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Abstract 
The application of the Ant Colony Optimization (ACO) algorithm to solve the the 
Traveling Salesman Problem (TSP) has been extensively studied by scientists 
worldwide. However, implementing the algorithm faces challenges due to the 
randomness in the departure and movement times of ants, as well as the limitations of 
computer hardware. These factors reduce the algorithm's convergence ability and 
overall effectiveness. This paper proposes an approach to implement the algorithm by 
utilizing discrete event simulation (DES). Artificial ants are modeled to depart and 
move completely randomly, closely mimicking the behavior of natural ants. This 
approach accelerates the algorithm's convergence, minimizes the likelihood of falling 
into local optima, and enhances overall performance. The simulation results clearly 
demonstrate the advantages of this method. 
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Introduction 
In graph theory, the shortest path problem is the problem of finding a path between two vertices such that the sum of the weights 
of the edges forming the path is minimized. It can be described as follows: Given a weighted graph with a set of vertices denoted 
as V=(v1,v2,...,vn) and a set of edges denoted as E, with a weight function f:E→R, we need to find a path P ⊆ EP from the vertex 
vs to the destination vertex vd in V, such that the sum ∑eij∈Pf(eij) is minimized, with the condition that each vertex in P is visited 
exactly once. A typical example of the shortest path problem is the Travelling Salesman Problem, which is an NP-Hard problem 
in the class of discrete optimization problems. The problem is stated as follows: A salesperson needs to deliver goods to nnn 
cities, starting from any city and then visiting other cities to make the deliveries and return to the starting point. Each city must 
be visited exactly once, and the distances between cities are given. The task is to find the shortest route to help the salesperson. 

The TSP was first introduced in 1930 and is one of the most optimized problems with numerous practical applications, such as 

in planning, logistics, microchip production, and gene analysis in biology [14, 15, 16]. In these applications, the concept of a city 

can be replaced by customers, soldering points on a circuit board, or DNA fragments in genes. The concept of distance can be 

represented by travel time or cost, or by the comparison between DNA fragments. 
To solve the TSP, exact methods can be used when the number of cities is small [19]. However, when the number of cities is 
large, exact methods are no longer suitable due to the excessive time required for solving, which is unacceptable in practice. 
Typically, the approach to solving large TSP problems is to use approximation methods, which provide results with an acceptable 
margin of error and significantly faster solution times compared to exact methods. 
For approximate solutions to the TSP, nature-inspired algorithms can be employed, among which ACO stands out. Several 
approaches have been discussed in [17] and [18], where the authors have proposed various methods for parameter selection and 
scent trail updating. However, during the algorithm's implementation, the updating of the pheromone concentration does not 
accurately reflect reality, as the artificial ants do not fully resemble real ants due to computational limitations, such as the limited 
number of threads on a computer. Therefore, an approach is needed to ensure that artificial ants move in a manner closer to real 
ants.
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A DES algorithm is proposed to address this limitation. By 

applying DES, the randomness of the artificial ant colony is 

increased, minimizing the risk of falling into local optima and 

accelerating convergence. The results are validated through 

simulations. 

The remainder of the paper is structured as follows: Section 

2 provides a brief introduction to the ACO algorithm for 

solving the TSP. Section 3 presents the development of the 

ACO algorithm with DES application. Section 4 outlines the 

simulation program and presents the achieved results. 

Conclusions and suggestions for future research are provided 

in Section 5. 

 

1. Ant colony optimization algorithm 

ACO is a nature-inspired optimization method based on 

simulating the behavior of ant colonies in nature to solve 

complex optimization problems. Ants are always able to find 

the shortest path from their nest to a food source. The means 

of communication to find the most efficient path is their 

pheromone trail. Over time, this pheromone trail gradually 

disappears, but it can receive reinforcement if other ants 

persist in following the same path. 

To mimic the behavior of real ants, we construct artificial ants 

that also produce pheromone trails on their paths and have the 

ability to follow these trails by choosing paths with higher 

pheromone concentrations. Based on this characteristic, 

developed the Ant System (AS). Subsequent versions of 

ACO have been developed, including the Ant Colony System 

(ACS) and Max-Min, by altering the methods for updating 

and evaporating the pheromone concentrations [2, 6, 7]. 

