

 $International\ Journal\ of\ Multidisciplinary\ Research\ and\ Growth\ Evaluation$

ISSN: 2582-7138

Received: 16-12-2020; Accepted: 14-01-2021

www.allmultidisciplinaryjournal.com

Volume 2; Issue 1; January-February 2021; Page No. 567-580

Bridging Data and Decision-Making: AI-Enabled Analytics for Project Management in Oil and Gas Infrastructure

Ajibola Joshua Ajayi ^{1*}, Experience Efeosa Akhigbe ², Nnaemeka Stanley Egbuhuzor ³, Oluwole Oluwadamilola Agbede ⁴

1-4 PricewaterhouseCoopers (PwC), Lagos Nigeria

Corresponding Author: Ajibola Joshua Ajayi

DOI: https://doi.org/10.54660/.IJMRGE.2021.2.1.567-580

Abstract

The oil and gas industry is increasingly complex, requiring robust project management approaches to handle challenges such as cost overruns, delays, regulatory compliance, and risk management. Artificial Intelligence (AI)-enabled analytics has emerged as a transformative solution, offering real-time data-driven insights to enhance decision-making and improve project outcomes. This paper explores the integration of AI in project management for oil and gas infrastructure, emphasizing how predictive analytics, machine learning, and optimization algorithms bridge the gap between raw data and actionable decisions. Key challenges in oil and gas infrastructure projects include managing vast amounts of unstructured data, mitigating risks in dynamic operational environments, and aligning projects with sustainability goals. AI-enabled analytics addresses these challenges by automating data processing, identifying patterns, and generating actionable insights. This study proposes a comprehensive framework for implementing AI-driven analytics in project management, focusing on resource

allocation, scheduling, and risk mitigation. The framework also incorporates predictive models to forecast potential delays, cost escalations, and equipment failures, enabling proactive interventions. Case studies highlight the successful application of AI-enabled analytics in major oil and gas projects, demonstrating significant improvements in operational efficiency, cost control, and safety compliance. The use of AI tools such as digital twins, natural language processing (NLP) for document management, and computer vision for site monitoring is discussed, showcasing tangible benefits in reducing downtime and optimizing resource utilization. This paper concludes by addressing future trends, including the integration of AI with the Internet of Things (IoT) for real-time project monitoring, the role of generative AI in designing project workflows, and advancements in autonomous decision-making systems. These developments have the potential to redefine project management in the oil and gas industry, enabling organizations to navigate challenges with greater agility and precision.

Keywords: Artificial Intelligence, Project Management, Oil and Gas Infrastructure, Predictive Analytics, Machine Learning, Risk Mitigation, Optimization Algorithms, Digital Twins, IoT, Sustainability, Cost Control, Real-Time Decision-Making, Autonomous Systems.

1. Introduction

Project management in oil and gas infrastructure is characterized by a unique set of challenges that arise from the complexity, scale, and high stakes involved in these projects. The intricate nature of oil and gas projects often involves multiple stakeholders, complex supply chains, and stringent regulatory requirements, necessitating effective management to ensure project success (Nwalia, et al., 2021). Delays, cost overruns, and operational inefficiencies are prevalent risks that can lead to significant financial and operational consequences (Abdulla & Al-Hashimi, 2019). For instance, Roshdi et al. emphasize the critical importance of resource allocation in managing cost overruns in engineering procurement construction (EPC) projects within the oil and gas sector, highlighting the need for meticulous planning and execution to mitigate such risks. Similarly, Rawat et al. identify various risk factors that can adversely affect project timelines and budgets, underscoring the necessity of comprehensive risk management strategies. In this context, the role of data-driven decision-making becomes paramount. The ability to analyze vast amounts of project data to identify trends and predict potential challenges is essential for maintaining project timelines, optimizing resource allocation, and ensuring compliance with regulatory standards. Traditional project management approaches often fall short in fully leveraging the data generated throughout the project lifecycle, which can lead to inefficiencies and missed opportunities (Abdulla & Al-Hashimi, 2019; Ishtiaq & Jahanzaib, 2018). For example, the integration of Al-driven predictive maintenance can significantly enhance asset integrity management by providing real-time insights into equipment health, thereby enabling timely interventions and informed decision-making.

The emergence of Artificial Intelligence (AI) as a transformative tool in project management is reshaping how data is utilized to address these challenges. AI-enabled analytics, which leverage machine learning, natural language processing, and predictive modeling, allow for real-time processing and analysis of large datasets, providing actionable insights that enhance decision-making (Idigo & Onyekwelu, 2020, Onyekwelu & Nwagbala, 2021). This capability is particularly crucial in the oil and gas sector, where projects are often subject to fluctuating market conditions and evolving regulatory landscapes. AI technologies facilitate proactive risk identification, resource optimization, and process streamlining, ultimately improving project outcomes. For instance, Waqar et al. highlight the potential of AI applications in oil and gas projects to support sustainable development by addressing the unique risks and challenges associated with these projects.

This study focuses on leveraging AI-enabled analytics to enhance decision-making and project outcomes in oil and gas infrastructure management. It explores specific applications of AI technologies in addressing common project management challenges, including cost estimation, risk mitigation, scheduling, and performance monitoring (Ibeto & Onyekwelu, 2020, Nnenne Ifechi, Onyekwelu & Emmanuel, 2021). By demonstrating how AI-enabled analytics can improve efficiency, reduce risks, and optimize resource utilization, the study aims to provide a roadmap for integrating these technologies into project management practices. This integration is essential for bridging the gap between raw data and actionable insights, transforming data into a strategic asset that drives efficiency and innovation in the oil and gas industry.

In conclusion, the complexities of project management in the oil and gas sector necessitate a robust framework that incorporates data-driven decision-making technologies. By adopting these advanced methodologies, project managers can navigate the multifaceted challenges of the industry, ultimately leading to more successful project outcomes.

2.1. Methodology

This study employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework to conduct a comprehensive systematic review on

application of AI-enabled analytics in project management for oil and gas infrastructure. The methodology involves identifying relevant literature, selecting appropriate studies, extracting data, and synthesizing findings to bridge the gap between data analytics and decision-making in project management.

The first phase involves the identification of sources from peer-reviewed journals, conference proceedings, and relevant technical reports. Databases such as Scopus, IEEE Xplore, ScienceDirect, and Web of Science are searched using predefined keywords including "AI in project management," "oil and gas infrastructure," "decision-making analytics," and "digital transformation in oil and gas." The search strategy is refined using Boolean operators and citation tracking to ensure comprehensive coverage of relevant studies.

The second phase focuses on study selection based on inclusion and exclusion criteria. Studies must be published between 2014 and 2021, be written in English, and explicitly discuss AI applications in project management within the oil and gas sector. Exclusion criteria include studies with a broad focus on AI in construction without oil and gas relevance, studies with insufficient methodological details, and duplicate publications. The screening process is performed in two stages: title and abstract review, followed by a full-text review.

The third phase involves data extraction and synthesis. Selected studies are analyzed for key information, including the type of AI application, methodologies used, challenges identified, and project management outcomes. A structured data extraction template is used to ensure consistency. Key themes and patterns are identified, and results are synthesized to provide insights into how AI-driven analytics improve decision-making and project efficiency.

The final phase consists of critical appraisal and reporting. The quality of the studies is assessed using PRISMA guidelines, ensuring reliability and relevance. The systematic review findings are reported following the PRISMA flow diagram, illustrating the screening and selection process. This methodology enables a rigorous and transparent synthesis of literature on AI-enabled analytics in project management for oil and gas infrastructure. Figure 1 shows the PRISMA flowchart illustrating the study selection process for the systematic review on AI-enabled analytics in oil and gas project management.

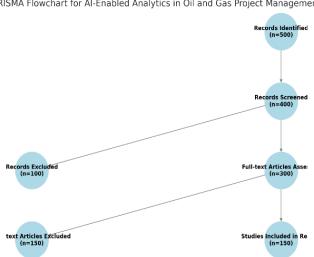
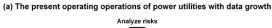


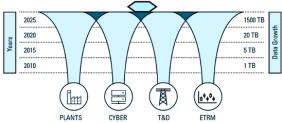
Fig 1: PRISMA Flow chart of the study methodology

PRISMA Flowchart for Al-Enabled Analytics in Oil and Gas Project Management

2.2. Challenges in oil and gas infrastructure project management

Project management in oil and gas infrastructure is inherently complex, characterized by large-scale operations, significant investments, and intricate processes. These projects involve multiple phases, including planning, design, construction, and operations, each of which generates extensive data and requires careful coordination. The sector faces persistent challenges such as managing vast and unstructured data, mitigating risks, adhering to tight budgets and timelines, and aligning operational goals with sustainability imperatives. Addressing these challenges is essential to ensure successful project execution, minimize inefficiencies, and maintain competitiveness in a rapidly evolving industry (Dunkwu, *et al.*, 2019, Ibeto & Onyekwelu, 2020).


