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Abstract 
The Pharmaceutical industry uses equipment and machinery in almost all the 
manufacturing divisions. Equipment breakdown results in significant operating losses, 
so PdM is an area of emphasis. Ensemble learning models have been promulgated as 
practical techniques to enhance the prediction accuracy of a system by integrating 
many learning algorithms. Among those ML solutions, this research focuses on the 
applicability of ensemble learning models to predict equipment failures in pharma 
work orders, coupled with a maintenance history for optimal work order scheduling. 
Different combinations of learning approaches discussed here are bagging, boosting, 
and stacking, and their effectiveness is demonstrated on external datasets. The findings 
prove that ensemble models are superior to separate algorithms in lowering downtime 
and maintenance expenses while improving performance. 
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1. Introduction 

The pharmaceutical business is strictly regulated, so there is a very low tolerance for mistakes. Product quality is closely linked 

to the reliability of the equipment used for production, as recurrent failures in product quality can lead to high incidences of 

product recall [1-4]. Time-based and condition-based maintenance techniques are inadequate in handling unscheduled downtime 

and overstated maintenance charges. 

1.1. Need for Predictive Maintenance 

Predictive maintenance, widely known as PdM, is becoming the talk of the town because of the benefits provided over the 

currently available methods. According to PdM, organizations can anticipate when equipment is most susceptible to failure so 

that timely maintenance can be done instead of traditional calendar or breakdown maintenance methods. This has several 

advantages that go a long way in increasing operation efficiency, reducing costs, and increasing equipment dependability. 

• Minimization of Unplanned Downtime: Implementing predictive maintenance is one of the most effective ways to prevent 

outages, thus the new approach’s primary goal. Overall, the conventional maintenance strategies include reactive 

maintenance, whereby repair or corrections are made only when equipment fails, which poses a big inconvenience. 

Unscheduled stoppages are sometimes very expensive since they interrupt manufacturing processes, delivery cycles and 

organizational productivity. Since PdM identifies failures ahead of time, the organization can prevent the breakdowns from 

occurring in the first place and undertake maintenance when demand is low, thus maintaining efficiency. This helps avoid 

instances of shutdowns, and such situations help one to maximize production time. 

• Reduced Maintenance Costs: The old maintenance philosophies enable ineffective and costly remedies because they entail 

fixing or renewing parts that may not be dysfunctional. As with reactive maintenance, in PM, it is also possible to encounter 

situations where there is a lot of downtime and wastage of resources for no ascertainable reason other than the fact that 

equipment or components have been maintained or replaced prematurely. With predictive, one accomplishes the need for 

constant and long-interval checks by using data to decide when maintenance is required. Unlike CMMS, where all 

components are checked irrespective of their age, PdM, by focusing on those areas most prone to failure, reduces cost by 

avoiding there being too much maintenance when it is not required—thus offering a much cheaper long-term solution. 

https://doi.org/10.54660/.IJMRGE.2025.6.1-1814-1822
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Fig 1: Need for Predictive Maintenance 

 

• Improved Equipment Lifespan and Reliability: 

Equipment durability is one of the biggest challenges 

that any industry faces in its operation, especially those 

involved in the use of machinery in the delivery of their 

services or products. This is especially true for vehicles 

when breakdowns are frequent, and maintenance that 

keeps on being administered is not necessary. As a result, 

PdM enables one to mitigate eventual failures before 

they occur and thus reduces the life cycle of machines or 

equipment. It also protects costly assets from 

depreciation while at the same time guaranteeing the 

longevity of the equipment by making sure it is working 

as required for more time. Supervising and evaluating 

equipment states provide more effective decisions on 

when it should be time to replace some parts or repair 

them to retain a continuous flow without shutting down. 

• Enhanced Safety and Risk Management: This 

minimizes the chances of equipment failure in the 

working area, thus making the working environment 

safer. Equipment failures involve various risks with 

different consequences and impacts within 

organizations; especially in industries like 

manufacturing, energy and health care, equipment 

breakdowns are mostly associated with a danger to 

contractors or employees and may lead to mishaps or the 

creation of dangerous situations. It determines when 

equipment will likely fail, allowing companies to fix 

problems without risking safety. This is particularly 

important in industries with equipment failures that are 

potentially hazardous to safety, legal, or people. It was 

found that early identification of pre-hazards and basic 

control modifications minimize the likelihood of 

accidents. 

