

International Journal of Multidisciplinary Research and Growth Evaluation.

Ensemble learning models for enhancing predictive maintenance in pharma work orders

Srikanth Reddy Katta

Independent Researcher, USA

* Corresponding Author: **Srikanth Reddy Katta**

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 01

January-February 2025

Received: 12-12-2024

Accepted: 13-01-2025

Page No: 1814-1822

Abstract

The Pharmaceutical industry uses equipment and machinery in almost all the manufacturing divisions. Equipment breakdown results in significant operating losses, so PdM is an area of emphasis. Ensemble learning models have been promulgated as practical techniques to enhance the prediction accuracy of a system by integrating many learning algorithms. Among those ML solutions, this research focuses on the applicability of ensemble learning models to predict equipment failures in pharma work orders, coupled with a maintenance history for optimal work order scheduling. Different combinations of learning approaches discussed here are bagging, boosting, and stacking, and their effectiveness is demonstrated on external datasets. The findings prove that ensemble models are superior to separate algorithms in lowering downtime and maintenance expenses while improving performance.

DOI: <https://doi.org/10.54660/IJMRGE.2025.6.1-1814-1822>

Keywords: Predictive maintenance, ensemble learning, machine learning, bagging, boosting, stacking

1. Introduction

The pharmaceutical business is strictly regulated, so there is a very low tolerance for mistakes. Product quality is closely linked to the reliability of the equipment used for production, as recurrent failures in product quality can lead to high incidences of product recall [1-4]. Time-based and condition-based maintenance techniques are inadequate in handling unscheduled downtime and overstated maintenance charges.

1.1. Need for Predictive Maintenance

Predictive maintenance, widely known as PdM, is becoming the talk of the town because of the benefits provided over the currently available methods. According to PdM, organizations can anticipate when equipment is most susceptible to failure so that timely maintenance can be done instead of traditional calendar or breakdown maintenance methods. This has several advantages that go a long way in increasing operation efficiency, reducing costs, and increasing equipment dependability.

- **Minimization of Unplanned Downtime:** Implementing predictive maintenance is one of the most effective ways to prevent outages, thus the new approach's primary goal. Overall, the conventional maintenance strategies include reactive maintenance, whereby repair or corrections are made only when equipment fails, which poses a big inconvenience. Unscheduled stoppages are sometimes very expensive since they interrupt manufacturing processes, delivery cycles and organizational productivity. Since PdM identifies failures ahead of time, the organization can prevent the breakdowns from occurring in the first place and undertake maintenance when demand is low, thus maintaining efficiency. This helps avoid instances of shutdowns, and such situations help one to maximize production time.
- **Reduced Maintenance Costs:** The old maintenance philosophies enable ineffective and costly remedies because they entail fixing or renewing parts that may not be dysfunctional. As with reactive maintenance, in PM, it is also possible to encounter situations where there is a lot of downtime and wastage of resources for no ascertainable reason other than the fact that equipment or components have been maintained or replaced prematurely. With predictive, one accomplishes the need for constant and long-interval checks by using data to decide when maintenance is required. Unlike CMMS, where all components are checked irrespective of their age, PdM, by focusing on those areas most prone to failure, reduces cost by avoiding there being too much maintenance when it is not required—thus offering a much cheaper long-term solution.

