
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1160 | P a g e

Application of Discrete Event Simulation to Enhance the Efficiency of the Ant Colony

Optimization Algorithm

Hoang Van Bay 1, Le Ngoc Giang 2*, Nguyen Van Thong 3

1-3 Faculty of Fundamental Technical, AD-AF Academy of Vietnam, Vietnam

* Corresponding Author: Le Ngoc Giang

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 01

January-February 2025

Received: 17-12-2024

Accepted: 06-01-2025

Page No: 1160-1165

Abstract
The application of the Ant Colony Optimization (ACO) algorithm to solve the the
Traveling Salesman Problem (TSP) has been extensively studied by scientists
worldwide. However, implementing the algorithm faces challenges due to the
randomness in the departure and movement times of ants, as well as the limitations of
computer hardware. These factors reduce the algorithm's convergence ability and
overall effectiveness. This paper proposes an approach to implement the algorithm by
utilizing discrete event simulation (DES). Artificial ants are modeled to depart and
move completely randomly, closely mimicking the behavior of natural ants. This
approach accelerates the algorithm's convergence, minimizes the likelihood of falling
into local optima, and enhances overall performance. The simulation results clearly
demonstrate the advantages of this method.

DOI: https://doi.org/10.54660/.IJMRGE.2023.4.5.1160-1165

Keywords: Ant Colony Optimization, Traveling Salesman Problem, Discrete Event Simulation, Algorithm Convergence

Introduction
In graph theory, the shortest path problem is the problem of finding a path between two vertices such that the sum of the weights
of the edges forming the path is minimized. It can be described as follows: Given a weighted graph with a set of vertices denoted
as V=(v1,v2,...,vn) and a set of edges denoted as E, with a weight function f:E→R, we need to find a path P ⊆ EP from the vertex
vs to the destination vertex vd in V, such that the sum ∑eij∈Pf(eij) is minimized, with the condition that each vertex in P is visited
exactly once. A typical example of the shortest path problem is the Travelling Salesman Problem, which is an NP-Hard problem
in the class of discrete optimization problems. The problem is stated as follows: A salesperson needs to deliver goods to nnn
cities, starting from any city and then visiting other cities to make the deliveries and return to the starting point. Each city must
be visited exactly once, and the distances between cities are given. The task is to find the shortest route to help the salesperson.

The TSP was first introduced in 1930 and is one of the most optimized problems with numerous practical applications, such as

in planning, logistics, microchip production, and gene analysis in biology [14, 15, 16]. In these applications, the concept of a city

can be replaced by customers, soldering points on a circuit board, or DNA fragments in genes. The concept of distance can be

represented by travel time or cost, or by the comparison between DNA fragments.
To solve the TSP, exact methods can be used when the number of cities is small [19]. However, when the number of cities is
large, exact methods are no longer suitable due to the excessive time required for solving, which is unacceptable in practice.
Typically, the approach to solving large TSP problems is to use approximation methods, which provide results with an acceptable
margin of error and significantly faster solution times compared to exact methods.
For approximate solutions to the TSP, nature-inspired algorithms can be employed, among which ACO stands out. Several
approaches have been discussed in [17] and [18], where the authors have proposed various methods for parameter selection and
scent trail updating. However, during the algorithm's implementation, the updating of the pheromone concentration does not
accurately reflect reality, as the artificial ants do not fully resemble real ants due to computational limitations, such as the limited
number of threads on a computer. Therefore, an approach is needed to ensure that artificial ants move in a manner closer to real
ants.

https://doi.org/10.54660/.IJMRGE.2023.4.5.1160-1165

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1161 | P a g e

A DES algorithm is proposed to address this limitation. By

applying DES, the randomness of the artificial ant colony is

increased, minimizing the risk of falling into local optima and

accelerating convergence. The results are validated through

simulations.

The remainder of the paper is structured as follows: Section

2 provides a brief introduction to the ACO algorithm for

solving the TSP. Section 3 presents the development of the

ACO algorithm with DES application. Section 4 outlines the

simulation program and presents the achieved results.

Conclusions and suggestions for future research are provided

in Section 5.