• Compliance with Industry Regulations: In industries 

with high levels of risks and legal requirements, such as 

the pharmaceutical, aviation, and energy industries, 

equipment must meet and/or surpass safety and 

performance requirements. Failure to maintain the 

regulatory standard exposes organizations to penalties, 

fines or even shutdown. Due to the kind of maintenance 

provided through the use of the predictive maintenance 

method, the equipment is kept in as good a state as 

possible to meet the set regulatory guidelines in terms of 

performance and safety. The PdM system in place shows 

the company is doing everything possible to mitigate 

equipment failure rate and meeting the best practice 

announcements and even the company’s regulations. 

• Data-Driven Decision Making: Predictive maintenance 

uses data from the device’s built-in sensors, the previous 

repair records of similar devices, and external conditions 

to anticipate or predict failures. Besides providing 

significant insight into the process patterns, this 

approach enhances decision-making at all the described 

maintenance phases. Using trends and outlier detection 

in real-time, organizational maintenance requirements 

are prioritized according to the asset’s current health 

status rather than the asset’s programmed or expected 

health. Such predictive capacity increases the reliability 

and efficiency of arrangements of maintenance 

activities, therefore enhancing the decision-making 

process, particularly in resource allocation, cost control, 

and overall strategizing. 

• Competitive Advantage: When industries experience 

cutthroat completion, the efficiency of the equipment 

could be a vital point of differential competence. 

Predictive maintenance is a crucial advantage because it 

minimizes and estimates the time required for 

maintenance, increases performance and decreases 

expenses. Organizations that incorporate PdM can 

provide improved levels of service reliability, faster 

production cycles, and improved customer satisfaction, 

all of which can subsequently increase their competitive 

advantage. Furthermore, the possibility of anticipating 

failures and minimizing such cases helps organizations 

increase their flexibility of processes while meeting 

changes in demand or emerging disturbances. 

• Environmental Impact Reduction: Predictive 

maintenance also has the potential to help an 

organization achieve its environmental goals. PdM also 

contributes to the provision of details on energy use by 

ensuring that machinery runs as it ought to, thereby 

eliminating avoidable frequent maintenance. Another 
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cost implication is energy expenses. In companies like 

manufacturing and transportation, using energy-

inefficient equipment usually leads to high energy 

consumption, emission and wastage. By avoiding over-

reliance on the usage of resources in their operations, 

predictive maintenance helps organizations maximize 

their operating efficiency on costs while at the same time 

maintaining their effects on the environment to the barest 

minimum. 

 

1.2. Role of Machine Learning in Predictive Maintenance 

ML is significant in PdM since it helps organizations indicate 

when equipment is most likely to fail. This paper looks at how 

data from the past and the sensor data feed can be processed 

through machine learning to detect patterns, estimate future 

failure times or other major faults, and schedule future 

maintenance [5-7]. However, as PdM transitions from 

conventional reactive or preventative maintenance methods 

to more sophisticated methods, seasonal and continuous 

machine-learning approaches are becoming central to the 

operation. In this paper, we present the applied features of 

machine learning to PM and provide insight into how the 

methods affect the maintenance Age cycle. 

 

 
 

Fig 2: Role of Machine Learning in Predictive Maintenance 

 

• Data Analysis and Pattern Recognition: Data analysis 

of the collected data from sensors, operational logs, and 

maintenance records is one of the primary tasks of 

machine learning in the context of predictive 

maintenance. Such datasets normally encompass 

sophisticated cross-relations that cannot be deciphered 

by merely inspecting the datasets. Techniques including 

decision trees, support vector machines (SVM), and 

neural networks are applicable for training on this data 

to notice some pattern, which may determine some 

failure indicators that might not easily be apparent. For 

instance, the algorithms can detect vibrations, 

temperature or pressure changes over time, and when the 

values deviate from the normal working range, there are 

problems afoot. Through the course of the day, machine 

learning models adapt and increase the accuracy of 

maintenance predictions. 

• Fault Diagnosis and Anomaly Detection: Some of the 

most successful fields that apply machine learning in 

their practices are fault diagnosis and anomaly detection. 

It is important that in predictive maintenance, one 

assesses deviations of real-time sensor data in order to 

identify equipment failures before they occur. In many 

cases, prior art employs pre-set levels for triggering 

alarms, which means that an alert can either be raised in 

response to a trivial issue or missed altogether when 

there is a real failure. Unsupervised learning, mainly the 

clustering or autoencoder, can find out which data point 

is a fault even when the model does not know what a 

fault looks like. These models simply study regular 

usage patterns of equipment and immediately alert on 

unusual activity as signs of failure. For instance, while 

using a neural network, it was possible to note an 

unfamiliar pattern of pressure fluctuations in a pump, 

which means there are early signs of a fault that could 

lead to failure. 