NEED FOR PREDICTIVE MAINTENANCE

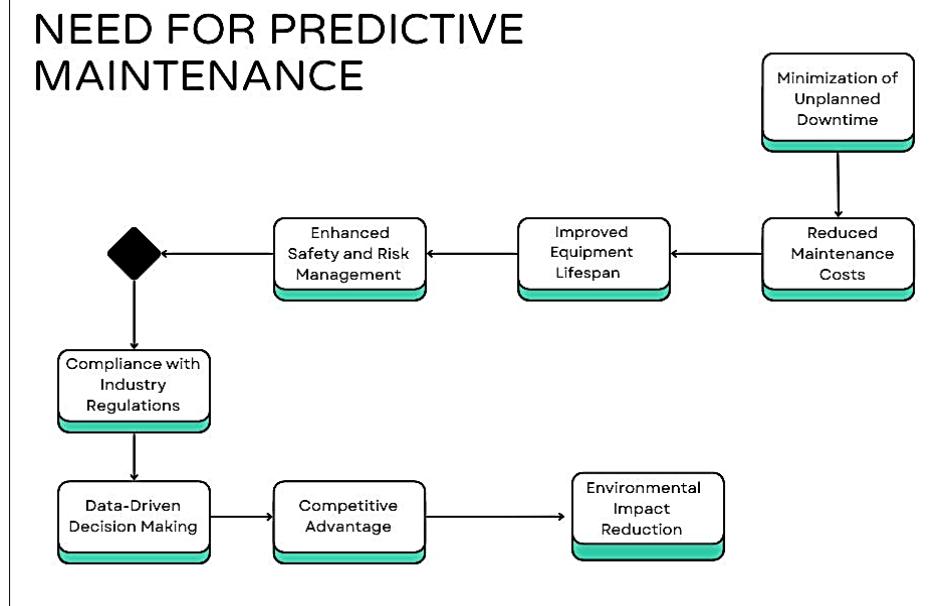


Fig 1: Need for Predictive Maintenance

- Improved Equipment Lifespan and Reliability:** Equipment durability is one of the biggest challenges that any industry faces in its operation, especially those involved in the use of machinery in the delivery of their services or products. This is especially true for vehicles when breakdowns are frequent, and maintenance that keeps on being administered is not necessary. As a result, PdM enables one to mitigate eventual failures before they occur and thus reduces the life cycle of machines or equipment. It also protects costly assets from depreciation while at the same time guaranteeing the longevity of the equipment by making sure it is working as required for more time. Supervising and evaluating equipment states provide more effective decisions on when it should be time to replace some parts or repair them to retain a continuous flow without shutting down.
- Enhanced Safety and Risk Management:** This minimizes the chances of equipment failure in the working area, thus making the working environment safer. Equipment failures involve various risks with different consequences and impacts within organizations; especially in industries like manufacturing, energy and health care, equipment breakdowns are mostly associated with a danger to contractors or employees and may lead to mishaps or the creation of dangerous situations. It determines when equipment will likely fail, allowing companies to fix problems without risking safety. This is particularly important in industries with equipment failures that are potentially hazardous to safety, legal, or people. It was found that early identification of pre-hazards and basic control modifications minimize the likelihood of accidents.
- Compliance with Industry Regulations:** In industries with high levels of risks and legal requirements, such as the pharmaceutical, aviation, and energy industries, equipment must meet and/or surpass safety and performance requirements. Failure to maintain the regulatory standard exposes organizations to penalties, fines or even shutdown. Due to the kind of maintenance provided through the use of the predictive maintenance

method, the equipment is kept in as good a state as possible to meet the set regulatory guidelines in terms of performance and safety. The PdM system in place shows the company is doing everything possible to mitigate equipment failure rate and meeting the best practice announcements and even the company's regulations.

- Data-Driven Decision Making:** Predictive maintenance uses data from the device's built-in sensors, the previous repair records of similar devices, and external conditions to anticipate or predict failures. Besides providing significant insight into the process patterns, this approach enhances decision-making at all the described maintenance phases. Using trends and outlier detection in real-time, organizational maintenance requirements are prioritized according to the asset's current health status rather than the asset's programmed or expected health. Such predictive capacity increases the reliability and efficiency of arrangements of maintenance activities, therefore enhancing the decision-making process, particularly in resource allocation, cost control, and overall strategizing.
- Competitive Advantage:** When industries experience cutthroat completion, the efficiency of the equipment could be a vital point of differential competence. Predictive maintenance is a crucial advantage because it minimizes and estimates the time required for maintenance, increases performance and decreases expenses. Organizations that incorporate PdM can provide improved levels of service reliability, faster production cycles, and improved customer satisfaction, all of which can subsequently increase their competitive advantage. Furthermore, the possibility of anticipating failures and minimizing such cases helps organizations increase their flexibility of processes while meeting changes in demand or emerging disturbances.
- Environmental Impact Reduction:** Predictive maintenance also has the potential to help an organization achieve its environmental goals. PdM also contributes to the provision of details on energy use by ensuring that machinery runs as it ought to, thereby eliminating avoidable frequent maintenance. Another

cost implication is energy expenses. In companies like manufacturing and transportation, using energy-inefficient equipment usually leads to high energy consumption, emission and wastage. By avoiding over-reliance on the usage of resources in their operations, predictive maintenance helps organizations maximize their operating efficiency on costs while at the same time maintaining their effects on the environment to the barest minimum.

