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Abstract 
The possibility of disease called Parkinson's pre diagnosis allows radical change in course 
of this sickness by introducing, in a timely manner, adequate therapies. Using machine 
learning algorithms, the presented research improves initial screening of Parkinson's 
disease on the examination of specific vocal characteristics. This ML technique applies by 
using a very large dataset from UC Irvine ML Repository with 197 distinct cases and 22 
unique attributes. The accuracy of the KNN classifier turns out to be very accurate with an 
accuracy of 85%. Other than the KNN classifier, this study will look into other ML 
algorithms like Support Vector Machine (SVM), Random Forest Classifier, Decision Tree 
Classifier, and Extra Trees Classifier. Preprocessing steps like SMOTE remove redundant 
features and further balance the classes to improve the performance of the classifier. LIME 
analysis around the critical findings sh  ows that vocal characteristics such as Spread2, 
RPDE, and MDVP (Hz) are of utmost importance in predicting Parkinson's disease. These 
results are extremely important for preliminary diagnosis of disease because it can totally 
change patient care and afford possibilities for more special and effective treatment 
options. This might also be through the use of voice analysis tools by patients themselves, 
possibly at home, feeding data to the phone-based system for the ML algorithms mapping 
disease course or response to treatment. Such really is the essence of this research—that it 
truly typifies the latest machine learning methods for forecasting Parkinson's disease and 
hence opening the way toward early therapeutic interventions for improved patient health 
outcomes. 
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1. Introduction 

A dangerous neurological disorder that mostly affects the elderly is Parkinson's disease (PD). It is a neuro concern among 

degenerative diseases as its frequency approaches that of Alzheimer's. PD often affects people over 60 years, and usually, it 

presents with various symptoms, including tremors, rigidity, dysphonia, delayed movement (bradykinesia), and balance 

problems [1]. Interestingly, the initial manifestations of the disease are voice anomalies in many cases. Recently, as a non-

invasive, early diagnosis method, sound analysis in Parkinson's disease diagnosis has become more popular. This method is 

especially of benefit because vocal recording tests may easily be conducted [2]. 

However, diagnosis of Parkinson's disease is complex because patients' symptoms may be so varied. Diagnosis relies on the 

identification of motor symptoms, including bradykinesia, resting tremor, and stiffness [3]. These may be subtle at the beginning 

and can overlap with other diseases, making early and accurate diagnosis difficult. Moreover, non-motor symptoms, often 

underestimated as belonging to Parkinson's disease, such as mood disorders, sleep disturbances, and cognitive dysfunction, may 

precede motor symptoms [4]. Variations in the course of the disease also exist; some patients rapidly decline, while in others, the 

course is milder. This heterogeneity increases the difficulty of developing a homogeneous scheme of PD diagnosis. PD also can't 

be diagnosed by a single test; rather, a history taking and physical exam are used in combination with imaging and laboratory 

testing to rule out other conditions. 

Recent developments in artificial intelligence have shown promise in supporting the diagnosis of parkinsonism through analysing  
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patterns in speech, activity, and writing skills. The huge 
variation in disease presentations makes it very important to 
provide data sets that are comprehensive and diverse for 
training machine learning models to ensure high efficiency. 
Because it reduces the use of diagnostic instruments, coping 
with a lack of diversity in PD studies can yield more 
difficulties. Based on the findings, quite a lot of patients 
present audible abnormalities even in early stages of PD [5, 6, 

7]. Consequently, early detection by using voice data for PD 
detection is non-invasive and reasonably priced. In this paper, 
speech data is analyzed using machine learning algorithms so 
that Parkinson's disease can be detected early. This study's 
objective is to construct robust and interpretable models that 
can discriminate people with PD from healthy individuals 
with high accuracy using a dataset from UC Irvine Machine 
Learning Repository. 
Proposed method extracts speech data analysis through 
machine learning algorithms for initial screening of 
Parkinson disease. To begin with, a large data set was 
extracted from the ML Repository at UC Irvine. Recording 
of voices came under 22 features of that data set in which 197 
instances were considered. In data pre-processing numerous 
steps were taking place to ameliorate model performance. 
This included feature scaling for best results, removal of 
redundant features, and handling class imbalance using the 
Synthetic Minority Over-sampling Technique (SMOTE). 
The dataset was then divided into a train set and a test set 
using an 80-20 split. To determine the best machine learning 
model for the detection of PD, several models were trained 
and compared. Among the selected ML models are 
AdaBoost, K-Nearest Neighbors (KNN), Gaussian Naive 
Bayes (GNB), Random Forest (RF), Random Forest (SVM), 
Random Forest (RF), Gradient Boosting (GB), XGBoost, and 
Logistic Regression (LR). To enhance model performance, 
hyperparameters tuning was performed. In addition, model 
interpretation methods like LIME also applied for more 
explainable and trustable. 
The following are the study's main contributions: 
▪ Using speech data, powerful machine learning models 

were developed that achieve as high as 85% in accuracy 
for early Parkinson's disease detection. 