• Predicting Time-to-Failure: Machine learning has 

been notably described in rotor fault diagnosis and 

utilized for estimating the time to failure (TTF) of 

equipment, which forms part of the fundamental features 

of the proposed PM strategy. TTF estimation enables the 

maintenance department to plan the repair or 

replacement at its optimal time to prevent excessive time 

wastage and, on the other hand, prevent a system from 

breaking down completely. Some popular models 

utilized to understand the TTF based on past data and 

current readings are linear regression, Random Forest 

and Gradient boost. They employ usage profiles, 

environmental circumstances, and failure histories in 

order to predict the remaining useful life of the 

equipment. Generally, knowing the TTF with such a 

level of accuracy is a great asset in scheduling 

maintenance operations and resource management. 

• Optimizing Maintenance Schedules: Thus, the 

schedule is improved by using more realistic forward-

looking values computed through machine learning. 

Intervals of time-based preventive maintenance 

strategies expose the assets to over-maintenance or 

under-maintenance because the maintenance activities 

are planned at fixed intervals. On the other hand, 

machine learning models can be used to create condition-

based maintenance that reflects on the state of the types 

of equipment better than time-based models. Through 

real-time readings of sensors and the ability to update 

predictions with new data, it is possible for machine 

learning to advise about the likely time for maintenance 

much more accurately. This results in effective use of 

available resources, low costs, and less time spent on 

such resources as they are not frequently interfered with 

to be maintained. 

• Predicting Spare Parts and Resource Requirements: 

The system can also help forecast the spare parts and 

resources needed for maintenance work. Based on the 

data of failures of individual components, history of 

maintenance, and their operational parameters, machine 

learning algorithms identify probable demand for spare 

parts in the near future. This makes it possible for 

organizations to keep stocks of important parts in stock 

while at the same time avoiding cases where 

organizations have many spares which are not useful but 

incur so many expenses. In addition, the use of machine 
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learning can determine the time of the occurrence of 

maintenance personnel so that the right skills and 

resources can be dispatched. It enhances predictability 

and prevents any bottlenecks in the execution of 

maintenance work. 

• Continuous Improvement and Model Adaptation: 

However, one of the biggest benefits of using machine 

learning methods for predictive maintenance is that the 

performance only increases over time. And as more data 

is collected over time, the machine learning models can 

be retrained to account for changes in operating 

conditions, new modes of failure and the behavior of the 

machines themselves. This kind of adaptation also means 

that the predictive maintenance system’s performance 

improves as it continues to learn from more data 

collected. In industries where there are changes in 

equipment or where new types of failures keep arising, 

constant improvement of the model is vital to the 

effectiveness of the approach to predictive maintenance. 

The information obtained from real-time monitoring 

provides the models with an opportunity to recalibrate 

their forecasts to be as relevant as possible in the process 

of arriving at a maintenance decision. 

 

2. Literature Survey 

2.1. Overview of Predictive Maintenance (PdM) 

The strategy of PdM is to perform maintenance on industrial 

assets when it is most effective in preventing failure, not 

simply to respond to a failure that has already occurred. 

Unlike other approaches like reactive or periodic 

maintenance, this approach results in avoidable production 

downtime or failure to capitalize on the available 

opportunities [8-11]. Another review of literature in PdM 

shows that companies engaging in this method have saved 

costs, received longer equipment life, and had greater 

dependable operations. For instance, PdM has been proven to 

decrease maintenance expenditures by up to 10-40% lower 

than other styles of maintaining the plants. However, to the 

author’s knowledge, PdM’s implementation in the 

pharmaceutical industry is still quite limited, even though it 

has been applied effectively in manufacturing, aerospace, and 

automotive industries. It should be understood that compared 

with product quality and compliance with regulatory 

requirements, adopting PdM in this sector could enhance 

equipment reliability and maintain constant production 

processes. 

