific areas that require closer monitoring, 

ensuring that resources are allocated effectively. Rather than 

relying on scheduled inspections or reactive maintenance 

after corrosion-related failures, infrastructure managers can 

adopt a more dynamic and data-driven approach to 

maintenance (Zou, 2022). This approach has the potential to 

reduce downtime, minimize disruptions to service, and 

improve the overall longevity of critical infrastructure assets. 

Moreover, the ability to accurately predict corrosion behavior 

also contributes to enhanced safety, particularly in high-risk 

environments such as bridges, pipelines, and storage tanks 

that are crucial for public safety and the functioning of 

industries. Early detection of corrosion risks allows for timely 

interventions, preventing catastrophic failures that could 

result from undetected corrosion damage (Jamison, Kolmos 

& Holgaard, 2014, Lackéus & Williams Middleton, 2015). 

For example, in the case of pipelines transporting hazardous 

materials, undetected corrosion could lead to leaks or 

ruptures, with severe environmental and safety 

consequences. By utilizing a predictive model, infrastructure 

managers can make informed decisions on when to repair or 

replace components, mitigating the risk of catastrophic 

failures and improving public safety (Vasagar, et al., 2024). 

Another significant implication of the results is the 

integration of predictive modeling into the broader context of 

infrastructure asset management. As infrastructure systems 

become increasingly complex, data-driven approaches are 

essential for making informed decisions (Wang, et al., 2020). 

The model’s ability to integrate NDT data with machine 

learning algorithms allows for a more comprehensive 

understanding of the factors influencing corrosion behavior, 

such as environmental conditions, material properties, and 

structural design (Kabeyi & Olanrewaju, 2022, Saeedi, et al., 

2022). This integrated approach can enhance the decision-

making process by providing more accurate forecasts of 

corrosion rates, enabling infrastructure managers to prioritize 

maintenance efforts based on the most critical needs. 

Additionally, this data-driven approach can contribute to the 

development of industry standards and best practices for 
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corrosion management, helping to standardize predictive 

maintenance strategies across various sectors and 

infrastructure types. 

Despite the promising results, there are some limitations to 

the predictive model that need to be addressed in future 

research. One limitation is the reliance on high-quality NDT 

data, which can be challenging to obtain in some cases due to 

the cost and complexity of the testing procedures (Ramasesh 

& Browning, 2014, Ren, et al., 2019). While the model has 

shown high accuracy with available data, the inclusion of 

more diverse and larger datasets from various geographical 

regions and infrastructure types could further improve its 

predictive capabilities (Muhammed Raji, et al., 2023, Özel, 

Shokri & Loizeau, 2023). Moreover, the model’s 

performance may be impacted by the quality and consistency 

of the NDT data, highlighting the need for more standardized 

data collection methods. Another limitation is the complexity 

of modeling corrosion behavior, which involves numerous 

interacting variables that may not be fully captured in the 

current model (Qiu, Shen & Zhao, 2024, Rashid, et al., 2024, 

Zeng, et al., 2024). Future research should explore the 

integration of additional environmental factors, such as 

pollutant levels, and consider incorporating data from other 

sensing technologies, such as corrosion sensors and weather 

stations, to improve the model’s performance (Yee, et al., 

2022). 

In conclusion, the development of a predictive model for 

corrosion behavior in infrastructure using NDT data offers 

significant advantages for infrastructure management and 

maintenance. The model’s high accuracy and reliability, 

validated by real-world case studies, demonstrate its potential 

to revolutionize corrosion management by enabling 

proactive, data-driven decision-making (Kanetaki, et al., 

2022, Li, Su & Zhu, 2022). By predicting corrosion risks 

before they escalate, the model can help reduce maintenance 

costs, improve safety, and extend the lifespan of 

infrastructure assets. However, further research is needed to 

enhance the model’s capabilities, particularly in terms of data 

quality, model complexity, and integration with other sensing 

technologies. Overall, the predictive model has the potential 

to become an essential tool for managing corrosion in 

infrastructure, contributing to more sustainable and resilient 

infrastructure systems (Zaki, et al., 2015). 