One of the primary challenges in oil and gas infrastructure project management is dealing with the complexity of data. These projects generate enormous amounts of data from various sources, including geological surveys, equipment sensors, financial records, and operational logs. Much of this data is unstructured, existing in formats such as text, images, or video, which makes it difficult to analyze using traditional tools (Faith, 2018, Gerald, Ifeanyi & Phina, Onyekwelu, 2020). Additionally, data is often dispersed across multiple departments, stakeholders, and systems, creating silos that hinder effective collaboration and decision-making. The lack of a unified approach to data management results in missed opportunities to identify trends, optimize processes, or predict potential issues. For example, drilling operations may generate terabytes of sensor data, yet without advanced analytics, extracting actionable insights from this information can be time-consuming and error-prone. The challenge lies not only in handling the volume of data but also in ensuring its accuracy, consistency, and relevance for decision-making.


Risk management is another critical challenge in oil and gas infrastructure projects, given the inherent hazards associated with the industry. Safety risks, such as equipment failures or worker injuries, can lead to costly delays, legal liabilities, and reputational damage. Environmental risks, including oil spills or emissions, pose significant threats to ecosystems and communities, as well as financial penalties due to stringent regulatory requirements. Operational risks, such as supply chain disruptions or unexpected equipment downtime, further complicate project management efforts (Adepoju, Oladeebo & Toromade, 2019, Obi, et al., 2018). Managing these risks

requires comprehensive planning, real-time monitoring, and effective mitigation strategies, which are often challenging to implement in traditional frameworks. The dynamic nature of risks in oil and gas projects, influenced by factors like volatile market conditions, geopolitical events, and changing regulations, underscores the need for robust and adaptive risk management practices.

Cost and schedule overruns are persistent challenges that plague oil and gas infrastructure projects. These projects are typically capital-intensive, with budgets running into millions or even billions of dollars. Delays in project timelines can result in significant cost escalations, affecting the overall profitability and viability of the project (Obi, et al., 2018). Common causes of cost and schedule overruns include inaccurate estimations, unforeseen technical challenges, supply chain disruptions, and scope creep. For example, delays in obtaining permits or approvals can halt construction activities, while logistical issues can disrupt the delivery of critical materials. Additionally, fluctuating commodity prices and market conditions can impact budget planning and cost control efforts. Traditional project management methods often struggle to provide the level of precision and foresight needed to prevent such overruns, highlighting the need for advanced tools and analytics to improve forecasting and resource allocation (Obianuju, Ebuka & Phina Onyekwelu, 2021, Okeke, et al., 2019).

Sustainability goals add another layer of complexity to project management in the oil and gas sector. As the industry faces increasing pressure to reduce its environmental footprint, projects must balance operational efficiency with environmental compliance. This includes minimizing greenhouse gas emissions, managing waste, conserving energy, and protecting natural habitats. Meeting these sustainability goals often requires significant changes to traditional processes and technologies, which can be costly and time-consuming to implement. For instance, adopting carbon capture and storage (CCS) technologies or transitioning to renewable energy sources for operations can entail substantial upfront investments and technical challenges (Adepoju, Sanusi & Toromade Adekunle, 2018, Ogungbenle & Omowole, 2012, Onukwulu, Agho & Eyo-Udo, 2021). Furthermore, aligning sustainability objectives with stakeholder expectations, regulatory requirements, and market demands necessitates a holistic approach to project management that integrates environmental considerations into every stage of the project lifecycle. Ahmad, et al., 2021, presented as shown in figure 2, The explosion of big data and AI process information

(b) The future expected operations of power utilities with Al technology

Fig 2: The explosion of big data and AI process information (Ahmad, et al., 2021).

The challenges of data complexity, risk management, cost and schedule overruns, and sustainability goals are interconnected, often compounding one another. For example, insufficient risk management can lead to safety incidents that cause delays and escalate costs, while poor data integration can hinder the identification of opportunities to improve efficiency or reduce emissions (Olufemi-Phillips, et al., 2020). Addressing these challenges requires a comprehensive and integrated approach that leverages advanced technologies and innovative strategies. AI-enabled analytics offers a promising solution to bridge the gap between data and decision-making, enabling project managers to navigate the complexities of oil and gas infrastructure projects more effectively.

By utilizing AI-powered tools, project managers can overcome data complexity by automating the processing and analysis of large, unstructured datasets. Machine learning algorithms can identify patterns and correlations within data, providing actionable insights that inform decision-making and optimize operations. For example, predictive analytics

can forecast equipment failures based on historical sensor data, allowing for proactive maintenance and reducing downtime (Onyekwelu, 2019). Similarly, natural language processing (NLP) can extract valuable information from unstructured data sources such as reports, emails, and logs, enhancing situational awareness and decision-making capabilities.

In the realm of risk management, AI-enabled analytics can enhance the identification, assessment, and mitigation of risks. Real-time monitoring systems powered by AI can detect anomalies and potential hazards, enabling project teams to respond swiftly and effectively. For instance, AI-powered tools can analyze weather patterns to predict environmental risks or assess supply chain data to identify vulnerabilities. By providing a comprehensive view of risks and their potential impacts, AI-enabled analytics supports the development of more robust and adaptive risk management strategies. Digital twin frame diagram for oil and gas production presented by Shen, *et al.*, 2021, is shown in figure 3

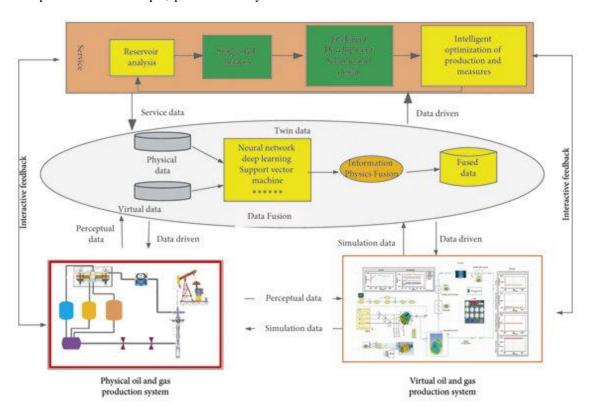


Fig 3: Digital twin frame diagram for oil and gas production (Shen, et al., 2021).

AI-powered tools also offer significant advantages in addressing cost and schedule overruns. Advanced analytics can improve the accuracy of cost and time estimations by analyzing historical data and simulating various scenarios. This allows project managers to identify potential bottlenecks, allocate resources more efficiently, and develop contingency plans to mitigate delays (Onukwulu, *et al.*, 2021, Onyekwelu, *et al.*, 2018). Furthermore, AI can optimize supply chain operations by predicting demand, managing inventory, and identifying alternative suppliers, reducing the likelihood of disruptions and associated cost escalations.

Incorporating AI-enabled analytics into sustainability efforts can help oil and gas projects achieve their environmental objectives more effectively. AI can optimize energy consumption, monitor emissions, and track compliance with environmental regulations. For example, AI-powered tools can analyze data from sensors and meters to identify opportunities for energy savings or detect anomalies that indicate inefficiencies. Additionally, AI can support the integration of renewable energy sources into project operations by predicting energy demand and optimizing resource utilization.

In conclusion, project management in oil and gas infrastructure faces numerous challenges, including data complexity, risk management, cost and schedule overruns, and sustainability goals. These challenges highlight the need for innovative approaches and advanced technologies to improve efficiency, reduce risks, and achieve project objectives. AI-enabled analytics provides a powerful solution to bridge the gap between data and decision-making, enabling

project managers to address these challenges with greater precision, agility, and effectiveness (Onyekwelu & Oyeogubalu, 2020, Onyekwelu, *et al.*, 2021). By leveraging AI technologies, the oil and gas sector can navigate the complexities of infrastructure projects more effectively, paving the way for a more resilient, sustainable, and efficient future.