 

2.2. Machine Learning in PdM 

Recently, the use of ML in PdM has attracted significant 

interest because of its capability to identify the complex 

patterns and anomalies of massive data that other techniques 

cannot. Several categories of ML algorithms have been used 

in PdM, including decision trees, support vector machines 

(SVM), and neural networks. For example, decision trees are 

well used because of their capacity to explain to maintenance 

teams the variables regarding equipment breakdown. SVMs 

on the other hand, are used to treat data that may occur in a 

high-dimension space so that the pre-described message of 

equipment failures from the sensors funnel can be 

implemented. Neural networks have also been used, 

especially where nonlinear relationships are likely to prevail 

in the data set. Nonetheless, these models have shown 

efficacy; however, their efficiency varies on different 

datasets because of overfitting or acute noise sensitivity. Such 

variation points towards the necessity of more effective and 

broadly applicable methods that are capable of enhancing 

predictive accuracy through, for example, the concept of 

ensemble learning. 

 

2.3. Ensemble Learning Techniques 

The techniques in ensemble learning systems are bagging, 

boosting, and stacking, whereby different weak models are 

accrued to form strong ones since they incur better results in 

predictive maintenance. 

• Bagging: Short for bootstrap aggregating or ensemble in 

statistics, is the process of training a number of 

independent models based on random subsets of the data 

set and then forming a combined estimate through the 

individual models. One can easily see that this approach 

minimizes model complexity, variance and overfitting, 

which makes it useful in models such as decision trees. 

Random Forest is the most typical representative of the 

bagging algorithm and is widely utilized in PdM tasks 

because of its high accuracy and low sensitivity to noise. 

• Boosting: Boosting is a sequence-based method 

whereby the weights of the miss-classified instances are 

changed after every model is developed. It also enables 

the model to pay attention to the difficulty of classifying 

samples of the formation. AdaBoost and Gradient 

Boosting Machines (GBM), there has been a significant 

enhancement in the performance of the predictive 

maintenance tasks due to the correction of weak models, 

and the repetition of this leads to more accurate 

prediction results. 

• Stacking: Stacking takes a set of base models (such as 

decision trees, SVMs and Artificial Neural Networks) 

and produces a meta-learner (commonly a logistic 

regression model) that considers the output of the base 

models and formulates a final decision. It has been 

demonstrated that employing the strength of multiple 

models enhances the accuracy and robustness of the 

technique. In PdM, the stacking technique has been 

useful in integrating various features of failure prediction 

that may be obscure to individual models. 

 

3. Methodology 

3.1. Dataset 

This particular systematic approach towards equipment 

failure and maintenance schedules. It starts with inputting 

basic information about equipment, work orders, failure 

history, time, and sensors. These inputs are feasible for 

setting up original perceptions concerning the state of the 

equipment at present. The process then analyzes this 

information to diagnose a possible failure in the equipment. 

[12-16] If no failure is found, the process ends here. 

However, a work order is made to resolve the problem if a 

failure is identified. This leads to the next phase, in which the 

work order task involves a technician charged with a certain 

level of repair work. When the repair is finished, then the 

process looks at how successful it has been. If the repair is 

done, maintenance records are put in place to indicate the 

problem has been fixed. Moreover, the sensor readings are 

updated to ensure current measurements are obtained to 

monitor upcoming performances. After these changes, the 

work order is finalized to indicate the end of the process in 

any work order. On the other hand, if a repair is unsuccessful, 

the system marks the failure as unsolved and informs the 
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relevant stakeholders. It goes back to include the latest 

readings from the sensor to allow for further assessment, and 

in a bid to address the problem, a number of attempts can be 

made. An inevitable advantage to this cyclical process is that 

failures are not buried but stay on the radar and find timely 

solutions. All in all, it can be considered that the flowchart 

offers a simple yet comprehensive approach toward 

equipment maintenance and failure handling and elimination. 

They make sure that first, products are held accountable for 

their performances; second, data is integrated in real-time; 

and third, problems are solved in cycles. It targets speed and 

effective coverage with a view to avoiding cases of 

equipment breakdown or lack of reliability. It has feedback 

buffers and decision-making points, thus allowing for 

constant enhancement and keeping the maintenance 

management strikingly forward-looking. 

 

 
 

Fig 3: Dataset 

 

3.2. Data Preprocessing 

• Handling Missing Values: In any kind of data set, the 

absence of values can greatly affect the paradigm of a 

model in real time and more so when dealing with 

sensors. For this reason, there is the use of imputation 

methods for the attempt and estimation of missing 

values. The second set of strategies is statistical, 

including the most basic strategy of mean, median or 

mode imputation. The more sophisticated strategies 

include K Nearest Neighbors imputation and those based 

on models. These techniques help maintain the data’s 

quality, which is very important for the predictive model 

as it will use as much information as possible without 

adding some level of favouritism or exclusion due to a 

missing entry. 