▪ Critical voice biomarkers were discovered which are 
needed to classify Parkinson's patients vs. healthy 
subjects. 

▪ LIME and permutation importance approaches were 
utilized with a view to ensure the predictability and 
interpretability of the model to facilitate clinical use. 

 
2. Literature Review 
In the recent years, machine learning (ML) has witnessed 
tremendous development in the diagnosis of Parkinson's 
disease (PD) by voice analysis. To improve the accuracy and 
reliability of PD diagnosis, various machine-learning 
schemes and diverse datasets have been suggested. Little et 
al. [8] quantified dysphonia on the voice recordings of 31 
individuals with vowel sound "a" to investigate Parkinson's 
disease. They showed the voice analysis potential for PD 
diagnosis in their work by the classification of extracted 
dysphonia traits from these recordings by an SVM model. 
Their study was, however, limited by the short dataset size 
and the need for further validation. Ali et al. [9] worked with 
advanced fusion of L1 regularized SVM and Deep Neural 
Network (DNN) methods on datasets provided by Max Little 
and Sarkar. Their approach showed very good accuracy, at 
97.5% with k-fold cross-validation and 100% accuracy with 

Leave-One-Subject-Out validation—stunning results. 
Although the study by had high accuracy, it too had some 
shortcomings: incomplete patient records and differences in 
the length and severity of disease. 
Utilizing data from figshare and the Irvine ML repository, 
Neto et al. [10] used algorithms like DNN, RF, GB, and SVM 
as well as ensemble methods like the Ensemble Stacked 
Model (ESM) and Ensemble Voting Model (EVM). The 
accuracy rates for DNN and ESM were 72.1% and 84.49%, 
respectively, hence validating the need for fusing multiple 
data sources and using diverse datasets for robust PD 
identification. In the work of Lizbeth et al. [11], Bayesian 
analysis with Gibb's sampling was applied for duplicated 
voice recordings and obtained an accuracy of 86.2%. The 
study did contain some flaws, including not enough 
validation and thin comprehensive data, even though it had 
responded well to intra-subject variability and improved 
interpretability of the results. 
With an accuracy of 95.89%, Pahujaet al. [12] used various 
machine learning techniques, including multilayer perceptron 
(MLP), SVM, K-NN, and ANN, to analyze recorded speech 
signals from the MA and NCVS datasets. The study had 
problems such as class imbalance and noise in the dataset, 
although it was good at the classification of PD. Ali et al. [13] 
used GA, NN and LDA to speech sample recordings by 
Sarkar et al. Although they had the disadvantages of an 
unbalanced testing database and no details about feature 
extraction, they could attain 100% accuracy on the testing 
database and 95% accuracy on the training data. 
Based on Parkinson's Progression Markers Initiative dataset, 
Wang et al. [14] implemented DNNs to score an accuracy rate 
of 96.45%. Despite some challenges such as deep learning's 
black-box characteristics and independent dataset 
verification, it brought a new approach to the study focused 
on early diagnosis. Gunduzet al. [15], they used UCI ML 
repository and applied CNN, and they achieved an accuracy 
equal to 86.9%. This ". Though the study has used deep 
features, it showed the promise of using multi-modal data 
despite the constraints in exploring deep learning models and 
only focusing on one type of feature. 
Nizamuddin et al.[16] proposes an advanced AI model 
combining Multi-Layer Perceptron and Convolutional 
Neural Network to enhance prediction accuracy, framework 
emphasizes real-time adaptability, personalized healthcare 
interventions, and reduces false positives, setting a 
benchmark for AI applications in health monitoring and 
predictive care. 
These results indicate the promising potential of using 
machine learning methods in speech analysis for PD 
identification. They also demonstrated the need for larger and 
more diverse datasets, and the application of advanced 
techniques for model interpretation to deal with potential 
challenges related to data biases and class imbalances. The 
proposed research methodology is presented in Figure 1. This 
study, therefore, goes further than previous work to increase 
the precision and dependability of PD diagnosis by using a 
full range of machine learning algorithms combined with 
stringent data pre-processing, feature engineering, and 
sophisticated interpretability methodologies. 
 