1.2. Role of Machine Learning in Predictive Maintenance
 ML is significant in PdM since it helps organizations indicate when equipment is most likely to fail. This paper looks at how data from the past and the sensor data feed can be processed through machine learning to detect patterns, estimate future failure times or other major faults, and schedule future maintenance [5-7]. However, as PdM transitions from conventional reactive or preventative maintenance methods to more sophisticated methods, seasonal and continuous machine-learning approaches are becoming central to the operation. In this paper, we present the applied features of machine learning to PM and provide insight into how the methods affect the maintenance Age cycle.

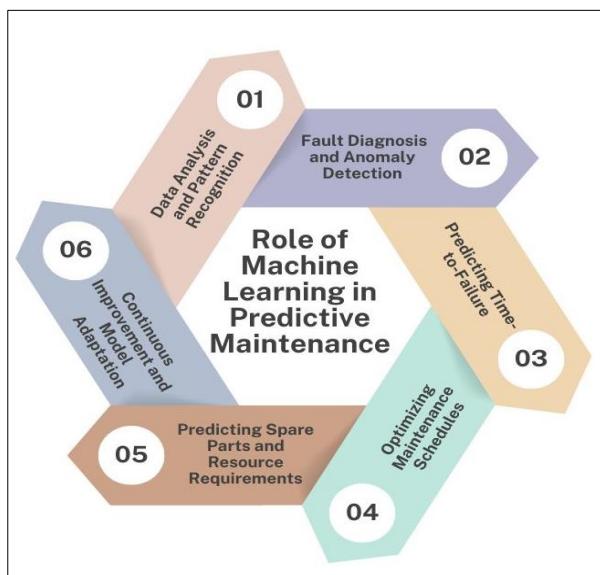


Fig 2: Role of Machine Learning in Predictive Maintenance

- Data Analysis and Pattern Recognition:** Data analysis of the collected data from sensors, operational logs, and maintenance records is one of the primary tasks of machine learning in the context of predictive maintenance. Such datasets normally encompass sophisticated cross-relations that cannot be deciphered by merely inspecting the datasets. Techniques including decision trees, support vector machines (SVM), and neural networks are applicable for training on this data to notice some pattern, which may determine some failure indicators that might not easily be apparent. For instance, the algorithms can detect vibrations, temperature or pressure changes over time, and when the values deviate from the normal working range, there are problems afoot. Through the course of the day, machine learning models adapt and increase the accuracy of maintenance predictions.
- Fault Diagnosis and Anomaly Detection:** Some of the

most successful fields that apply machine learning in their practices are fault diagnosis and anomaly detection. It is important that in predictive maintenance, one assesses deviations of real-time sensor data in order to identify equipment failures before they occur. In many cases, prior art employs pre-set levels for triggering alarms, which means that an alert can either be raised in response to a trivial issue or missed altogether when there is a real failure. Unsupervised learning, mainly the clustering or autoencoder, can find out which data point is a fault even when the model does not know what a fault looks like. These models simply study regular usage patterns of equipment and immediately alert on unusual activity as signs of failure. For instance, while using a neural network, it was possible to note an unfamiliar pattern of pressure fluctuations in a pump, which means there are early signs of a fault that could lead to failure.

- Predicting Time-to-Failure:** Machine learning has been notably described in rotor fault diagnosis and utilized for estimating the time to failure (TTF) of equipment, which forms part of the fundamental features of the proposed PM strategy. TTF estimation enables the maintenance department to plan the repair or replacement at its optimal time to prevent excessive time wastage and, on the other hand, prevent a system from breaking down completely. Some popular models utilized to understand the TTF based on past data and current readings are linear regression, Random Forest and Gradient boost. They employ usage profiles, environmental circumstances, and failure histories in order to predict the remaining useful life of the equipment. Generally, knowing the TTF with such a level of accuracy is a great asset in scheduling maintenance operations and resource management.
- Optimizing Maintenance Schedules:** Thus, the schedule is improved by using more realistic forward-looking values computed through machine learning. Intervals of time-based preventive maintenance strategies expose the assets to over-maintenance or under-maintenance because the maintenance activities are planned at fixed intervals. On the other hand, machine learning models can be used to create condition-based maintenance that reflects on the state of the types of equipment better than time-based models. Through real-time readings of sensors and the ability to update predictions with new data, it is possible for machine learning to advise about the likely time for maintenance much more accurately. This results in effective use of available resources, low costs, and less time spent on such resources as they are not frequently interfered with to be maintained.
- Predicting Spare Parts and Resource Requirements:** The system can also help forecast the spare parts and resources needed for maintenance work. Based on the data of failures of individual components, history of maintenance, and their operational parameters, machine learning algorithms identify probable demand for spare parts in the near future. This makes it possible for organizations to keep stocks of important parts in stock while at the same time avoiding cases where organizations have many spares which are not useful but incur so many expenses. In addition, the use of machine

learning can determine the time of the occurrence of maintenance personnel so that the right skills and resources can be dispatched. It enhances predictability and prevents any bottlenecks in the execution of maintenance work.