Initially, the pheromone concentration on each edge (i, j) is 

initialized with a constant value 𝑐, or it can be determined by 

the following formula: 

 

𝜏𝑖𝑗 = 𝜏𝜊 =
𝑚

𝐶𝑛𝑛
, ∀(𝑖, 𝑗) 

 

Where: 

τij: Pheromone concentration on edge (i,j) 

m: Number of ants 

𝐶𝑛𝑛: Length of the path given by the nearest neighbor search 

method 

At vertex i, an ant k will choose a vertex j, which has not been 

visited yet, from the neighborhood set of i according to a 

probability distribution rule, determined by the following 

formula: 

 

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]
𝛽

𝑙∈𝑁𝑖
𝑘

, 𝑗 ∈ 𝑁𝑖
𝑘 

 

Where: 

𝑝𝑖𝑗
𝑘 : Probability that ant k chooses edge (i,j) 

𝛼: adjustment factor the influence of 𝜏𝑖𝑗; 

𝛽: adjustment factor the influence of 𝜂𝑖𝑗; 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 : Heuristic information; 

𝑑𝑖𝑗: Distance between vertices i and j; 

𝑁𝑖
𝑘: Set of unvisited neighboring vertices of i by ant k 

 

During the search process, the pheromone trails on each edge 

are updated, as they are modified due to evaporation and 

accumulation of pheromone when ants travel along that edge. 

After each iteration, the pheromone trail on each edge is 

updated according to the following formula: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) × 𝜏𝑖𝑗(𝑡) + ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡), ∀(𝑖, 𝑗)

𝑚

𝑘=1

 

 

Where: 

0 < 𝜌 ≤ 1: evaporation rate of the pheromone trail; 

Δ𝜏𝑖𝑗
𝑘 (𝑡): amount of pheromone left by ant k on edge (i,j) 

  

Δ𝜏𝑖𝑗
𝑘 = {

𝑄

𝑓(𝑘)
If the ants do not pass

0 If the ants pass

 

 

Where: 

𝑄: constant 

𝑓(𝑘): length of the path constructed by ant k 

When applying the ACO method to each specific problem, 

there are three factors that determine the effectiveness of the 

algorithm: constructing an appropriate structural graph, 

selecting heuristic information, and choosing the pheromone 

update rule. 

 

2. Application of des algorithm 

2.1. Description of des 

The system model is divided into continuous models and 

discrete event models. In continuous system simulations, the 

time step is fixed at the start of the simulation. Time increases 

in equal increments, and the values change directly over time. 

In this type of simulation, the values that reflect the system's 

state are simulated at any given time, and the simulation time 

increases uniformly from one step to the next, as shown in 

Figure 1. 

 

 
 

Fig 1: Fixed time step in continuous simulation In discrete event 

simulations, the system changes its state only when events occur and 

only when those events take place. Time passing does not directly 

affect the simulation. Unlike a continuous simulation, the simulation 

time progresses from one event to the next, and the time between 

events is not guaranteed to be equal, as in Figure 2.  

 

 
 

Fig 2: Time step in discrete event simulation 

 

DES simulates the activities of a system as a sequence of discrete 

events over time, where each event occurs at a specific moment and 

marks a change in the system's state [12, 20, 21]. Discrete event 

simulation consists of the following steps: 

Step 1: Initial setup. Initialize the system's state variables, initialize 

the clock, and schedule the first event. 

Step 2: Repeat. Set the clock for the next event, process the next 

event, remove it from the event list, and update the statistics. 

Step 3: Generate statistical reports. 

Next, we will examine the application of discrete event simulation 

to artificial ant colonies. 
 

2.2. Application of DES for the Artificial Ant colony 

model 

For simplicity, we consider the case of an ant colony 

0   1  2   3  4   5   6   7   8  9  10    t 

0           3,3     5,4        7,9      9,8     t 
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consisting of five ants searching for food, where the 

movements of the ants are entirely random. This problem is 

then generalized for a colony of n ants. The five ants move 

independently as described in Figure 3. 

Let N be the number of vertices that the ants need to traverse, 

tij be the time it takes for the ith ant to pass through the jth 

vertex. Initially, the ants all start from their nest (vertex 0) 

and move independently. For simplicity, we consider the 

starting point to be ant 1 and the final one being ant n (n=5). 

Over time, the event of an ant moving is continuously 

triggered, ensuring that all ants will traverse the N vertices. 

 

 
 

Fig 3:  The random movement process of artificial ants according to event-driven simulation 

 

3. Simulation and results achieved 

3.1. Building algorithm flowchart 

The DES algorithm is implemented as shown in Figure 4. We 

see that the DES algorithm allows the ants to depart at 

random times and at any vertex, updating the local 

pheromone exactly when the ants pass through the vertices 

and the global one when the ants complete the loop. That will 

increase the randomness, minimizing the possibility of falling 

into local extrema. 