3. Methodology 
This is also a body paragraph at the first level. Font Size: 10, 
Font Type: Palatino Linotype Alignment: Appropriate; no 
spacing; no indentation with special (first line 0.75 cm). The 
source of Fig. 1 is [1]. 
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Fig 1: Suggested Approach. 

 
3.1. Dataset Description 
The multivariate dataset, taken from the "UC Irvine ML 
Repository [8]," contains 197 instances with 22 features. It 
contains several biological voice measurements and data for 
31 people, 23 of which suffered from parkinsonism. 195 
vocal recordings of the individuals in row of pool of data and 
is labelled in the "name" column. Each column in the dataset 

represents a unique speech metric. In the binary-coded 
"status" column, 0 represents a healthy subject, while 1 
represents a person suffering from parkinsonism. Main 
purpose of the collection of data is make it easier to 
distinguish between people who are well and those who have 
the illness. 

 
Table 1: Names and descriptions of features. 

 

Feature Name Description 

name The name or identifier of the individual 

MDVP:Fo(Hz) Average vocal fundamental frequency 

MDVP:Fhi(Hz) Maximum vocal fundamental frequency 

MDVP:Flo(Hz) Minimum vocal fundamental frequency 

MDVP:Jitter(%) variation in the duration of the voice cycles, measured as a percentage 

MDVP: Jitter(Abs) variation in the duration of the voice cycles, measured in absolute values 

MDVP: RAP Relative Amplitude Perturbation, a measure of the variation in the amplitude of the voice 

MDVP: PPQ Pitch Period Perturbation Quotient, a measure of the variation in the amplitude of the voice 

Jitter: DDP Average Absolute Difference of Differences, a measure of the variation in the duration of the voice cycles 

MDVP: Shimmer Shimmer (local). The variation in the amplitude of the voice, related to the roughness of the voice 

MDVP: Shimmer(dB) Shimmer (decibels). The variation in the amplitude of the voice, measured in decibels 

Shimmer: APQ3 Shimmer (three-point amplitude perturbation quotient), admeasure of the variation in the amplitude of the voice 

Shimmer: APQ5 Shimmer (five-point amplitude perturbation quotient), a measure of the variation in the amplitude of the voice 

MDVP: APQ Shimmer (amplitude perturbation quotient), a measure of the variation in the amplitude of the voice 

Shimmer: DDA Shimmer (dB-by-delta amplitude), a measure of the variation in the amplitude of the voice 

NHR Noise-to-Harmonics Ratio, a measure of the amount of noise in the voice signal 

HNR Harmonics-to-Noise Ratio, a measure of the amount of noise in the voice signal 

status Health status of the patient where a 0 = subject is healthy and 1 = subject has Parkinson’s disease 

RPDE Recurrence Period Density Entropy, a measure of the complexity of the voice signal 

DFA Detrended Fluctuation Analysis, a measure of the long-range dependence in the voice signal 

spread1 The first spectral moment, statistical measure of the voice signal’s frequency spread 

spread2 The second spectral moment, a statistical measure of the voice signal’sfrequency spread 

D2 A nonlinear dynamic parameter, statistical measure of the complexity of the voice signal 

PPE Pitch Period Entropy, a measure of the variation in fundamental frequency 

 
3.2. Data pre-processing 
Data preprocessing are among the key steps toward 
developing machine learning models. Therefore, extensive 
cleaning of the data is necessary to ensure its reliability by 
handling any missing values and outliers. It applies the 

SMOTE to the training data so that synthetic samples are 
created in the minority classes to balance both classes. 
Pearsons correlation coefficient was applied to identify 
features that exhibit high correlations in order to achieve 
model efficiency while minimizing computational load. A 
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highly correlated pattern is evident from the correlation 
matrix as shown in Figure 2. This underlines the fact that 
dimensionality reduction is a must to avoid over-fitting. High 

correlation was defined as having a Pearson co-efficient 
greater than 0.8. Fig 3. shows matrix after removing the 
highly linked characteristics. 