- **Continuous Improvement and Model Adaptation:** However, one of the biggest benefits of using machine learning methods for predictive maintenance is that the performance only increases over time. And as more data is collected over time, the machine learning models can be retrained to account for changes in operating conditions, new modes of failure and the behavior of the machines themselves. This kind of adaptation also means that the predictive maintenance system's performance improves as it continues to learn from more data collected. In industries where there are changes in equipment or where new types of failures keep arising, constant improvement of the model is vital to the effectiveness of the approach to predictive maintenance. The information obtained from real-time monitoring provides the models with an opportunity to recalibrate their forecasts to be as relevant as possible in the process of arriving at a maintenance decision.

2. Literature Survey

2.1. Overview of Predictive Maintenance (PdM)

The strategy of PdM is to perform maintenance on industrial assets when it is most effective in preventing failure, not simply to respond to a failure that has already occurred. Unlike other approaches like reactive or periodic maintenance, this approach results in avoidable production downtime or failure to capitalize on the available opportunities [8-11]. Another review of literature in PdM shows that companies engaging in this method have saved costs, received longer equipment life, and had greater dependable operations. For instance, PdM has been proven to decrease maintenance expenditures by up to 10-40% lower than other styles of maintaining the plants. However, to the author's knowledge, PdM's implementation in the pharmaceutical industry is still quite limited, even though it has been applied effectively in manufacturing, aerospace, and automotive industries. It should be understood that compared with product quality and compliance with regulatory requirements, adopting PdM in this sector could enhance equipment reliability and maintain constant production processes.

2.2. Machine Learning in PdM

Recently, the use of ML in PdM has attracted significant interest because of its capability to identify the complex patterns and anomalies of massive data that other techniques cannot. Several categories of ML algorithms have been used in PdM, including decision trees, support vector machines (SVM), and neural networks. For example, decision trees are well used because of their capacity to explain to maintenance teams the variables regarding equipment breakdown. SVMs on the other hand, are used to treat data that may occur in a high-dimension space so that the pre-described message of equipment failures from the sensors funnel can be implemented. Neural networks have also been used, especially where nonlinear relationships are likely to prevail in the data set. Nonetheless, these models have shown efficacy; however, their efficiency varies on different datasets because of overfitting or acute noise sensitivity. Such

variation points towards the necessity of more effective and broadly applicable methods that are capable of enhancing predictive accuracy through, for example, the concept of ensemble learning.

2.3. Ensemble Learning Techniques

The techniques in ensemble learning systems are bagging, boosting, and stacking, whereby different weak models are accrued to form strong ones since they incur better results in predictive maintenance.

- **Bagging:** Short for bootstrap aggregating or ensemble in statistics, is the process of training a number of independent models based on random subsets of the data set and then forming a combined estimate through the individual models. One can easily see that this approach minimizes model complexity, variance and overfitting, which makes it useful in models such as decision trees. Random Forest is the most typical representative of the bagging algorithm and is widely utilized in PdM tasks because of its high accuracy and low sensitivity to noise.
- **Boosting:** Boosting is a sequence-based method whereby the weights of the miss-classified instances are changed after every model is developed. It also enables the model to pay attention to the difficulty of classifying samples of the formation. AdaBoost and Gradient Boosting Machines (GBM), there has been a significant enhancement in the performance of the predictive maintenance tasks due to the correction of weak models, and the repetition of this leads to more accurate prediction results.
- **Stacking:** Stacking takes a set of base models (such as decision trees, SVMs and Artificial Neural Networks) and produces a meta-learner (commonly a logistic regression model) that considers the output of the base models and formulates a final decision. It has been demonstrated that employing the strength of multiple models enhances the accuracy and robustness of the technique. In PdM, the stacking technique has been useful in integrating various features of failure prediction that may be obscure to individual models.