The algorithm simulates the Ant Colony Optimization 

process using a discrete event simulation framework. The 

detailed steps are as follows: 

▪ Step 1: Initialization 

Set up the initial parameters, including the ant colony, 

pheromone levels, and environmental parameters. Schedule 

the first event. 

▪ Step 2: Retrieve the Event 

Extract the next event from the event queue for processing. 

▪ Step 3: Check if All Ants Have Visited All Nodes 

If True: Update pheromone levels based on the paths traveled 

and proceed to check for remaining events. 

If False: Proceed to the next vertex selection for the ants. 

▪ Step 4: Select the Next Vertex 

Use the ACO heuristic to determine the next vertex for the 

ant's movement. 

▪ Step 5: Evaluate Distance 

If the distance is greater than the threshold, continue 

processing and consider this path. 

If less than or equal to the threshold: Remove the selected ant 

from further simulation. 

▪ Step 6: Update Pheromones 

Update the pheromone levels on edges based on the quality 

of paths traveled by all ants. 

▪ Step 7: Add New Event 

Schedule additional events representing subsequent 

movements or actions of the ants. 

▪ Step 8: Check for Remaining Events 

If no events remain: Perform a final pheromone update and 

check if the iteration has ended. 

If events remain: Return to Step 2 to continue processing. 

▪ Step 9: Iteration Completion Check  

If the iteration is complete: Move to the shortest path 

determination step. 

If not complete: Return to Step 2 to process further events. 

▪ Step 10: Identify the Shortest Path 

After completing all iterations, compute the shortest path 

based on accumulated pheromone levels. 

▪ Step 11: Termination 

End the simulation and save the results. 

 

 
 

Fig 4: Flowchart of ACO implementation using DES algorithm 
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Table 1: Comparison of simulation results with eil76 and Berlin52 standard library 
 

 Name Best Achieved Error Rate (%) Time (s) 

1nd time 
Eil76 538 558.4 3.7 33.2 

Berlin52 7542 7658.9 1.54 42.0 

2nd time 
Eil76 538 550.0 2.23 34.7 

Berlin52 7542 7657.8 1.53 43.5 

3nd time 
Eil76 538 556.6 3.4 37 

Berlin52 7542 7713.0 2.26 43.0 

4nd time 
Eil76 538 565.2 5.0 35.6 

Berlin52 7542 7716.8 2.3 46.3 

 

3.2. Results 

 

 
a) 1nd time 

 

 
b) 2nd time 

 

 
c) 3nd time 

 

 
d) 4nd time 

 

Figure 5: Pathfinding results for the Eil76 dataset 

 

 
a) 1nd time 

 

 
b) 2nd time 
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c) 3nd time 

 

 
d) 4nd time 

 

Fig 6: Pathfinding results for the Berlin52 dataset 

 

To implement the DES algorithm, several simulation 

software tools such as Arena, MATLAB/Simulink, and 

others can be used. In this study, the author utilized the 

Python programming language (source code can be 

downloaded at) [22] with data from the TSPLib standard 

library (a library of sample data for the TSP problem), which 

includes city coordinates and pre-calculated optimal values. 

In this paper, two sample coordinate sets, Eil76 and Berlin52, 

were used. 

Table 1 shows the simulation results on a computer with 20 

ants and 200 iterations, using the Eil76 and Berlin52 

coordinate sets. The results show that after 4 trials, for the 

Eil76 coordinate set, the lowest error was 2.23, and the 

highest was 5.0. For the Berlin52 coordinate set, the lowest 

and highest errors were 1.53 and 2.3, respectively. These 

errors are acceptable in practical conditions, while 

convergence time is fast. 

The results of the paths are graphically represented with the 

Eil76 and Berlin52 coordinate sets in Figures 5 and 6, 

respectively. 

 

4. Conclusion 

This paper proposes a method utilizing discrete event 

simulation to enhance the effectiveness of the Ant Colony 

Optimization algorithm for the Traveling Salesman Problem. 

By combining this approach with appropriate parameter 

selection techniques, promising results were achieved. 

Compared to optimal results published in the TSPLib 

benchmark library, the proposed algorithm demonstrated 

high accuracy, with errors below 5% and faster convergence 

times. 

However, these results represent only an initial stage of the 

research. In the future, the authors plan to further develop the 

method by integrating automatic parameter selection, 

adaptive adjustment rules, and natural evolution mechanisms. 

While the proposed algorithm is applied specifically to the 

TSP in this study, it can be extended for use with ACO in 

solving other real-world optimization problems. 
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