2.3. AI-Enabled analytics: a transformative solution

AI-enabled analytics is reshaping the way project management challenges in oil and gas infrastructure are addressed, providing transformative solutions that enhance decision-making, operational efficiency, and risk mitigation. These technologies leverage the power of advanced algorithms, machine learning, and optimization techniques to analyze vast amounts of complex data, uncover actionable insights, and enable real-time decision-making (Onyekwelu, 2020). In an industry where projects are characterized by their scale, complexity, and high stakes, the integration of AI-enabled analytics represents a critical evolution in bridging

the gap between data and decision-making, ultimately driving better project outcomes.

Key AI tools have become indispensable in project management by addressing the specific needs and complexities of the oil and gas sector. Predictive analytics, one of the most impactful tools, provides the ability to forecast risks and delays with remarkable accuracy. By analyzing historical and real-time data, predictive models identify potential bottlenecks, equipment failures, or disruptions in supply chains before they occur. For instance, in drilling operations, predictive analytics can forecast mechanical breakdowns based on equipment usage patterns and sensor data, enabling project managers to schedule preventive maintenance and avoid costly downtime (Onyekwelu & Ibeto, 2020, Onyekwelu, 2020). Similarly, predictive models can analyze market trends, geopolitical factors, and weather patterns to anticipate risks that might affect project schedules, allowing for proactive planning and resource allocation.

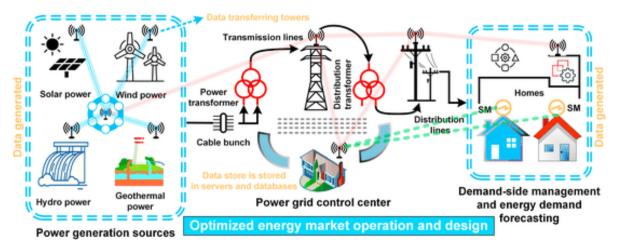


Fig 4: (Ahmad, et al., 2021)

Machine learning algorithms are another vital component of AI-enabled analytics in project management. These algorithms excel at recognizing patterns and correlations in large, complex datasets, providing project managers with insights that traditional tools often overlook. In the oil and gas industry, machine learning can be used to analyze geological data to identify optimal drilling locations, assess the performance of construction equipment, or monitor the efficiency of pipeline operations (Anekwe, Onyekwelu & Akaegbobi, 2021, Onyekwelu & Chinwe, 2020). By continuously learning from new data, these algorithms adapt to changing conditions and improve their predictive accuracy over time, ensuring that project managers have access to the most relevant and up-to-date information for decision-making.

Optimization techniques enabled by AI are revolutionizing resource allocation and scheduling in project management. These techniques use advanced mathematical models to determine the most efficient allocation of resources, such as labor, materials, and equipment, while minimizing costs and meeting project deadlines. For example, in pipeline construction projects, AI optimization tools can analyze factors such as terrain, material availability, and workforce capacity to develop optimal construction schedules and minimize delays. Similarly, these tools can optimize logistics operations by identifying the most cost-effective routes for

transporting materials, reducing fuel consumption and greenhouse gas emissions (Onyekwelu & Uchenna, 2020, Onyekwelu, 2017). By streamlining resource allocation and scheduling, AI-driven optimization techniques help projects stay on track and within budget, even in the face of unforeseen challenges.

The benefits of integrating AI-enabled analytics into oil and gas infrastructure project management are extensive and transformative. One of the most significant advantages is the ability to make real-time decisions based on data-driven insights. Traditional project management approaches often rely on periodic reporting and retrospective analysis, which can delay critical decision-making (Onyekwelu, Arinze & Chukwuma, 2015, Oyegbade, et al., 2021). AI-enabled analytics, on the other hand, provides project managers with real-time visibility into project performance, enabling them to respond quickly to emerging issues and opportunities. For example, real-time dashboards powered by AI can monitor key performance indicators (KPIs) such as cost, schedule adherence, and resource utilization, providing project managers with actionable insights at their fingertips. This level of visibility ensures that decisions are informed by the latest data, reducing uncertainty and enhancing project outcomes.

Enhanced operational efficiency and cost control are additional benefits of AI integration in project management.

By automating repetitive and time-consuming tasks, such as data entry, document processing, and compliance monitoring, AI-enabled tools free up valuable time for project managers and their teams to focus on higher-value activities. For instance, AI-powered document analysis tools can quickly review contracts, permits, and regulatory documents, ensuring compliance and reducing the risk of costly errors (Onyekwelu, Ogechukwuand & Shallom, 2021, Oyeniyi, et al., 2021). Moreover, AI-driven analytics can identify inefficiencies in project workflows and recommend improvements, such as optimizing material procurement processes or streamlining communication between stakeholders. These efficiency gains translate into significant cost savings, making projects more financially viable and competitive.

Proactive risk mitigation is another critical benefit of AIenabled analytics in oil and gas infrastructure projects. The ability to predict and address risks before they materialize is essential in an industry where safety, environmental, and financial risks are pervasive. AI-powered tools can analyze vast amounts of data from sensors, reports, and external sources to identify potential risks and recommend mitigation strategies. For example, machine learning algorithms can detect anomalies in pipeline pressure data, signaling a potential leak or rupture that requires immediate attention (Zhang, et al., 2021). Similarly, predictive models can assess the likelihood of weather-related disruptions to offshore drilling operations, enabling project managers to take preemptive measures to safeguard personnel and equipment. By proactively addressing risks, AI-enabled analytics reduces the likelihood of project delays, cost overruns, and safety incidents, ensuring smoother project execution and enhanced stakeholder confidence.

Beyond these immediate benefits, the integration of AI-enabled analytics into project management has long-term implications for the oil and gas sector. It fosters a culture of data-driven decision-making, where insights derived from AI tools inform every aspect of project planning and execution. This cultural shift not only improves project outcomes but also enhances the overall resilience and adaptability of organizations in a rapidly changing industry. For instance, companies that leverage AI-enabled analytics to optimize their operations and mitigate risks are better positioned to respond to market fluctuations, regulatory changes, and technological advancements, ensuring their long-term sustainability and competitiveness.

Furthermore, AI-enabled analytics contributes to the broader goals of sustainability and environmental stewardship in the oil and gas sector. By optimizing resource utilization, reducing waste, and improving energy efficiency, AI tools help projects align with environmental regulations and minimize their ecological footprint. For example, AI-powered energy management systems can monitor and control energy consumption during construction activities, reducing greenhouse gas emissions and supporting sustainability initiatives (Yu, et al., 2017, Zachariadis, Hileman & Scott, 2019). Similarly, predictive analytics can enhance the efficiency of carbon capture and storage (CCS) technologies, enabling projects to meet stringent emission reduction targets.

In conclusion, AI-enabled analytics represents a transformative solution for bridging the gap between data and decision-making in oil and gas infrastructure project management. Key AI tools such as predictive analytics,

machine learning algorithms, and optimization techniques empower project managers to address complex challenges with greater precision, efficiency, and agility. The benefits of AI integration include real-time decision-making, enhanced operational efficiency, cost control, and proactive risk mitigation, all of which contribute to improved project outcomes and stakeholder satisfaction (Misra, *et al.*, 2020). As the oil and gas sector continues to navigate an increasingly complex and dynamic landscape, the adoption of AI-enabled analytics will play a pivotal role in driving innovation, sustainability, and competitiveness. By embracing these transformative technologies, organizations can not only overcome the challenges of today but also position themselves for success in the future.

2.4. Framework for ai-driven project management

The implementation of AI-driven project management frameworks in oil and gas infrastructure represents a transformative step toward bridging the gap between data and decision-making. Such a framework is essential for addressing the challenges posed by the sector's complexity, scale, and high stakes. AI-enabled analytics serves as the backbone of this transformation, offering advanced tools for data integration, predictive risk management, resource optimization, and cybersecurity (Xu, et al., 2019). A structured and comprehensive framework ensures that AI technologies are effectively deployed to enhance efficiency, reduce risks, and deliver successful project outcomes.

A critical component of the framework is data integration and automation, which ensures seamless data collection, processing, and analysis across all phases of project management. Oil and gas infrastructure projects generate vast quantities of data from diverse sources, such as sensors, operational logs, market reports, and financial records (Volberda, et al., 2021, Yi, et al., 2017). Traditionally, much of this data remains siloed, unstructured, or underutilized, limiting its potential to inform decision-making. Automating data integration addresses these issues by aggregating data from multiple sources into centralized platforms where it can be analyzed holistically. Advanced AI algorithms can process both structured and unstructured data, transforming raw information into actionable insights in real time. For example, sensor data from pipelines can be continuously monitored and analyzed to detect anomalies, while financial data can be used to forecast budgetary trends (Sturtevant, et al., 2019). Automation reduces the manual effort required for data processing, minimizes human error, and accelerates the availability of insights, enabling project managers to make timely and informed decisions.