1. Ant colony optimization algorithm

ACO is a nature-inspired optimization method based on

simulating the behavior of ant colonies in nature to solve

complex optimization problems. Ants are always able to find

the shortest path from their nest to a food source. The means

of communication to find the most efficient path is their

pheromone trail. Over time, this pheromone trail gradually

disappears, but it can receive reinforcement if other ants

persist in following the same path.

To mimic the behavior of real ants, we construct artificial ants

that also produce pheromone trails on their paths and have the

ability to follow these trails by choosing paths with higher

pheromone concentrations. Based on this characteristic,

developed the Ant System (AS). Subsequent versions of

ACO have been developed, including the Ant Colony System

(ACS) and Max-Min, by altering the methods for updating

and evaporating the pheromone concentrations [2, 6, 7].

Initially, the pheromone concentration on each edge (i, j) is

initialized with a constant value 𝑐, or it can be determined by

the following formula:

𝜏𝑖𝑗 = 𝜏𝜊 =
𝑚

𝐶𝑛𝑛
, ∀(𝑖, 𝑗)

Where:

τij: Pheromone concentration on edge (i,j)

m: Number of ants

𝐶𝑛𝑛: Length of the path given by the nearest neighbor search

method

At vertex i, an ant k will choose a vertex j, which has not been

visited yet, from the neighborhood set of i according to a

probability distribution rule, determined by the following

formula:

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]
𝛽

𝑙∈𝑁𝑖
𝑘

, 𝑗 ∈ 𝑁𝑖
𝑘

Where:

𝑝𝑖𝑗
𝑘 : Probability that ant k chooses edge (i,j)

𝛼: adjustment factor the influence of 𝜏𝑖𝑗;

𝛽: adjustment factor the influence of 𝜂𝑖𝑗;

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 : Heuristic information;

𝑑𝑖𝑗: Distance between vertices i and j;

𝑁𝑖
𝑘: Set of unvisited neighboring vertices of i by ant k

During the search process, the pheromone trails on each edge

are updated, as they are modified due to evaporation and

accumulation of pheromone when ants travel along that edge.

After each iteration, the pheromone trail on each edge is

updated according to the following formula:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) × 𝜏𝑖𝑗(𝑡) + ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡), ∀(𝑖, 𝑗)

𝑚

𝑘=1

Where:

0 < 𝜌 ≤ 1: evaporation rate of the pheromone trail;

Δ𝜏𝑖𝑗
𝑘 (𝑡): amount of pheromone left by ant k on edge (i,j)

Δ𝜏𝑖𝑗
𝑘 = {

𝑄

𝑓(𝑘)
If the ants do not pass

0 If the ants pass

Where:

𝑄: constant

𝑓(𝑘): length of the path constructed by ant k

When applying the ACO method to each specific problem,

there are three factors that determine the effectiveness of the

algorithm: constructing an appropriate structural graph,

selecting heuristic information, and choosing the pheromone

update rule.

2. Application of des algorithm

2.1. Description of des

The system model is divided into continuous models and

discrete event models. In continuous system simulations, the

time step is fixed at the start of the simulation. Time increases

in equal increments, and the values change directly over time.

In this type of simulation, the values that reflect the system's

state are simulated at any given time, and the simulation time

increases uniformly from one step to the next, as shown in

Figure 1.

Fig 1: Fixed time step in continuous simulation In discrete event

simulations, the system changes its state only when events occur and

only when those events take place. Time passing does not directly

affect the simulation. Unlike a continuous simulation, the simulation

time progresses from one event to the next, and the time between

events is not guaranteed to be equal, as in Figure 2.

Fig 2: Time step in discrete event simulation

DES simulates the activities of a system as a sequence of discrete

events over time, where each event occurs at a specific moment and

marks a change in the system's state [12, 20, 21]. Discrete event

simulation consists of the following steps:

Step 1: Initial setup. Initialize the system's state variables, initialize

the clock, and schedule the first event.

Step 2: Repeat. Set the clock for the next event, process the next

event, remove it from the event list, and update the statistics.

Step 3: Generate statistical reports.

Next, we will examine the application of discrete event simulation

to artificial ant colonies.

2.2. Application of DES for the Artificial Ant colony

model

For simplicity, we consider the case of an ant colony

0 1 2 3 4 5 6 7 8 9 10 t

0 3,3 5,4 7,9 9,8 t

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1162 | P a g e

consisting of five ants searching for food, where the

movements of the ants are entirely random. This problem is

then generalized for a colony of n ants. The five ants move

independently as described in Figure 3.