• Feature Engineering: Feature engineering is the 

process of selecting and then transforming raw data into 

input features that increase the value of models. In the 

case of sensor data, it is possible to use such features as 

usage patterns, failure intervals, and operational cycles. 

For instance, determining periods of high equipment 

usage or determining the time between failures can act 

as a key in failure analysis and trend prediction for 

maintenance. Feature engineering helps to connect raw 

data with actionable insights, helping models make 

better predictions. 

• Normalization: Normalization, on the other hand, is the 

act of transforming numeric data to a standard level 

where all data is on a similar scale; a common and useful 

scale is the range [0, 1] or [-1, 1]. Depending upon the 

variable being monitored, sensor data frequently 

contains variables with measurements in different scales 

and units and, therefore can be orders of magnitude 

different from each other. Features with large 

magnitudes, if present, dominate the derived models 

when normalization is not applied. In Min-Max scaling 

or Z-score normalization, the data is scaled and 

normalized so that all features carry equal weight into the 

model training. This enhances the speed at which many 

‘intelligence’ algorithms in machine learning fully 

converge and their overall capabilities. 

 

 
 

Fig 4: Data Preprocessing 

 

 
 

Fig 5: Model Development 

 

3.3. Model Development 

3.3.1. Base Models 

• Decision Trees: Decision Trees are easy-to-interpret 

models where the data is split into subsets based on 

features represented by leaf nodes connected by the 
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branches of a tree. On each node, it chooses the feature 

that would partition the data in the best possible way, for 

instance, by the Gini Index or Information Gain. Despite 

their effectiveness for simple datasets, Decision Trees 

suffer from a high risk of overfitting, especially for 

complicated data. 

• Random Forests: Random Forests is an ensemble method 

that grows multiple Decision Trees and then uses the results 

of all of them to reduce variance. Random Forest has two 

approaches in constructing decision trees; feature space 

randomness (bagging) minimizes cases of overfitting of 

decision trees. They are suitable for dealing with large 

amounts of data and offer information on the features. 

• Gradient Boosting Machines (GBM): GBMs create a pool 

of weak learners, which, in this case, are Decision Trees used 

in learning over many iterations as each one tries to correct 

the errors of previous models. Since misclassified samples 

are assigned higher weights in the next iterations, GBMs help 

to optimize the performance. Although they are accurate and 

create excellent predictions, they require high computation 

time and are sensitive to hyperparameter optimization, which 

gives them great value while handling predictive 

assignments. 

 

3.3.2. Ensemble Techniques 

• Bagging (Random Forest): Bagging, or Bootstrap 

Aggregating, is a methodology that works to minimize 

variance by creating a number of models trained with a 

random dataset selection followed by averaging the output of 

the models. Another fine example includes Random Forest 

where individual Decision Trees are trained in bootstrapped 

samples to further increase the model’s degree of 

‘Randomness’ and decrease overfitting. 

• Boosting (AdaBoost, XGBoost): Boosting techniques, on 

the other hand, involve reforming a model by making errors 

prior to it. AdaBoost augments the weights between the 

learners: in each stage, a new weak learner focuses on the 

mistakes produced by the previous one. There are individual 

pros in XGBoost compared to the general GBM; it has 

regularization properties, parallel computational capabilities, 

and optimal handling of missing values, making it more 

efficient on a large database. 

• Stacking: Stacking merges responses from a number of basic 

models, decision trees, random forests, SVMs or the like 

using a Meta estimator. Often, logistic regression assumes the 

meta-learner role to combine the output and performance of 

specific base models more accurately and with a broader 

generalization. This technique is very useful when capturing 

multiple views as seen by other algorithms. 

 

3.4. Workflow 

• Data Collection and Preprocessing: This involves 

accessing data from different sources, such as from 

sensors, logs, or other incoming, current, or previous 

records. Such data is often preprocessed to achieve a 

reasonable degree of quality and consolidation. Part of 

feature extraction data pre-processing involves missing 

value handling, feature transformation, scaling, and data 

division into training, validation, and testing datasets. 

The basic concept of preprocessing deals with data-

related problems that can affect model training and act 

as the basis for training a model. 