 

 
 

Fig 2: Following removal of highly correlated characteristics, the correlation matrix is shown 

 

 
 

Fig 3: Following the removal of highly linked characteristics, the correlation matrix is shown 
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3.3. Model Training 
The data set is split in an 80:20 ratio, with 80% going into 
training and the rest for testing. It is, therefore, essential to 
optimize their performance in the development of the ML 
model since the hyperparameter tuning optimizes model 
performance of ML models. Grid search is applied to help the 
model find patterns in the data, which it then uses in making 
anticipations on data not seen before.  
Those are the models: 
1) LR: In LR, there is a binary dependent variable that is 
modeled by a logistic function. One of the statistical 
techniques used in estimating the probability of different 
experimental results is LR [17]. It assumes a linear relationship 
between the features and the log-odds of the result, hence 
providing a simple and interpretable way of detecting the 
presence of PD. Mathematical Description The LR models 
are mathematically described by Equation 1, which describes 
the probability P of the binary outcome—PD or not—as a 
function of input features X: where the coefficients for the 
input features  X_i are denoted by β_i and the intercept term 
by β_0. 

 

P(Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+⋯+βnXn)
 

(1) 

 
2) SVM: SVM is a supervised learning approach used in 
classification tasks. It works by finding out the best 
hyperplane that maximally separates data points from 
different categories [18]. The biological voice measurements 
are used as bases for the SVM to separate the healthy people 
from the PD-affected ones. In using kernels, SVM handles 
non-linear relationships in the data, resulting in a robust 
model that separates classes through complex feature 
patterns. SVM seeks a hyperplane in Equation (2) that 
optimally separates the two classes (PD or not).  

 
𝑓(𝐗) = 𝐰 ⋅ 𝐗 + 𝑏 (2) 

 
3) RF: An RF Classifier creates a lot of DTs during training 
and generates a class that is the average of the classes 
(classification) of the individual trees. To identify Parkinson's 
disease and create a robust model, which lowers overfitting 
and increases accuracy, it uses biological voice measures. By 
averaging the output of a multitude of DTs, it improves the 
prediction performance and stability, allowing it to 
distinguish between people with PD and healthy controls. 
Equation (3) shows how all the forecasts from individual 
trees are aggregated to obtain the final prediction, usually by 
majority vote. Individual DTs in the forest are represented by 
T_i. 

 

𝑌̂ = mode(𝑇1(𝑿), 𝑇2(𝑿), … , 𝑇𝑚(𝑿)) (3) 

 
4) GB: A GB Classifier is an ensemble learning method that 
iteratively constructs multiple weak learners. The model 
corrects the PD identification errors of past trees by 
biological voice measures and then iteratively builds a new 
tree. This increases precision and makes the model more 
robust. Its final prediction is represented by equation (4). 
where h_m are the weak learners and α_mare the learning 
rates. 

 

𝑌̂ = ∑ 𝛼𝑚ℎ𝑚(𝑿)

𝑀

𝑚=1

 

(4) 

 
5) Extreme GB, popularly known as XGBoost, is a 

distributed GB library optimized for maximum portability, 
efficiency, and versatility. It is an advanced variant of the GB 
method, and it is fast becoming one of the most popular 
machine learning techniques for regression and classification 
[19]. It constructs a series of DTs, training each tree to correct 
errors of its predecessors. With added regularization terms, in 
order to avoid overfitting, the prediction is akin to Equation 
(4) in reputation for scalability, speed, and performance. 
where the complexity of the trees is controlled by the use of 
regularization. 
6) KNN: This is a very strong algorithm in machine learning. 
Since it makes it possible to compare a data point with its 
nearest neighbors in order to make a precise prediction, it is 
quite useful for classification tasks [20]. The model is 
implemented with k=3 for the Parkinson's dataset, meaning it 
uses the three nearest data points for classification. It 
calculates the distance between each of the training instances 
and the test instance, usually Euclidean. Then, it assigns the 
class with the majority of the neighbors to the test instance. 
Assuming that data points with similar attributes—voice 
measures and other features—belong to the same class—
Patison's or healthy, a new instance is classified by KNN. The 
decision rule is presented in equation (5).  