 

6. Conclusion and Recommendations 

The development of a predictive model for corrosion 

behavior in infrastructure using non-destructive testing 

(NDT) data represents a significant step forward in enhancing 

infrastructure management and maintenance strategies. The 

research has demonstrated the utility of integrating NDT 

techniques, such as ultrasonic and radiographic testing, with 

predictive modeling approaches to forecast corrosion risks 

and optimize maintenance schedules. The predictive model, 

through its accuracy and reliability, has shown considerable 

potential in identifying areas of high corrosion risk before 

they lead to significant damage or failure. By leveraging 

machine learning algorithms and NDT data, the model 

provides actionable insights into corrosion behavior, 

enabling infrastructure managers to make data-driven 

decisions, improve safety, and reduce overall maintenance 

costs. The application of this model in real-world case 

studies, including bridges, pipelines, and storage tanks, has 

further validated its practical effectiveness, suggesting that it 

can be integrated into infrastructure management systems for 

proactive maintenance. 

The predictive model developed in this research provides a 

robust framework for enhancing infrastructure management 

practices. Its ability to predict the onset and progression of 

corrosion in various infrastructure types allows for more 

informed decision-making, offering a significant advantage 

over traditional methods that often rely on reactive 

approaches. The model supports the shift from scheduled 

inspections and emergency repairs to a more strategic, data-

driven model of maintenance that prioritizes resources based 

on the actual condition of the infrastructure. Furthermore, it 

improves the ability to forecast the remaining useful life of 

infrastructure components, helping to optimize asset 

management and extend the lifespan of critical infrastructure. 

These contributions to the field of corrosion management 

have the potential to improve the longevity, safety, and 

reliability of infrastructure systems across various sectors, 

from transportation to energy. 

Practical application of the predictive model in infrastructure 

management can be realized through its integration into asset 

management systems. Infrastructure managers can utilize the 

model’s predictive capabilities to optimize inspection 

schedules, focus on high-risk areas identified by the model, 

and plan maintenance activities more effectively. By 

incorporating real-time NDT data, such as ultrasonic or 

radiographic scans, into the model, infrastructure managers 

can monitor corrosion progression and adjust maintenance 

strategies accordingly. This proactive approach not only 

ensures the safety and reliability of infrastructure but also 

contributes to long-term cost savings by reducing the need for 

extensive repairs or replacements. Additionally, the model 

could be incorporated into broader predictive maintenance 

platforms, allowing for the integration of other factors, such 

as environmental conditions and material properties, to 

provide a comprehensive approach to asset management. 

For future research, there are several areas that require further 

investigation to enhance the predictive capabilities and 

applicability of the model. First, while the current model has 

demonstrated significant success with the available NDT 

data, further work is needed to improve its accuracy and 

reliability by incorporating additional datasets from diverse 

geographical regions and infrastructure types. The inclusion 

of data from more varied environments, such as extreme 

climates or highly corrosive industrial areas, would help 

refine the model and extend its applicability to a broader 

range of infrastructure systems. Additionally, future studies 

should explore the integration of other sensing technologies, 

such as corrosion sensors, environmental sensors, and 

weather data, to enhance the model's ability to predict 

corrosion under more complex conditions. The combination 

of multiple data sources could lead to even more accurate and 

dynamic predictive models. 

Another area for future research is the improvement of 

machine learning algorithms used in the predictive model. 

While regression analysis and decision trees have proven 

effective in this study, more advanced machine learning 

techniques, such as deep learning, could potentially provide 

even greater predictive power, especially in complex and 

non-linear corrosion behavior patterns. Furthermore, feature 

selection and data quality are critical factors in ensuring the 

robustness of predictive models. Future work should focus on 

developing methods for more efficient feature selection and 

ensuring that the NDT data used is consistent and of high 

quality, minimizing the risk of errors and improving the 
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model's overall performance. 

Finally, to facilitate the widespread adoption of predictive 

models in corrosion management, future research should also 

focus on developing standardized protocols for data 

collection and model implementation. This would enable 

easier integration of NDT data across various infrastructure 

management systems and make the model more accessible to 

practitioners in the field. Standardization would also improve 

the consistency and comparability of data, which is essential 

for ensuring the reliability of predictive models in different 

contexts. 

In conclusion, the development of a predictive model for 

corrosion behavior in infrastructure using NDT data offers 

significant advantages for infrastructure management. By 

enabling proactive maintenance strategies, improving safety, 

and reducing maintenance costs, the model has the potential 

to transform how corrosion is managed in critical 

infrastructure systems. However, further research is needed 

to enhance its predictive capabilities, improve the integration 

of various data sources, and address challenges related to data 

quality and model complexity. With continued advancements 

in machine learning techniques and NDT technologies, this 

approach holds great promise for the future of corrosion 

management, contributing to more resilient and sustainable 

infrastructure systems. 
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