 

 

 
 

Fig 6: Workflow 

 

• Model Training Using Ensemble Techniques: Once 

data is preprocessed, ensemble learning methods like 

Random Forest, AdaBoost, and XGBoost are applied in 

model training. These methods use features from 

different models, enhancing accuracy and reducing the 

likelihood of model errors. That is why bagging, 

boosting, or stacking methods are employed, as they help 

form an ensemble technique. In this phase, one has to 

ensure his/her model has been further optimized to 

ensure that it performs optimally and has not been 

overfitting. 

• Performance Evaluation on Test Data: Finally, the 

efficacy of the model developed is tested on a new 

unseen dataset with the view of establishing whether the 

model is capable of generalizing in practice. Typically, 

the model's accuracy, precision, recall, F1-score, and 

AUC-ROC are determined to judge the model's 

efficiency. This step helps prevent overfitting where the 

model is too tuned to the training set, yet the real world 

is different; this gives us confidence in the model. 

• Deployment and Validation in a Production 

Environment: The last phase involves exposing the 

model to the production environment, where real data 

flows. Some evaluations that are done consecutively 

include evaluating this model to find out whether it will 

continue to perform well, as it has been performing 

before in the successive evaluations. This may have to be 

done from time to time to align these models with the 

newly developed patterns or even data. This step is 

important to test the solution in delivering value in 

contexts and remain stable in a complex mess. 
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Fig 7: Evaluation Metrics 

 

3.5. Evaluation Metrics 

• Accuracy: Accuracy measures the total right guess as a 

percentage of the total observations and can be used to 

simply evaluate the performance. It is easy to 

comprehend the approach given by the formula that 

reflects the model’s performance, but this can lead to the 

distortion of results with imbalanced data sets. That is 

why, for example, in the case of one-class domination, a 

high accuracy rate can mean low effectiveness when it 

comes to detecting the minority class. 

• Precision: Precision estimates the degree of accuracy of 

positive predictions made by the model, focusing only 

on true positive ones. It is most concerned with true 

positive rates, which may explain why it is very useful in 

contexts where false positives are expensive. For 

instance, in medical diagnosis situations, precision will 

mean acute alarms in certain conditions or fraud 

detection. 

• Recall: Recall, sometimes called sensitivity, equals the 

number of true positives found and divided by the total 

actual positives in the dataset. But it also stresses the 

model’s capability of detecting all relevant instances 

and, therefore, is important where positives missed (false 

negatives) are dear, like in detecting diseases or safety 

defects. 

• F1-Score: The F1-score is the harmonic mean of 

precision and recall: the measure is more useful when 

both metrics are essential. It is very effective for use in 

cases where the dataset is skewed and one has to have 

either a higher precision rate or a higher recall rate. A 

higher F1 score means that the classifier distinguishes 

well between positive and negative instances, and in 

between, on average, it accurately identifies instances as 

relevant. 

• Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC): The AUC-ROC assesses the cases 

classified correctly across the different rates of true 

positives and against the false positives. ROC stands for 

the receiver operating characteristic curve, and AUC 

stands for ROC area; the ROC curve shows the true 

positive rate against the false positive rate. The higher 

value of AUC shows better performance because, for all 

threshold levels, the model always places higher 

importance on positive classes rather than negative ones. 

This metric is suitable for the binary classification 

problem and offers a detailed measure of the 

discriminant capacities of a model. 

 

 

4. Results and Discussion 

4.1. Model Performance 

The performances of the various types of models used in the 

designs have been assessed. They are presented in Table 1 in 

terms of the convergence of accuracy, precision, recall and 

F1 score. In the results, we also demonstrated that ensemble 

methods were superior to individual models and the 

superiority of stacking over other approaches. These metrics 

are informative in that they represent distinct characteristics 

of a model that, when combined, offer an overview of how 

these algorithms approach predictive maintenance problems. 

 
Table 1: Model Performance 

 

Model Accuracy Precision Recall F1-Score 

Decision Tree 85.2% 83.5% 84.1% 83.8% 

Random Forest 91.3% 90.5% 91.0% 90.7% 

AdaBoost 91.3% 91.6% 91.8% 91.7% 

Stacking 94.8% 94.2% 94.4% 94.3% 

 

 
 

Fig 8: Model Performance 

 

• Decision Tree Performance: The Decision Tree model 

had an accuracy level of 85.2 percent which aptly 

showed its basic strength of classifying data correctly. 