 

Ŷ = mode(YNN1 , YNN2 , … , YNNk) (5) 

 
7) GNB: This classifier makes its prediction using 
probabilistic calculations and assumptions of feature 
distribution and independence. It examines the characteristics 
of each class—healthy or Parkinson's—to decide the 
probability of every incident in the Parkinson's dataset. The 
model assigns the class with the highest computed probability 
to the instance. This technique works quite fine when dealing 
with small datasets and data with several dimensions. Its 
simplicity and efficiency in handling the various attributes 
gleaned from voice measurements make it particularly useful 
in this situation. GNB assumes feature independence and a 
Gaussian distribution when calculating the posterior 
probability using Bayes' theorem (Equations 6 and 7). where 
the mean and standard deviation of feature X_ifor class c are 
denoted by u_ic and σ_icare. 

 

P(Y = c|X) =
P(Y = c)∏ P(Xi|Y = c)n

i=1

P(X)
 

(6) 

 

P(Xi|Y = c) =
1

√2πσic
2
exp (−

(Xi − μic)
2

2σic
2 ) 

(7) 

 
8) DT: This model classifies data by placing it into subsets 
based on feature values. For the Parkinson's dataset, it creates 
a model reliably used to detect parkinsonism. In making its 
predictions, the model takes into account voice measures 
along with a number of other characteristics. It splits the data 
at each node by using criteria like information gain or Gini 
impurity; a path from the root to any leaf shows the 
classification criteria, model is, therefore, quite due to its 
simplicity in understanding and visualization. Based on the 
feature values, a DT moves from the root to a leaf node to 
make a prediction. On example X, the prediction by (8) is: 
 

𝑌̂ = 𝑇(𝑿) (8) 

 
9) DT: Adaptive Boosting, or AdaBoost, DTs are trained 
sequentially on the Parkinson's dataset, and the weights of 
misclassified instances are updated so that more attention is 
given to the harder instances. Training before tree bugs 
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rectified by each subsequent tree is trained to correct the 
mistakes of the earlier trees. The final model uses a weighted 
majority vote to combine the predictions from all of the trees. 
Repeating this process has an effect of improving overall 
classification accuracy, making it more reliable at 
differentiating between subjects with PD and healthy 
subjects. The final prediction can be represented using 
Equation 9. Here, α_mare weights assigned to each and weak 
learner h_m. 
 

𝑌̂ = sign (∑ 𝛼𝑚ℎ𝑚(𝑿)

𝑀

𝑚=1

) 

 
(9) 

 
 
3.4. Interpretation and explanation of the model 
AI techniques are necessary for ML model interpretation. 
Feature importance comes in handy to identify important 
features that are used in a decision to quantify how much an 
individual input feature contributes toward the prediction 
made by the model. Permutation importance works by 
analyzing the performance of a model with regard to feature 
values and understanding the dependencies on such a feature 
through a random rearrangement. Mathematically, if (f ̂ ) is 
the trained model and (L(f  ̂) ) is the loss function, then the 
permutation importance of feature (j) is given by 
"Importance" (j)=L(f ̂ )-L((f_π(j) ) ̂ ). where the model's 
prediction after shuffling feature (j) is denoted by ((f_π(j) ) ̂. 
Another effective way to explain predictions for individual 
instances is to approximate the model locally with an 
interpretable model-say, a linear model-using LIME. To that 
end, LIME generates perturbed samples around the instance 
of interest and then fits a simple, interpretable model: 
y ̂=β_0+β_1 x_1+β_2 x_2+⋯+β_n x_n, where y ̂ represents 
the predicted value, βi are coefficients, and xi denotes feature 
values. 
 
3.5. Evaluation 
We evaluated the performance of each model in binary 
classification using common assessment metrics, including 

F1-score, accuracy, precision, and recall. Precision calculates 
the percentage of true positive predictions out of all positive 
predictions. Accuracy measures the correctness of the 
classification as a whole. Recall, also known as sensitivity, is 
the proportion of true positives that are correctly identified by 
the model. The F1-score is the harmonic mean of precision 
and recall, which fairly estimates the performance of the 
model. These can be calculated using Equation 10-13. 
 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

  (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

  (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

  (12) 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

  (13) 

 
4. Analysis of the experimental setup and results 
4.1. Visualization and comparative analysis 
Figure 4 shows metrics F1 Score, Accuracy, Precision, and 
Recall, the performances of the models. Where a series top 
performances in all four comparison categories are 
concerned, KNN gives the best results among all models. It 
has an accuracy similar to those obtained using complex 
ensemble methods such as RF, GB, XGBoost, and 
AdaBoost—with great balance. Moreover, KNN presents 
good F1 Score, Precision, and Recall in all cases, proving to 
be resilient and dependable in the classification tasks. While 
the other algorithms—LR, SVM, and ensemble 
approaches—also yield good results, KNN surpasses them by 
being consistent across the evaluation criteria. Naive Bayes 
and DT also show reasonable results for the lower F1 Score 
and Recall. 