Let N be the number of vertices that the ants need to traverse,

tij be the time it takes for the ith ant to pass through the jth

vertex. Initially, the ants all start from their nest (vertex 0)

and move independently. For simplicity, we consider the

starting point to be ant 1 and the final one being ant n (n=5).

Over time, the event of an ant moving is continuously

triggered, ensuring that all ants will traverse the N vertices.

Fig 3: The random movement process of artificial ants according to event-driven simulation

3. Simulation and results achieved

3.1. Building algorithm flowchart

The DES algorithm is implemented as shown in Figure 4. We

see that the DES algorithm allows the ants to depart at

random times and at any vertex, updating the local

pheromone exactly when the ants pass through the vertices

and the global one when the ants complete the loop. That will

increase the randomness, minimizing the possibility of falling

into local extrema.

The algorithm simulates the Ant Colony Optimization

process using a discrete event simulation framework. The

detailed steps are as follows:

▪ Step 1: Initialization

Set up the initial parameters, including the ant colony,

pheromone levels, and environmental parameters. Schedule

the first event.

▪ Step 2: Retrieve the Event

Extract the next event from the event queue for processing.

▪ Step 3: Check if All Ants Have Visited All Nodes

If True: Update pheromone levels based on the paths traveled

and proceed to check for remaining events.

If False: Proceed to the next vertex selection for the ants.

▪ Step 4: Select the Next Vertex

Use the ACO heuristic to determine the next vertex for the

ant's movement.

▪ Step 5: Evaluate Distance

If the distance is greater than the threshold, continue

processing and consider this path.

If less than or equal to the threshold: Remove the selected ant

from further simulation.

▪ Step 6: Update Pheromones

Update the pheromone levels on edges based on the quality

of paths traveled by all ants.

▪ Step 7: Add New Event

Schedule additional events representing subsequent

movements or actions of the ants.

▪ Step 8: Check for Remaining Events

If no events remain: Perform a final pheromone update and

check if the iteration has ended.

If events remain: Return to Step 2 to continue processing.

▪ Step 9: Iteration Completion Check

If the iteration is complete: Move to the shortest path

determination step.

If not complete: Return to Step 2 to process further events.

▪ Step 10: Identify the Shortest Path

After completing all iterations, compute the shortest path

based on accumulated pheromone levels.

▪ Step 11: Termination

End the simulation and save the results.

Fig 4: Flowchart of ACO implementation using DES algorithm

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1163 | P a g e

Table 1: Comparison of simulation results with eil76 and Berlin52 standard library

 Name Best Achieved Error Rate (%) Time (s)

1nd time
Eil76 538 558.4 3.7 33.2

Berlin52 7542 7658.9 1.54 42.0

2nd time
Eil76 538 550.0 2.23 34.7

Berlin52 7542 7657.8 1.53 43.5

3nd time
Eil76 538 556.6 3.4 37

Berlin52 7542 7713.0 2.26 43.0

4nd time
Eil76 538 565.2 5.0 35.6

Berlin52 7542 7716.8 2.3 46.3

3.2. Results

a) 1nd time

b) 2nd time

c) 3nd time

d) 4nd time

Figure 5: Pathfinding results for the Eil76 dataset

a) 1nd time

b) 2nd time

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1164 | P a g e

c) 3nd time

d) 4nd time

Fig 6: Pathfinding results for the Berlin52 dataset

To implement the DES algorithm, several simulation

software tools such as Arena, MATLAB/Simulink, and

others can be used. In this study, the author utilized the

Python programming language (source code can be

downloaded at) [22] with data from the TSPLib standard

library (a library of sample data for the TSP problem), which

includes city coordinates and pre-calculated optimal values.

In this paper, two sample coordinate sets, Eil76 and Berlin52,

were used.

Table 1 shows the simulation results on a computer with 20

ants and 200 iterations, using the Eil76 and Berlin52

coordinate sets. The results show that after 4 trials, for the

Eil76 coordinate set, the lowest error was 2.23, and the

highest was 5.0. For the Berlin52 coordinate set, the lowest

and highest errors were 1.53 and 2.3, respectively. These

errors are acceptable in practical conditions, while

convergence time is fast.