Predictive models for risk management are another cornerstone of the AI-driven project management framework. Risk is a pervasive challenge in oil and gas infrastructure, encompassing delays, cost escalations, equipment failures, and safety hazards. AI-powered predictive models leverage historical and real-time data to forecast potential risks and provide actionable recommendations to mitigate them. For instance, machine learning algorithms can analyze past project data to identify patterns associated with delays, such as supply chain disruptions or adverse weather conditions (Barns, 2018, Zutshi, Grilo & Nodehi, 2021). By anticipating these issues, project managers can implement contingency plans to minimize their impact. Similarly, predictive analytics can assess the likelihood of equipment failures based on usage patterns and maintenance records, allowing for

proactive maintenance that prevents costly downtime (Yigitcanlar, et al., 2020). These models also enable more accurate cost forecasting, helping project teams identify potential budget overruns before they occur and adjust their strategies accordingly. The integration of predictive models into the project management framework ensures a proactive approach to risk management, reducing uncertainties and enhancing the likelihood of project success.

The optimization of resource utilization is another critical element of the framework, enabled by AI-driven scheduling and allocation strategies. Efficient resource management is essential in oil and gas infrastructure projects, where labor, materials, and equipment represent significant costs. Traditional resource allocation methods often rely on static models that fail to adapt to changing project conditions (Asch, et al., 2018, Benlian, et al., 2018). AI-driven optimization tools address this limitation by dynamically analyzing real-time data to develop optimal resource allocation strategies. For example, AI algorithms can evaluate factors such as workforce availability, material delivery schedules, and equipment performance to create adaptive project schedules that maximize efficiency (Mhlanga, 2021). These tools can also identify bottlenecks in workflows and recommend adjustments to ensure smooth operations. By optimizing resource utilization, AI not only reduces waste and costs but also improves project timelines and overall productivity. This capability is particularly valuable in large-scale projects where small inefficiencies can lead to significant delays or cost overruns.

Cybersecurity and data privacy are foundational to any AIdriven project management framework, ensuring the secure handling of sensitive project data. The adoption of AIenabled analytics introduces new cybersecurity challenges, as the integration of interconnected systems and cloud-based platforms increases the risk of cyber threats. Unauthorized access to project data, whether through hacking or internal vulnerabilities, can result in financial losses, reputational damage, and compromised project outcomes (Ansell & Gash, 2018, Turban, Pollard & Wood, 2018). A robust cybersecurity strategy is therefore essential to safeguard data integrity and confidentiality. This includes implementing advanced encryption techniques, multi-factor authentication, and real-time threat detection systems powered by AI. For example, machine learning algorithms can monitor network activity to identify and neutralize potential threats before they escalate (Wang, et al., 2021). Additionally, governments and organizations must establish data privacy policies that comply with regulatory frameworks, such as the General Data Protection Regulation (GDPR), ensuring that project data is handled ethically and transparently. Cybersecurity measures not only protect project data but also build trust among stakeholders, reinforcing the credibility of AI-driven project management systems.

The integration of these components—data automation, predictive models, resource optimization, and cybersecurity—creates a holistic framework that transforms how oil and gas infrastructure projects are managed. By automating data collection and analysis, project managers can gain a comprehensive understanding of project dynamics in real time, enabling them to make informed decisions. Predictive models enhance the ability to anticipate and mitigate risks, reducing uncertainties and ensuring smoother project execution. Optimization tools maximize resource efficiency, improving timelines and reducing costs, while

cybersecurity measures ensure the integrity and confidentiality of project data, fostering stakeholder trust (Rathore, *et al.*, 2021).

A critical factor in the success of this framework is the continuous improvement of AI-driven systems. AI technologies evolve rapidly, and their effectiveness depends on their ability to adapt to changing project requirements and environmental conditions. Regular evaluation and updating of AI models ensure that they remain relevant and capable of addressing emerging challenges (Ali & Hussain, 2017, Bhaskaran, 2019). Feedback loops that incorporate insights from project outcomes and user experiences are essential for refining AI algorithms and enhancing their accuracy and utility. For instance, lessons learned from past projects can inform the development of more robust predictive models or optimization strategies, ensuring that the framework remains resilient and adaptive.

Furthermore, the implementation of this framework requires collaboration among stakeholders, including project managers, data scientists, technology providers, and regulatory bodies. Effective communication and cooperation among these groups ensure that the framework is designed to meet the specific needs of the project while adhering to industry standards and best practices (Vehviläinen, 2019, Vilasini, Neitzert & Rotimi, 2011). Training and capacity-building programs are also essential to equip project teams with the skills needed to effectively use AI-driven tools and interpret their outputs. By fostering a culture of innovation and collaboration, organizations can maximize the potential of AI-enabled analytics to drive project success.

In conclusion, the framework for AI-driven project management in oil and gas infrastructure represents a comprehensive approach to bridging data and decisionmaking. By integrating data automation, predictive risk management, resource optimization, and cybersecurity measures, the framework addresses the critical challenges faced by the sector. It enables project managers to harness the power of AI-enabled analytics to improve efficiency, reduce risks, and deliver successful project outcomes (Boje, et al., 2020). As the oil and gas industry continues to evolve, this framework provides a roadmap for leveraging AI technologies to meet the demands of increasingly complex projects while ensuring sustainability, security, and resilience. Through strategic implementation and continuous improvement, AI-driven project management has the potential to transform the future of infrastructure development in the oil and gas sector.

2.5. Case Studies

The application of AI-enabled analytics in oil and gas infrastructure has provided transformative solutions to some of the most complex challenges in the sector. By bridging the gap between data and decision-making, AI technologies have enabled companies to improve safety, operational efficiency, and cost control while navigating the complexities of large-scale projects. These advancements have been particularly impactful in offshore drilling, pipeline construction, and refinery upgrades, where the integration of AI tools has significantly improved project outcomes.

Offshore drilling projects exemplify the use of AI to enhance safety and operational efficiency in high-stakes environments. These projects are often conducted in remote and harsh conditions, requiring precise planning and execution to ensure success. AI-enabled analytics plays a

crucial role in addressing the unique challenges of offshore drilling, such as equipment failures, safety risks, and operational delays. By leveraging AI-powered predictive analytics, project managers can monitor the performance of drilling equipment in real time, detecting anomalies and forecasting potential failures. For example, machine learning algorithms analyze data from sensors embedded in equipment, such as drill bits and pumps, to identify patterns that indicate wear and tear (Mohanty, Choppali & Kougianos, 2016, Van Zyl, Mathafena & Ras, 2017). This proactive approach enables maintenance teams to address issues before they escalate, minimizing downtime and reducing the risk of costly disruptions.

Safety is another critical area where AI has made significant contributions to offshore drilling projects. AI-powered systems can analyze vast amounts of data from safety sensors, operational logs, and environmental monitors to identify potential hazards and recommend preventive measures. For instance, AI algorithms can monitor weather conditions and wave patterns to predict adverse events, allowing crews to adjust operations or evacuate personnel if necessary (Micheli & Cagno, 2016, Toutounchian, et al., 2018). Similarly, AI-driven safety platforms can provide realtime alerts about gas leaks, equipment malfunctions, or human errors, enabling swift and informed responses to mitigate risks. The integration of AI-enabled analytics in offshore drilling has not only improved operational efficiency but also enhanced the safety and well-being of workers, making it an indispensable tool in the industry.

Pipeline construction projects have also benefited significantly from the application of AI-enabled analytics, particularly through the use of digital twins and Internet of Things (IoT) technologies for real-time monitoring. Digital twins, virtual replicas of physical assets, enable project managers to simulate and analyze construction processes in a controlled digital environment (Liu, Wang & Wilkinson, 2016, Thumburu, 2020). This technology allows teams to visualize the entire pipeline construction process, identify potential bottlenecks, and optimize workflows before physical construction begins. For example, digital twins can model the impact of terrain variations, weather conditions, and material availability on construction schedules, helping project managers develop more accurate and efficient plans. IoT devices play a complementary role by providing realtime data from the construction site, feeding continuous updates to digital twin models. Sensors installed on equipment, vehicles, and materials capture data on parameters such as temperature, pressure, location, and utilization. AI algorithms process this data to provide actionable insights, such as identifying underutilized resources, detecting delays, or predicting equipment failures (Kabirifar & Mojtahedi, 2019, Thamrin, 2017). For instance, if an IoT sensor detects abnormal vibrations in a piece of machinery, AI-powered systems can alert operators and recommend immediate maintenance to prevent costly breakdowns. The integration of digital twins and IoT technologies in pipeline construction has revolutionized the way projects are managed, enabling real-time decisionmaking, improving resource utilization, and reducing the risk of delays and cost overruns.