Nonetheless, it has a high accuracy of 83.5% and recalls 

of 84.1%, which may indicate that it overfits or 

underperforms when confronted with a new or noisy 

problem. However, it is relatively simple to understand 

and interpret; the model lacks scalability and possesses 

low robustness. 

• Random Forest Performance: When comparing a 

Random Forest with a Decision Tree as an ensemble 

algorithm, better results were obtained, with overall 

accuracy being 91.3%. The bagging approach used by 

Random Forest minimizes overfitting and adds up to 

generalization, as evidenced by a moderate precision of 

90,5% or a reasonable recall of 91%. This makes it 

suitable for dealing with different datasets at a relatively 

low sensitivity to noisy data. 

• AdaBoost Performance: Random forest was slightly 

outdone by AdaBoost with an accuracy of 92.1%. Its 

boosting element makes it a great characteristic that 

misclassified data is accorded a higher weight during 

training, improving its functionality. The accuracy 

(91.6%) and recall (91.8%) show that the model works 

effectively when it is necessary to identify the minority 

class, for example, in forecasting a rare machine 

malfunction. 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

F1-Score

Recall

Precision

Accuracy
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• Stacking Performance: The last type of stacking was 

the most effective, boasting an accuracy of 94.8%. In this 

technique, the predictions of the base models, which 

include Decision Tree, Random Forest, AdaBoost and so 

on, are combined with the help of a meta-learner 

(commonly logistic regression). 90% of communication 

to them is nonverbal, and its high precision (94.2%) and 

recall (94.4%) depict how it can embrace the diverse 

perspectives from individual models that make it 

accurate and robust. The score of 0.943 is easy to 

interpret and very useful in situations where it’s equally 

important to minimize both false positives and false 

negatives. 

 

4.2. Discussion 

• Accuracy: The findings presented strongly prove that 

ensemble models perform better than the individual 

models. By far, the most accurate among all methods is 

stacking, which has an accuracy of 94.8%, which is 

optimal for predictive maintenance work. The additional 

accuracy reduces the number of errors and increases 

efficiency and usability in practical applications. 

• Robustness: Bagging (Random Forest) and boosting 

(AdaBoost), on the other hand, increase robustness 

through the decrease of the model’s sensitivity to noise, 

as well as overfitting. Random Forest demonstrates a 

fairly high accuracy while keeping interpretability in 

check, and AdaBoost demonstrates its ability to work 

with imbalanced datasets and highlight misclassification 

instances. 

• Efficiency: Incorporation of the ensemble models into 

the process leads to the enhancement of the maintenance 

schedule since failure is predicted more accurately. This 

minimizes avoidable repair costs that go a long way in 

cutting the operation costs, especially within the 

pharmaceutical sector where tolerances for reliability are 

very high. 

 

4.3. Practical Implications 

The results emphasize the reborn awakening of ensemble 

learning methods, especially when predictive maintenance of 

equipment is the objective where reliability is a key strength. 

Using these superior models such as Stacking, Random 

Forest, and AdaBoost, the maintenance of pharmaceutical 

organizations could be immensely efficient. These models 

are especially suited for decisions on predictive maintenance, 

which is the best time to expect a piece of equipment to fail. 

This capability confirms that risks in machinery are figured 

out early before they lead to large-scale breakdowns, a 

phenomenon, especially in the manufacturing industries, 

where downtime has numerous consequences, such as fines 

or safety risks. 

• Enhanced Equipment Reliability and Minimized 

Downtime: Equipment reliability in the manufacture of 

drugs is essential since it determines the reliability of the 

production of drugs, which should be of high quality. 

Ensemble learning for predictive maintenance makes it 

possible for a company to know when equipment will 

fail, making it difficult and sparing the company’s 

emblems of operational disruption. For instance, 

anticipating a piece of equipment breaking down can 

help schedulers plan for the repair when it is not 

operational or during low-profit periods rather than 

during expensive downtime. 

• Proactive Scheduling and Compliance: The given sets 

of data provide the opportunity for pharmaceutical 

companies to transition from regular, reactive 

maintenance to proactive maintenance. These models 

help communicate potential challenges to particular 

teams and cooperate to set up maintenance ahead of time. 

Apart from minimizing disruptions of operations by 

having to wait for equipment failure, which could be 

significant, it also assists companies that are bound by 

strict regulations of industries that demand continuous 

equipment performance and reliability. It is significant to 

meet these regulatory requirements to guard product 

safety and overlook the penalties to sustain competitive 

advantage. 