3. Methodology

3.1. Dataset

This particular systematic approach towards equipment failure and maintenance schedules. It starts with inputting basic information about equipment, work orders, failure history, time, and sensors. These inputs are feasible for setting up original perceptions concerning the state of the equipment at present. The process then analyzes this information to diagnose a possible failure in the equipment. [12-16] If no failure is found, the process ends here. However, a work order is made to resolve the problem if a failure is identified. This leads to the next phase, in which the work order task involves a technician charged with a certain level of repair work. When the repair is finished, then the process looks at how successful it has been. If the repair is done, maintenance records are put in place to indicate the problem has been fixed. Moreover, the sensor readings are updated to ensure current measurements are obtained to monitor upcoming performances. After these changes, the work order is finalized to indicate the end of the process in any work order. On the other hand, if a repair is unsuccessful, the system marks the failure as unsolved and informs the

relevant stakeholders. It goes back to include the latest readings from the sensor to allow for further assessment, and in a bid to address the problem, a number of attempts can be made. An inevitable advantage to this cyclical process is that failures are not buried but stay on the radar and find timely solutions. All in all, it can be considered that the flowchart offers a simple yet comprehensive approach toward equipment maintenance and failure handling and elimination. They make sure that first, products are held accountable for their performances; second, data is integrated in real-time; and third, problems are solved in cycles. It targets speed and effective coverage with a view to avoiding cases of equipment breakdown or lack of reliability. It has feedback buffers and decision-making points, thus allowing for constant enhancement and keeping the maintenance management strikingly forward-looking.

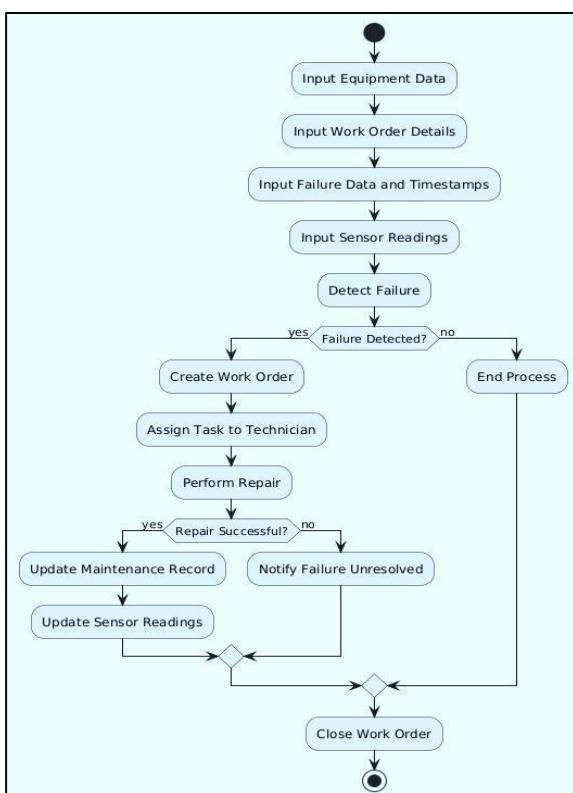


Fig 3: Dataset

3.2. Data Preprocessing

- Handling Missing Values:** In any kind of data set, the absence of values can greatly affect the paradigm of a model in real time and more so when dealing with sensors. For this reason, there is the use of imputation methods for the attempt and estimation of missing values. The second set of strategies is statistical, including the most basic strategy of mean, median or mode imputation. The more sophisticated strategies include K Nearest Neighbors imputation and those based on models. These techniques help maintain the data's quality, which is very important for the predictive model as it will use as much information as possible without adding some level of favouritism or exclusion due to a missing entry.

- Feature Engineering:** Feature engineering is the process of selecting and then transforming raw data into input features that increase the value of models. In the

case of sensor data, it is possible to use such features as usage patterns, failure intervals, and operational cycles. For instance, determining periods of high equipment usage or determining the time between failures can act as a key in failure analysis and trend prediction for maintenance. Feature engineering helps to connect raw data with actionable insights, helping models make better predictions.

- Normalization:** Normalization, on the other hand, is the act of transforming numeric data to a standard level where all data is on a similar scale; a common and useful scale is the range [0, 1] or [-1, 1]. Depending upon the variable being monitored, sensor data frequently contains variables with measurements in different scales and units and, therefore can be orders of magnitude different from each other. Features with large magnitudes, if present, dominate the derived models when normalization is not applied. In Min-Max scaling or Z-score normalization, the data is scaled and normalized so that all features carry equal weight into the model training. This enhances the speed at which many 'intelligence' algorithms in machine learning fully converge and their overall capabilities.