In addition to enhancing operational efficiency, AI-enabled analytics has been instrumental in monitoring environmental compliance during pipeline construction. AI systems can analyze data from environmental sensors to detect potential violations, such as excessive emissions or unauthorized disturbances to protected areas. This proactive approach helps construction teams address compliance issues in real time, avoiding penalties and ensuring adherence to regulatory requirements (Ibrahim, 2015, Tezel, *et al.*, 2020). The ability to monitor and manage environmental impacts effectively is a critical advantage in an industry increasingly focused on sustainability and social responsibility.

Refinery upgrades represent another area where AI-enabled analytics has delivered significant value, particularly in cost estimation and workflow optimization. Upgrading refinery infrastructure involves complex engineering processes, tight schedules, and substantial financial investments, making accurate planning and execution essential. AI-powered tools have revolutionized cost estimation by analyzing historical data, market trends, and project specifications to provide more accurate and reliable forecasts. Machine learning algorithms consider factors such as material costs, labor rates, and equipment requirements to predict total project costs with greater precision (Hossain, 2018, Syed, *et al.*, 2020, Watson, *et al.*, 2018). This level of accuracy enables project managers to allocate budgets more effectively, reducing the likelihood of cost overruns and ensuring financial sustainability.

Workflow optimization is another critical application of AI in refinery upgrades. These projects often involve multiple interdependent tasks, requiring careful coordination to avoid delays and inefficiencies. AI-driven scheduling tools analyze data from past projects and real-time operations to develop optimal workflows that minimize downtime and maximize productivity. For example, AI algorithms can sequence tasks to ensure that construction crews, equipment, and materials are available exactly when needed, avoiding idle time and resource waste (Frota Barcellos, 2019, Steyn, 2014). Similarly, AI systems can identify potential conflicts in the construction schedule, such as overlapping tasks or resource shortages, and recommend adjustments to maintain project timelines.

AI-enabled analytics also plays a vital role in improving safety and quality during refinery upgrades. By monitoring construction activities and analyzing data from sensors and inspections, AI systems can identify potential safety risks or quality issues before they escalate. For instance, AI-powered image recognition technology can analyze photos and videos from construction sites to detect structural defects, misaligned equipment, or unsafe working conditions (Ebrahim, Battilana & Mair, 2014, Soni & T. Krishnan, 2014). This real-time monitoring enables project managers to address issues promptly, ensuring that refinery upgrades meet the highest safety and quality standards.

The integration of AI-enabled analytics into refinery upgrades has also facilitated better decision-making at the strategic level. By providing comprehensive insights into project performance, resource utilization, and risk factors, AI tools empower executives to make informed decisions that align with organizational goals. For example, predictive analytics can help leaders evaluate the potential return on investment for different upgrade scenarios, enabling them to prioritize initiatives that deliver the greatest value (Diaz, et al., 2021, Singh & Abhinav Parashar, 2021). This strategic perspective ensures that refinery upgrades contribute to long-term operational efficiency, profitability, and sustainability. In conclusion, the application of AI-enabled analytics in offshore drilling, pipeline construction, and refinery upgrades demonstrates its transformative potential for project

management in the oil and gas sector. By leveraging advanced tools such as predictive analytics, digital twins, IoT technologies, and machine learning algorithms, companies can enhance safety, operational efficiency, and cost control while addressing the complexities of large-scale projects (Sharma, *et al.*, 2021). These case studies highlight the significant advantages of integrating AI-enabled analytics into project management frameworks, providing a blueprint for organizations seeking to improve their project outcomes. As the oil and gas industry continues to evolve, the adoption of AI-driven solutions will play an increasingly critical role in bridging the gap between data and decision-making, driving innovation, and ensuring the long-term success of infrastructure projects.

2.6. Future trends in ai for project management

The future of project management in oil and gas infrastructure is poised to undergo a significant transformation through advancements in Artificial Intelligence (AI). As the sector continues to face challenges related to complexity, scale, and operational efficiency, the integration of emerging AI technologies promises to redefine how projects are planned, executed, and monitored. Key trends shaping the future of AI in project management include the integration of Internet of Things (IoT) technologies for real-time data collection, the use of generative AI for automated workflow design and scenario simulations, and the development of autonomous decisionmaking systems for self-correcting and self-optimizing project management (Silwimba, 2019, Whitehead, 2017). These trends are expected to drive innovation, improve productivity, and enhance decision-making capabilities, bridging the gap between data and actionable insights.

One of the most significant trends in AI for project management is its integration with IoT technologies, enabling real-time data collection and project monitoring. IoT devices, equipped with sensors and communication capabilities, generate a continuous stream of data from various components of oil and gas infrastructure projects, such as equipment, pipelines, and construction sites (Chan, 2020, Sandilya & Varghese, 2016). By combining this realtime data with AI-enabled analytics, project managers gain unprecedented visibility into project performance and can respond proactively to emerging issues. For example, sensors installed on construction equipment can monitor metrics such as fuel consumption, operational efficiency, and maintenance needs. AI algorithms analyze this data in real time to identify inefficiencies, predict equipment failures, and recommend corrective actions, reducing downtime and improving

Real-time data collection also extends to environmental monitoring, an increasingly critical aspect of oil and gas infrastructure projects. IoT sensors can measure emissions, detect leaks, and assess the environmental impact of construction activities. AI systems process this data to ensure compliance with environmental regulations, optimize resource usage, and minimize ecological footprints. For instance, in pipeline projects, AI-powered monitoring systems can detect pressure anomalies that indicate potential leaks, enabling immediate intervention and preventing environmental damage (Castro, 2019, Salamkar & Allam, 2019). The seamless integration of IoT and AI creates a dynamic feedback loop where data flows continuously from the field to the analytics platform, empowering project

managers with actionable insights that enhance decisionmaking and operational efficiency.

Generative AI represents another transformative trend in project management, particularly in workflow design and scenario simulations. Traditional project planning methods often involve manual processes that are time-consuming and prone to human error. Generative AI addresses these limitations by automating the design of project workflows and generating multiple scenarios for analysis (Boda & Immaneni, 2019, Ross & Ross, 2015). Using historical data and predefined project parameters, generative AI can create detailed project plans, including task sequences, resource allocations, and risk mitigation strategies. For example, in refinery upgrade projects, generative AI can simulate different construction sequences to identify the most efficient approach, considering factors such as workforce availability, material delivery schedules, and safety constraints.

Scenario simulations enabled by generative AI allow project managers to explore various "what-if" scenarios, assessing the potential impact of changes in project conditions. For instance, AI systems can model the effects of delays in material delivery or fluctuations in labor costs, helping project teams develop contingency plans to mitigate risks. This capability is particularly valuable in the oil and gas sector, where projects are subject to dynamic and often unpredictable conditions (Arundel, Bloch & Ferguson, 2019, Panda & Sahu, 2014). By automating workflow design and enabling scenario analysis, generative AI enhances the precision and adaptability of project planning, ensuring that projects remain on track and within budget.

The development of autonomous decision-making systems is an emerging trend that holds the potential to revolutionize project management in oil and gas infrastructure. These systems leverage advanced AI algorithms, including reinforcement learning and deep learning, to analyze data, make decisions, and execute actions without human intervention (Amirtash, Parchami Jalal & Jelodar, 2021, Pal, Wang & Liang, 2017). Autonomous decision-making systems are designed to be self-correcting and selfoptimizing, continuously learning from their interactions with the project environment to improve performance over time. For example, in offshore drilling operations, an autonomous system can monitor real-time data from drilling equipment, identify inefficiencies, and automatically adjust drilling parameters to optimize performance. This level of automation reduces the reliance on human oversight and allows project teams to focus on strategic decision-making. Self-correcting systems are particularly valuable in dynamic and high-risk environments, where rapid responses to changing conditions are essential. For instance, during pipeline construction, an autonomous decision-making system can detect deviations from the construction schedule and automatically reallocate resources to address delays. Similarly, in refinery operations, such systems can monitor equipment performance and initiate maintenance activities when anomalies are detected, preventing costly breakdowns and ensuring continuous operation (Al-Hajji & Khan, 2016, Osei-Kyei & Chan, 2015). The ability of these systems to adapt to real-time data and make autonomous decisions enhances project resilience and reduces the likelihood of disruptions, ensuring smoother project execution.