• Handling Noisy and Incomplete Data: The strengths 

of ensemble models, which include The Random Forest 

model and AdaBoost, are that they work well with noisy, 

incomplete or missing data. In an industrial environment, 

for example, data acquired from a sensor system can be 

noisy or erroneous in some way because of various 

perturbations, realistic hardware failures, and so on. 

Such noise is ideal to address using ensemble methods 

as the results generated from different models are 

consolidated, enhancing accuracy. Ensuring that 

predictive maintenance systems are reliable when data is 

not perfect poses a tough test. However, the powerful 

handling of the data makes it efficient by ensuring that 

the systems remain reliable even in the worst scenarios 

for data. 

• Cost Savings and Efficiency Gains: Implementing the 

developed models has pertinent and large positive 

impacts on cost. Since failure modes and potential 

breakdowns can be anticipated in advance, 

pharmaceutical firms can drastically reduce overall 

maintenance costs, thus eliminating as much unplanned 

maintenance as possible. However, with improved 

scheduling of the repairs and less time or downtime, total 

business capacity increases are other benefits companies 

will reap. This optimization results in a great degree of 

cost reduction, especially in organizations where the 

frequency of downtimes has to be minimized. 

• Improved Product Quality: Notably, equipment 

reliability activity raises the issue of product quality in 

the drug manufacturing segment. A problem affecting a 

machine may cause a certain amount of time before full 

production is achieved or even cause a poor quality 

production outcome. By incorporating ensemble models 

for the deployment of predictive maintenance systems, 

firms can prevent hitches during production, which may 

lead to poor-quality products due to faulty equipment. 

 

5. Conclusion 

The findings of this work show that the employment of the 

ensemble learning models in the predictive maintenance of 

the system has numerous benefits, especially for 

pharmaceutical work orders. Through employing bagging 

(Random Forest), boosting (AdaBoost), and stacking models, 

the study shows that the proposed model outperforms other 

machine learning in terms of accuracy, precision, recall, and 

F1-score. Since multiple models are used to arrive at the best 

predictions, the maintenance activities are proven on time and 

efficiently. The models were applied to real-life data and 
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have proved their reliability in identifying failures in the 

equipment, and the maintenance schedules can be adjusted 

appropriately to dovetail with the operational calendar and 

thereby cut incremental operating expenses. 

According to the study results, stacking models, which are 

built from several base models, can be considered the most 

effective overall, based on the best values of accuracy, 

precision and recall. Moreover, Random Forest and 

AdaBoost, as two cases of ensemble learning methods, were 

proven effective in dealing with noisy or missing data, which 

often occurred in actual pharmaceutical production scenarios. 

The availability of information that makes it possible to 

predict failures in advance enables organizations to change 

from reactive to proactive maintenance and maintain the 

reliability of production processes. It also helps the company 

reduce costs since avoidable repairs are avoided while 

meeting the required standards of the industry. 

 

5.1. Future Work 

Future studies can be made as follows: Although there are 

several promising paths to be explored and developed in the 

field of the predictive maintenance application of ensemble 

learning, One of these is the integration of the system with 

the Internet of Things (IoT) and real-time data feed. Real-

time monitoring of equipment is becoming more common 

with IoT-enabled devices, producing large volumes of data. 

The extension of ensemble learning models to IoT systems 

will result in constant checking and immediate decisions, 

leading to much better forecasting of failures and responsive 

maintenance. Actual-time analysis enables the models for 

predictive maintenance to change dynamically, hence 

minimizing delays of possible failure identification in the 

manufacturing environment. 

Another discussion area is the possibility of applying these 

models to other pharmaceutical plants. However, the results 

of the work showed that the use of the proposed models in the 

framework of this study yielded a high performance; 

nevertheless, their application in different production 

environments, as well as the effectiveness of the models 

when applied to various types of pharmaceutical equipment, 

requires further investigation. The flexibility of changing 

ensemble models to run the plants across different workflows 

and issues will determine the expansion’s extent in broader 

industries. 

Last, using enhanced deep-learning ensembles is also a 

promising field in predictive maintenance. Neural network-

based deep learning models are famous for distinguishing 

multivariable patterns in big data sets. Incorporating 

ensemble learning into future models by reinforcing deep 

learning could ensure even more minute signs of Trend One 

regarding equipment failure. This could be especially helpful 

in many-sided manufacturing systems where fitting all the 

dynamics into a model is challenging. 
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