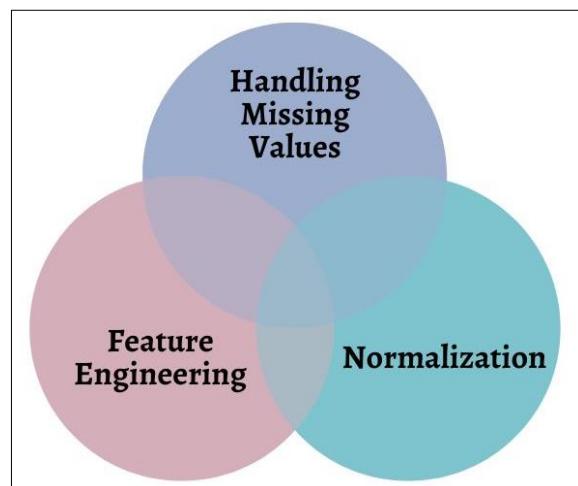


Fig 4: Data Preprocessing

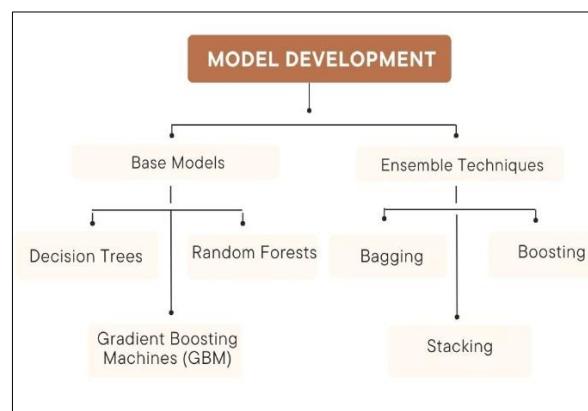


Fig 5: Model Development

3.3. Model Development

3.3.1. Base Models

- Decision Trees:** Decision Trees are easy-to-interpret models where the data is split into subsets based on features represented by leaf nodes connected by the

branches of a tree. On each node, it chooses the feature that would partition the data in the best possible way, for instance, by the Gini Index or Information Gain. Despite their effectiveness for simple datasets, Decision Trees suffer from a high risk of overfitting, especially for complicated data.

- **Random Forests:** Random Forests is an ensemble method that grows multiple Decision Trees and then uses the results of all of them to reduce variance. Random Forest has two approaches in constructing decision trees; feature space randomness (bagging) minimizes cases of overfitting of decision trees. They are suitable for dealing with large amounts of data and offer information on the features.
- **Gradient Boosting Machines (GBM):** GBMs create a pool of weak learners, which, in this case, are Decision Trees used in learning over many iterations as each one tries to correct the errors of previous models. Since misclassified samples are assigned higher weights in the next iterations, GBMs help to optimize the performance. Although they are accurate and create excellent predictions, they require high computation time and are sensitive to hyperparameter optimization, which gives them great value while handling predictive assignments.

3.3.2. Ensemble Techniques

- **Bagging (Random Forest):** Bagging, or Bootstrap Aggregating, is a methodology that works to minimize variance by creating a number of models trained with a random dataset selection followed by averaging the output of the models. Another fine example includes Random Forest where individual Decision Trees are trained in bootstrapped samples to further increase the model's degree of

'Randomness' and decrease overfitting.

Boosting (AdaBoost, XGBoost): Boosting techniques, on the other hand, involve reforming a model by making errors prior to it. AdaBoost augments the weights between the learners: in each stage, a new weak learner focuses on the mistakes produced by the previous one. There are individual pros in XGBoost compared to the general GBM; it has regularization properties, parallel computational capabilities, and optimal handling of missing values, making it more efficient on a large database.

Stacking: Stacking merges responses from a number of basic models, decision trees, random forests, SVMs or the like using a Meta estimator. Often, logistic regression assumes the meta-learner role to combine the output and performance of specific base models more accurately and with a broader generalization. This technique is very useful when capturing multiple views as seen by other algorithms.