Another critical advantage of autonomous decision-making systems is their capacity for self-optimization. These systems use advanced optimization algorithms to continuously refine project workflows, resource allocations, and risk management strategies. For example, an autonomous system managing a complex construction project can analyze data on workforce productivity, material usage, and equipment availability to identify areas for improvement and implement changes in real time (Al Kaabi, 2021, Ordanini, Parasuraman & Rubera, 2014). This continuous optimization ensures that projects operate at peak efficiency, minimizing waste and maximizing value.

The integration of these future trends—IoT, generative AI, and autonomous decision-making—into project management frameworks has profound implications for the oil and gas industry. Together, these technologies create a cohesive ecosystem where data flows seamlessly from IoT devices to generative AI platforms and autonomous systems, enabling a high degree of coordination, efficiency, and adaptability. Project managers benefit from enhanced visibility into project performance, automated planning and decision-making capabilities, and the ability to respond proactively to changing conditions.

However, the adoption of these advanced technologies also requires addressing key challenges, such as cybersecurity, data privacy, and workforce readiness. The increased reliance on IoT devices and cloud-based AI systems introduces new vulnerabilities to cyberattacks, making robust cybersecurity measures essential. Data privacy concerns must also be addressed to ensure that project data is handled ethically and transparently, particularly when dealing with sensitive information (Alam, *et al.*,2019, Nguyen & Hadikusumo, 2018). Additionally, the successful implementation of these technologies requires a workforce skilled in AI and IoT technologies. Training programs and capacity-building initiatives are critical to equipping project teams with the knowledge and competencies needed to leverage these tools effectively.

In conclusion, the future trends in AI for project management-integration with IoT, generative AI in workflow design, and autonomous decision-making systems—represent a paradigm shift in how oil and gas infrastructure projects are managed. These technologies enable real-time data collection and monitoring, automate complex planning processes, and create self-optimizing systems that adapt to changing conditions. By embracing these advancements, the oil and gas industry can enhance operational efficiency, reduce risks, and achieve greater project success. However, the realization of these benefits requires addressing challenges related to cybersecurity, data privacy, and workforce readiness, as well as fostering collaboration among stakeholders to ensure the seamless integration of these technologies. As these trends continue to evolve, AI-enabled analytics will play an increasingly critical role in bridging data and decision-making, driving innovation and resilience in the oil and gas sector.

2.7. Conclusion

AI-enabled analytics has emerged as a transformative force in project management for oil and gas infrastructure, revolutionizing how data is utilized to drive decisions, streamline operations, and mitigate risks. By harnessing the power of AI technologies such as predictive analytics, machine learning, and optimization algorithms, the industry has gained unprecedented capabilities to address complex challenges. From enhancing safety in offshore drilling projects to optimizing resource utilization in pipeline

construction and improving cost control in refinery upgrades, AI has demonstrated its ability to bridge the gap between vast datasets and actionable insights. This integration of data-driven decision-making has not only improved project efficiency but also positioned organizations to navigate the dynamic and often uncertain conditions of the oil and gas sector with greater agility and precision.

Key takeaways for effective implementation of AI-enabled analytics in project management highlight the importance of strategic planning, robust data infrastructure, and stakeholder collaboration. Successful integration begins with establishing a clear framework for data collection, integration, and analysis, ensuring that disparate datasets from various sources are unified into a cohesive system. Organizations must invest in advanced AI tools capable of handling both structured and unstructured data, enabling real-time insights and proactive decision-making. Equally critical is workforce readiness, as training programs and capacity-building initiatives equip project teams to leverage AI tools effectively. Collaboration between technology providers, industry stakeholders, and regulatory bodies is essential to tailor AI solutions to the unique requirements of oil and gas infrastructure projects while ensuring compliance with ethical standards and data privacy regulations.

For the future, several recommendations can guide further research and adoption of AI-enabled analytics in project management. First, advancing AI technologies to integrate seamlessly with emerging innovations like IoT, digital twins, and autonomous systems will unlock new opportunities for real-time monitoring, predictive modeling, and self-optimizing project workflows. Research should focus on enhancing the transparency and explainability of AI algorithms to foster trust among stakeholders and ensure accountability in decision-making processes. Additionally, addressing cybersecurity concerns and strengthening data protection frameworks will be critical to safeguarding sensitive project information and maintaining stakeholder confidence.

As AI technologies continue to evolve, their role in project management for oil and gas infrastructure will become increasingly indispensable. By embracing AI-enabled analytics and building the necessary technical, organizational, and regulatory foundations, the industry can not only overcome existing challenges but also create more sustainable, efficient, and resilient project management systems. The future of the oil and gas sector lies in leveraging AI as a strategic enabler, transforming data into actionable insights and bridging the gap between complexity and clarity in project execution.

References

- Abdulla H, Al-Hashimi M. The impact of project management methodologies on project success: a case study of the oil and gas industry. Journal of Engineering Project and Production Management. 2019. doi:10.2478/jeppm-2019-0013.
- Adepoju AA, Oladeebo JO, Toromade AS. Analysis of occupational hazards and poverty profile among cassava processors in Oyo State, Nigeria. Asian Journal of Advances in Agricultural Research. 2019;9(1):1-13.
- Adepoju AA, Sanusi WA, Toromade Adekunle S. Factors influencing food security among maize-based farmers in Southwestern Nigeria. International Journal of Research in Agricultural Sciences. 2018;5(4):2348-

- 3997.
- 4. Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, Chen H. Artificial intelligence in sustainable energy industry: status quo, challenges and opportunities. Journal of Cleaner Production. 2021;289:125834.
- 5. Al Kaabi MSH. Factors influencing timely completion of construction projects in the oil industry in the United Arab Emirates-An exploratory study. Doctoral dissertation, Aberystwyth University, UK. 2021.
- Alam M, Zou PX, Stewart RA, Bertone E, Sahin O, Buntine C, Marshall C. Government championed strategies to overcome the barriers to public building energy efficiency retrofit projects. Sustainable Cities and Society. 2019;44:56-69.
- Al-Hajji H, Khan S. Keeping oil & gas EPC major projects under control: strategic & innovative project management practices. Abu Dhabi International Petroleum Exhibition and Conference. 2016 Nov;D021S033R003.
- 8. Amirtash P, Parchami Jalal M, Jelodar MB. Integration of project management services for international engineering, procurement and construction projects. Built Environment Project and Asset Management. 2021;11(2):330-349.
- 9. Anekwe E, Onyekwelu O, Akaegbobi A. Digital transformation and business sustainability of telecommunication firms in Lagos State, Nigeria. IOSR Journal of Economics and Finance. 2021;12(3):10-15.
- Arundel A, Bloch C, Ferguson B. Advancing innovation in the public sector: aligning innovation measurement with policy goals. Research Policy. 2019;48(3):789-798.
- 11. Boda VVR, Immaneni J. Streamlining FinTech operations: the power of SysOps and smart automation. Innovative Computer Sciences Journal. 2019;5(1).
- 12. Boje C, Guerriero A, Kubicki S, Rezgui Y. Towards a semantic construction digital twin: directions for future research. Automation in Construction. 2020;114:103179.
- 13. Castro R. Blended learning in higher education: trends and capabilities. Education and Information Technologies. 2019;24(4):2523-2546.
- Chan N. Building information modelling: an analysis of the methods used to streamline design-to-construction in New Zealand. Doctoral dissertation, Open Access Te Herenga Waka-Victoria University of Wellington. 2020.
- 15. Diaz A, Schöggl JP, Reyes T, Baumgartner RJ. Sustainable product development in a circular economy: implications for products, actors, decision-making support and lifecycle information management. Sustainable Production and Consumption. 2021;26:1031-1045.
- Dibua CE, Onyekwelu NP, Nwagbala CS. Perceived prestige and organizational identification; banking sector perspective in Nigeria. International Journal of Academic Management Science Research (IJAMSR). 2021;5(6):46-52.
- 17. Dunkwu O, Okeke, Onyekwelu, Akpua. Performance management and employee productivity in selected large organizations in South East. International Journal of Business Management. 2019;5(3):57–69.
- 18. Ebrahim A, Battilana J, Mair J. The governance of social enterprises: mission drift and accountability challenges in hybrid organizations. Research in Organizational Behavior. 2014;34:81-100.