The results of the paths are graphically represented with the

Eil76 and Berlin52 coordinate sets in Figures 5 and 6,

respectively.

4. Conclusion

This paper proposes a method utilizing discrete event

simulation to enhance the effectiveness of the Ant Colony

Optimization algorithm for the Traveling Salesman Problem.

By combining this approach with appropriate parameter

selection techniques, promising results were achieved.

Compared to optimal results published in the TSPLib

benchmark library, the proposed algorithm demonstrated

high accuracy, with errors below 5% and faster convergence

times.

However, these results represent only an initial stage of the

research. In the future, the authors plan to further develop the

method by integrating automatic parameter selection,

adaptive adjustment rules, and natural evolution mechanisms.

While the proposed algorithm is applied specifically to the

TSP in this study, it can be extended for use with ACO in

solving other real-world optimization problems.

5. References

1. Wang J, Li H, Chen H. Mixed ant colony algorithm for

vehicle routing problem with time windows. ISSN:1662-

8985. 2013 Jun 13.

2. Yigit T. Using the Ant Colony Algorithm for Real-Time

Automatic Route of School Buses. The International

Arab Journal of Information Technology. 2016 Sep 5.

3. Zhang S, Zhang Y. A Hybrid Genetic and Ant Colony

Algorithm for Finding the Shortest Path in Dynamic

Traffic Networks. ISSN 0146. 2017 Sep 29.

4. Chin T, Abbou F, Tat E. Simulation Study of a Heuristic

Near-Maximum Ant-Based Dynamic Routing. The

International Arab Journal of Information Technology.

2008;5(3):230-233.

5. Clarke G, Wright J. Scheduling of Vehicles from a

Central Depot to a Number of Delivery Points.

Operations Research. 1964;12(4):568-581.

6. Dorigo M, Gambardella L. Ant Colony System: A

Cooperative Learning Approach to the Traveling

Salesman Problem. IEEE Transactions on Evolutionary

Computation. 1997;1(1):53-66.

7. Ekin E, Yakhno T. A Case Study of Adopting Ant

System to Optimization Problems. The Tenth Turkish

Symposium on Artificial Intelligence and Neural

Networks, TAINN2001. Gazimagusa, T.R.N.C.; 2001.

p. 20-25.

8. Van Breedam A. An Analysis of the Effect of Local

Improvement Operators in Genetic Algorithms and

Simulated Annealing for the Vehicle Routing Problem.

RUCA Working Paper 96/14. University of Antwerp,

Belgium; 1996.

9. Badeau P. A Tabu Search Heuristic for the Vehicle

Routing Problem with Soft Time Windows.

Transportation Science. 1997;31(2):170-186.

10. Rizzoli A, et al. Ant Colony Optimization for Real-

World Vehicle Routing Problems. Swarm Intelligence.

2007;1(2):135-151.

11. Reimann M, et al. D-ants: Savings based Ants Divide

and Conquer the Vehicle Routing Problem. Computers

and Operations Research. 2004;31(4):563-591.

12. Fishman GS. Discrete-Event Simulation: Modeling,

Programming, and Analysis.

13. Brucato C. The traveling salesman problem. Sonoma

State University, 2010. M.S., University of Pittsburgh,

2013.

14. Chan D. IC insertion: an application of the travelling

salesman problem. International Journal of Production

Research. 1989 Oct;27(10):1837-1841.

15. Venkatesh D. Generation of Genetic Maps Using the

Travelling Salesman Problem. International Journal of

Scientific & Engineering Research. 2014 Jun;5(6).

16. Stuzle T. ACO Algorithms for the Traveling Salesman

Problem. Universite Libre de Bruxelles, Belgium.

17. Brezina I. Solving Traveling Salesmanship Problem

(TSP) Using Ant Colony Optimization. International

Journal of Engineering and Technical Research. 2018

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1165 | P a g e

Jul.

18. Priestley HA, Ward MP. A Multipurpose Backtracking

Algorithm. 2003 Jan.

19. Robinson S. Simulation - The practice of model

development and use. Wiley; 2004.

20. Matloff N. Introduction to Discrete-Event Simulation

and the SimPy Language. 2013 Jan. Available from:

21. https://github.com/vanbayhoang/DES_TSP.