 

 
 

Fig 4: Model Performance Comparison. 
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Figure 5 reveals the high performance of the KNN model in 
PD classification as confusion matrix. The precision of the 
model is very high, at 96%, which means it is very precise in 
predicting PD—24 true positives and only 1 false positive. It 
also has a respectable recall, about 82.8%, to correctly detect 
82.8% of real PD cases. The overall efficacy of the model can 

be illustrated using the accuracy value of 84.6%. Five false 
negatives, however, would mean that some PD patients had 
been misclassified as healthy. The approximately 88.9% F1 
Score indicates a performance balancing between memory 
and precision.

 

 
 

Fig 5: Confusion matrix for KNN. 

 
 

Figure 6 The learning curve, describing the relationship 
between the number of training instances and the 
performance of the model, including training and cross-
validation scores. While the green curve shows the cross-
validation score, representing the model's performance on 
unknown data, the red curve shows the training score, 
indicating great performance on the training data. While the 
cross-validation score is lower, indicating poor 

generalization, the training score is initially high, showing a 
good fit to the training data. Both scores rise more training 
examples, indicating less overfitting and improved 
generalization. The convergence of the two scores points to 
better model performance with additional data. Variability is 
shown by the shaded areas surrounding the curves; smaller 
areas denote less variability. 

 

 
 

Fig 6: Learning Curve for KNN. 
 

Prediction probabilities for the two classes of "healthy" (0.60) 
and "parkinson" (0.40) are shown in Figure 7. Features with 
corresponding weights are listed on the right. Interestingly, 
"D2 <= -0.70" has by far the largest weight (roughly 0.30) to 
contribute to a "Parkinson" prediction, but other traits have 
varying contributions. Positive attributes of Figure 8 are 

believed to have more influence on the output of the model, 
while negative variables have less or even a negative effect. 
For instance, "RPDE" is -1.14, so it is less influential or even 
negatively influential, while "MDVP:Flo(Hz)" has a value of 
0.17, so it is positively influential. 
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Fig 7: Prediction probabilities of KNN. 
 

 
 

Fig 8: Feature analysis of the KNN model. 

 
Among the major medical diagnostics, the key progress is 
that voice biomarkers are being explored for the screening 
and tracking of Parkinson's disease at initial stages adopting 
ML models. Current study is using a non-invasive, easily 
accessible source of data—voice sample analysis—that may 
eventually make it possible for patients to be diagnosed 
quicker and in a more convenient manner. Explainable AI is 
important because it allows for the explanation of models on 
how decisions are being made, aside from the basic 
prediction. The complex relation between voice and 
neurological disorders is depicted by the determination of 
Spread2, RPDE, and MDVP (Hz) as key vocal biomarkers. 
Together, MDVP offers an analysis of the basic frequency 
range, Spread2 analyzes pitch variation, and RPDE looks at 
the complexity of voice pattern, thus offering a multi-
dimensional view of how PD affects speech. 
Lower fundamental frequencies, as measured by MDVP 
(Hz), in Parkinson's patients may serve as a useful marker for 
early identification, which may lead to further medical 
research. In addition to the confirmation of these results, the 
consistency of this study with previous studies contributes to 
the body of knowledge and supports the continuing efforts in 
the fight against Parkinson's disease. That the suggestion 
should be that future studies incorporate both time-series 
speech data and a wider range of demographics speaks to at 
least an attempt at making the models more robust and 
interpretable. These would bring about more precise and 
individualized health care solutions. The results of the study 
are, therefore, likely to spur innovative and creative 
approaches in health care, while the combination of machine 
learning with vocal analysis in medical research holds great 
promise. 
 
5. Conclusion 
It should be realized that before these models can be put into 
real-life settings and integrated into clinical decision-making, 
much improvement and validation are still required. A 
number of activities are under way in the pursuit of making 

the models more robust and applicable in all possible 
scenarios. This comes about through much research, 
substantiation of findings using a variety of datasets, and 
collaboration with clinicians. There is a lot of hope that ML-
based diagnostic methods will bring about early detection of 
PD and individualized treatment. Ultimately, this might bring 
improved standards of living for patients and better patient 
outcomes. 
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