- 19. Faith DO. A review of the effect of pricing strategies on the purchase of consumer goods. International Journal of Research in Management, Science & Technology. 2018:2.
- 20. Frota Barcellos J. Critical elements of a successful project. 2019.
- 21. Gerald E, Ifeanyi OP, Phina Onyekwelu N. Apprenticeship system, an eroding culture with potential for economic anarchy: a focus on Southeast Nigeria. International Journal of Academic Management Science Research (IJAMSR). 2020;4(8):97-102.
- 22. Habibi M, Kermanshachi S, Rouhanizadeh B. Identifying and measuring engineering, procurement, and construction (EPC) key performance indicators and management strategies. Infrastructures. 2019;4(2):14.
- 23. Hossain MD. Performance evaluation of procurement system in ICT industry: a case study. 2018.
- 24. Ibeto, Onyekwelu. Teachers' perception on family life education in public secondary schools in Anambra State. International Journal of Trend in Scientific Research and Development. 2020;4(4). doi:10.31142/ijtsrd24470.
- 25. Ibeto MU, Onyekwelu NP. Effect of training on employee performance: a study of selected banks in Anambra State, Nigeria. International Journal of Research and Innovation in Applied Science. 2020;5(6):141–147.
- 26. Ibrahim II. Project planning in construction procurement: the case of Nigerian indigenous contractors. Doctoral dissertation. 2015.
- 27. Idigo, Onyekwelu E. Apprenticeship system, an eroding culture with potential for economic anarchy: a focus on South East. International Journal of Academic Management Science Research. 2020;4(8):97–102.
- 28. Ishtiaq F, Jahanzaib M. Ranking and sensitivity analysis of key factors for successful project management performance: an application of AHP for oil and gas sector. Pakistan Journal of Engineering Technology & Science. 2018;6(2). doi:10.22555/pjets.v6i2.1964.
- 29. Kabirifar K, Mojtahedi M. The impact of engineering, procurement and construction (EPC) phases on project performance: a case of large-scale residential construction project. Buildings. 2019;9(1):15.
- 30. Liu T, Wang Y, Wilkinson S. Identifying critical factors affecting the effectiveness and efficiency of tendering processes in Public–Private Partnerships (PPPs): a comparative analysis of Australia and China. International Journal of Project Management. 2016;34(4):701-716.
- 31. Mhlanga D. Artificial intelligence in the Industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: lessons from emerging economies?. Sustainability. 2021;13(11):5788.
- 32. Micheli GJ, Cagno E. The role of procurement in performance deviation recovery in large EPC projects. International Journal of Engineering Business Management. 2016;8:1847979016675302.
- 33. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal. 2020;9(9):6305-6324.
- 34. Mohanty SP, Choppali U, Kougianos E. Everything you wanted to know about smart cities: The Internet of Things is the backbone. IEEE Consumer Electronics

- Magazine. 2016;5(3):60-70.
- 35. Nguyen HT, Hadikusumo BH. Human resource-related factors and engineering, procurement, and construction (EPC) project success. Journal of Financial Management of Property and Construction. 2018;23(1):24-39.
- 36. Nnenne Ifechi A, Onyekwelu PN, Emmanuel DC. Strategic thinking and competitive advantage of small and medium scale enterprises (SMEs) in Southeast Nigeria: Strategic thinking. International Journal of Management & Entrepreneurship Research. 2021;3(5):201-207.
- 37. Nwalia, Onyekwelu N, Nnabugwu, Monyei. Social media: a requisite for attainment of business sustainability. IOSR Journal of Business and Management (IOSR-JBM). 2021;23(7):44–52.
- 38. Obi NCM-M, Okeke NP, Onyekwelu OE. Cultural diversity and organizational performance in manufacturing firms in Anambra State, Nigeria. Elixir International Journal. 2018;51795–51803.
- 39. Obi NCM-M, Okeke O, Echo O, Onyekwelu NP. Talent management and employee productivity in selected banks in Anambra State, Nigeria. Elixir International Journal. 2018;51804–51813.
- 40. Obianuju AE, Ebuka AA, Phina Onyekwelu N. Career plateauing and employee turnover intentions: a civil service perspective. International Journal of Management & Entrepreneurship Research. 2021;3(4):175-188.
- 41. Ogungbenle HN, Omowole BM. Chemical, functional and amino acid composition of periwinkle (Tympanotonus fuscatus var. radula) meat. International Journal of Pharmaceutical Sciences Review and Research. 2012;13(2):128-132.
- 42. Okeke M, Onyekwelu N, Akpua J, Dunkwu C. Performance management and employee productivity in selected large organizations in South-East, Nigeria. Journal of Business Management. 2019;5(3):57-70.
- 43. Olufemi-Phillips AQ, Ofodile OC, Toromade AS, Eyo-Udo NL, Adewale TT. Optimizing FMCG supply chain management with IoT and cloud computing integration. International Journal of Management & Entrepreneurship Research. 2020;6(11).
- 44. Onukwulu EC, Agho MO, Eyo-Udo NL. Advances in smart warehousing solutions for optimizing energy sector supply chains. Open Access Research Journal of Multidisciplinary Studies. 2021;2(1):139-157. doi:10.53022/oarjms.2021.2.1.0045.
- 45. Onukwulu EC, Agho MO, Eyo-Udo NL. Framework for sustainable supply chain practices to reduce carbon footprint in energy. Open Access Research Journal of Science and Technology. 2021;1(2):012–034. doi:10.53022/oarjst.2021.1.2.0032.
- Onukwulu NEC, Agho NMO, Eyo-Udo NNL. Advances in smart warehousing solutions for optimizing energy sector supply chains. Open Access Research Journal of Multidisciplinary Studies. 2021;2(1):139-157. doi:10.53022/oarjms.2021.2.1.0045.
- 47. Onyekwelu CA. Effect of reward and performance management on employee productivity: a study of selected large organizations in South East of Nigeria. International Journal of Business & Management Sciences. 2017;3(8):39–57.
- 48. Onyekwelu NP. Effect of organization culture on employee performance in selected manufacturing firms

- in Anambra State. International Journal of Research Development. 2019;11(1).
- 49. Onyekwelu NP. External environmental factor and organizational productivity in selected firms in Port Harcourt. International Journal of Trend in Scientific Research and Development. 2020;4(3):564–570.
- 50. Onyekwelu NP, Ibeto MU. Extra-marital behaviours and family instability among married people in education zones in Anambra State.
- 51. Onyekwelu NP, Oyeogubalu ON. Entrepreneurship development and employment generation: a micro, small and medium enterprises perspective in Nigeria. International Journal of Contemporary Applied Researches. 2020;7(5):26-40.
- 52. Onyekwelu NP, Uchenna IM. Teachers' perception of teaching family life education in public secondary schools in Anambra State.
- 53. Onyekwelu NP, Arinze AS, Chidi OF, Chukwuma ED. The effect of teamwork on employee performance: a study of medium-scale industries in Anambra State. International Journal of Contemporary Applied Researches. 2018;5(2):174-194.
- 54. Onyekwelu NP, Nnabugwu OC, Monyei EF, Nwalia NJ. Social media: a requisite for the attainment of business sustainability. IOSR Journal of Business and Management. 2021;23(7):47-52.
- 55. Onyekwelu N, Chinwe NO. Effect of cashless economy on the performance of micro, small and medium scale enterprises in Anambra State, Nigeria. International Journal of Science and Research. 2020;9(5):375-385.
- 56. Onyekwelu PN. Effects of strategic management on organizational performance in manufacturing firms in South-East Nigeria. Asian Journal of Economics, Business and Accounting. 2020;15(2):24-31.
- 57. Onyekwelu PN, Arinze AS, Chukwuma ED. Effect of reward and performance management on employee productivity: a study of selected large organizations in South-East, Nigeria. EPH-International Journal of Business & Management Science. 2015;1(2):23-34.
- 58. Onyekwelu PN, Ogechukwuand NN, Shallom AA. Organizational climate and employee engagement: a commercial bank perspective in Southeast Nigeria. Annals of Management and Organization Research. 2021;2(3):161-173.
- 59. Ordanini A, Parasuraman A, Rubera G. When the recipe is more important than the ingredients: a qualitative comparative analysis (QCA) of service innovation configurations. Journal of Service Research. 2014;17(2):134-149.
- 60. Osei-Kyei R, Chan AP. Review of studies on the critical success factors for Public–Private Partnership (PPP) projects from 1990 to 2013. International Journal of Project Management. 2015;33(6):1335-1346.
- 61. Oyegbade IK, Igwe AN, Ofodile OC, Azubuike C. Innovative financial planning and governance models for emerging markets: insights from startups and banking audits. Open Access Research Journal of Multidisciplinary Studies. 2021;1(2):108-116.
- 62. Oyeniyi LD, Igwe AN, Ofodile OC, Paul-Mikki C. Optimizing risk management frameworks in banking: strategies to enhance compliance and profitability amid regulatory challenges.
- 63. Pal R, Wang P, Liang X. The critical factors in managing relationships in international engineering, procurement,

- and construction (IEPC) projects of Chinese organizations. International Journal of Project Management. 2017;35(7):1225-1237.
- 64. Panda D, Sahu GP. E-procurement implementation: comparative study of governments of Andhra Pradesh and Chhattisgarh. SSRN. 2014.
- 65. Rathore MM, Shah SA, Shukla D, Bentafat E, Bakiras S. The role of AI, machine learning, and big data in digital twinning: a systematic literature review, challenges, and opportunities. IEEE Access. 2021;9:32030-32052.
- 66. Ren J, Guo Y, Zhang D, Liu Q, Zhang Y. Distributed and efficient object detection in edge computing: challenges and solutions. IEEE Network. 2018;32(6):137-143.
- 67. Roden S, Nucciarelli A, Li F, Graham G. Big data and the transformation of operations models: a framework and a new research agenda. Production Planning & Control. 2017;28(11-12):929-944.
- Rogers K. Creating a culture of data-driven decisionmaking. Liberty University. 2020.
- 69. Ross DF, Ross DF. Procurement and supplier management. Distribution Planning and Control: Managing in the Era of Supply Chain Management. 2015:531-604.
- 70. Roth S, Valentinov V, Kaivo-Oja J, Dana LP. Multifunctional organisation models: a systems—theoretical framework for new venture discovery and creation. Journal of Organizational Change Management. 2018;31(7):1383-1400.
- 71. Salamkar MA, Allam K. Data lakes vs. data warehouses: comparative analysis on when to use each, with case studies illustrating successful implementations. Distributed Learning and Broad Applications in Scientific Research. 2019;5.
- 72. Sandilya SK, Varghese K. A study of delays in procurement of engineered equipment for engineering, procurement and construction (EPC) projects in India: a mixed-method research approach.
- 73. Santoni G. Standardized cross-functional communication as a robust design tool: mitigating variation, saving costs and reducing the new product development process' lead time by optimizing the information flow. Doctoral dissertation, Politecnico di Torino. 2019.
- Sebastian IM, Ross JW, Beath C, Mocker M, Moloney KG, Fonstad NO. How big old companies navigate digital transformation. In: Strategic Information Management. Routledge; 2020. p. 133-150.
- 75. Sharma VB, Tewari S, Biswas S, Lohani B, Dwivedi UD, Dwivedi D, *et al.* Recent advancements in AI-enabled smart electronics packaging for structural health monitoring. Metals. 2021;11(10):1537.
- 76. Shaw T, McGregor D, Brunner M, Keep M, Janssen A, Barnet S. What is eHealth (6)? Development of a conceptual model for eHealth: qualitative study with key informants. Journal of Medical Internet Research. 2017;19(10):e324.
- 77. Shen F, Ren SS, Zhang XY, Luo HW, Feng CM. A digital twin-based approach for optimization and prediction of oil and gas production. Mathematical Problems in Engineering. 2021;2021(1):3062841.
- Silwimba S. An investigation into the effects of procurement methods on project delivery in the Zambian road sector. Doctoral dissertation, The University of Zambia. 2019.

- 79. Singh APA, Parashar AA. Streamlining purchase requisitions and orders: a guide to effective goods receipt management. Journal of Emerging Technologies and Innovative Research. 2021;8(5):g179-g184.
- 80. Singh A, Chatterjee K. Cloud security issues and challenges: a survey. Journal of Network and Computer Applications. 2017;79:88-115.
- 81. Singh SP, Nayyar A, Kumar R, Sharma A. Fog computing: from architecture to edge computing and big data processing. The Journal of Supercomputing. 2019;75:2070-2105.
- 82. Skelton M, Pais M. Team Topologies: Organizing Business and Technology Teams for Fast Flow. IT Revolution; 2019.
- 83. Soni P, Krishnan RT. Frugal innovation: aligning theory, practice, and public policy. Journal of Indian Business Research. 2014;6(1):29-47.
- 84. Steyn M. Organisational benefits and implementation challenges of mandatory integrated reporting: perspectives of senior executives at South African listed companies. Sustainability Accounting, Management and Policy Journal. 2014;5(4):476-503.
- 85. Stone M, Aravopoulou E, Gerardi G, Todeva E, Weinzierl L, Laughlin P, Stott R. How platforms are transforming customer information management. The Bottom Line. 2017;30(3):216-235.
- 86. Sturtevant GH, Voth JM, Lowe AM, Casasanto NL, Kline HA. Putting artificial intelligence to work: the operator decision aid. In: Conference Proceedings of EAAW, 2019 Jul.
- 87. Sun Y, Zhang J, Xiong Y, Zhu G. Data security and privacy in cloud computing. International Journal of Distributed Sensor Networks. 2014;10(7):190903.
- 88. Syed J, Mahmood SKA, Zulfiqar A, Sharif M, Sethi UI, Ikram U, Afridi SK. The construction sector value chain in Pakistan and the Sahiwal coal power project. In: China's Belt and Road Initiative in a Global Context: Volume II: The China Pakistan Economic Corridor and its Implications for Business. 2020. p. 271-287.
- 89. Tariq N, Asim M, Al-Obeidat F, Farooqi MZ, Baker T, Hammoudeh M, Ghafir I. The security of big data in fogenabled IoT applications including blockchain: a survey. Sensors. 2019;19(8):1788.
- 90. Tezel A, Papadonikolaki E, Yitmen I, Hilletofth P. Preparing construction supply chains for blockchain technology: an investigation of its potential and future directions. Frontiers of Engineering Management. 2020;7:547-563.
- 91. Thamrin DAF. Six Sigma implementation and integration within project management framework in engineering, procurement, and construction projects-A case study in a Southeast Asian engineering, procurement, and construction company. 2017.
- 92. Thumburu SKR. Integrating SAP with EDI: strategies and insights. MZ Computing Journal. 2020;1(1).
- 93. Toutounchian S, Abbaspour M, Dana T, Abedi Z. Design of a safety cost estimation parametric model in oil and gas engineering, procurement and construction contracts. Safety Science. 2018;106:35-46.
- 94. Tuli FA, Varghese A, Ande JRPK. Data-driven decision making: a framework for integrating workforce analytics and predictive HR metrics in digitalized environments. Global Disclosure of Economics and Business. 2018;7(2):109-122.

- 95. Van Zyl ES, Mathafena RB, Ras J. The development of a talent management framework for the private sector. SA Journal of Human Resource Management. 2017;15(1):1-19.
- 96. Vehviläinen T. Improving process efficiency and supply chain management by taking advantage of digitalization-based procurement tools. 2019.
- 97. Vilasini N, Neitzert TR, Rotimi JO. Correlation between construction procurement methods and lean principles. International Journal of Construction Management. 2011;11(4):65-78.
- 98. Wang S, Qureshi MA, Miralles-Pechuan L, Huynh-The T, Gadekallu TR, Liyanage M. Applications of explainable AI for 6G: technical aspects, use cases, and research challenges. arXiv preprint arXiv:2112.04698. 2021.
- Watson R, Wilson HN, Smart P, Macdonald EK. Harnessing difference: a capability-based framework for stakeholder engagement in environmental innovation. Journal of Product Innovation Management. 2018;35(2):254-279.
- 100. Whitehead J. Prioritizing sustainability indicators: using materiality analysis to guide sustainability assessment and strategy. Business Strategy and the Environment. 2017;26(3):399-412.
- 101.Xu Y, Ahokangas P, Louis JN, Pongrácz E. Electricity market empowered by artificial intelligence: a platform approach. Energies. 2019;12(21):4128.
- 102. Yigitcanlar T, Desouza KC, Butler L, Roozkhosh F. Contributions and risks of artificial intelligence (AI) in building smarter cities: insights from a systematic review of the literature. Energies. 2020;13(6):1473.
- 103.Zhang L, Pan Y, Wu X, Skibniewski MJ. Artificial intelligence in construction engineering and management. Springer, Singapore. 2021. p. 231-256.