3.4. Workflow

- **Data Collection and Preprocessing:** This involves accessing data from different sources, such as from sensors, logs, or other incoming, current, or previous records. Such data is often preprocessed to achieve a reasonable degree of quality and consolidation. Part of feature extraction data pre-processing involves missing value handling, feature transformation, scaling, and data division into training, validation, and testing datasets. The basic concept of preprocessing deals with data-related problems that can affect model training and act as the basis for training a model.

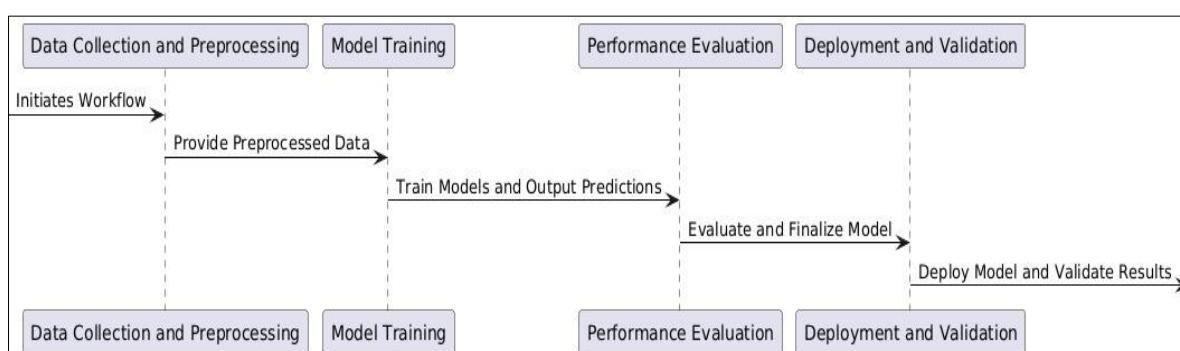
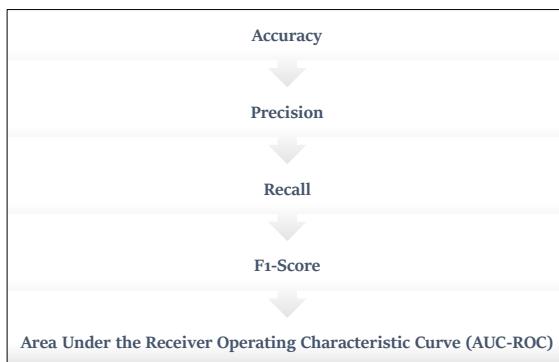


Fig 6: Workflow

- **Model Training Using Ensemble Techniques:** Once data is preprocessed, ensemble learning methods like Random Forest, AdaBoost, and XGBoost are applied in model training. These methods use features from different models, enhancing accuracy and reducing the likelihood of model errors. That is why bagging, boosting, or stacking methods are employed, as they help form an ensemble technique. In this phase, one has to ensure his/her model has been further optimized to ensure that it performs optimally and has not been overfitting.
- **Performance Evaluation on Test Data:** Finally, the efficacy of the model developed is tested on a new unseen dataset with the view of establishing whether the model is capable of generalizing in practice. Typically, the model's accuracy, precision, recall, F1-score, and

AUC-ROC are determined to judge the model's efficiency. This step helps prevent overfitting where the model is too tuned to the training set, yet the real world is different; this gives us confidence in the model.

- **Deployment and Validation in a Production Environment:** The last phase involves exposing the model to the production environment, where real data flows. Some evaluations that are done consecutively include evaluating this model to find out whether it will continue to perform well, as it has been performing before in the successive evaluations. This may have to be done from time to time to align these models with the newly developed patterns or even data. This step is important to test the solution in delivering value in contexts and remain stable in a complex mess.

**Fig 7:** Evaluation Metrics

3.5. Evaluation Metrics

- **Accuracy:** Accuracy measures the total right guess as a percentage of the total observations and can be used to simply evaluate the performance. It is easy to comprehend the approach given by the formula that reflects the model's performance, but this can lead to the distortion of results with imbalanced data sets. That is why, for example, in the case of one-class domination, a high accuracy rate can mean low effectiveness when it comes to detecting the minority class.
- **Precision:** Precision estimates the degree of accuracy of positive predictions made by the model, focusing only on true positive ones. It is most concerned with true positive rates, which may explain why it is very useful in contexts where false positives are expensive. For instance, in medical diagnosis situations, precision will mean acute alarms in certain conditions or fraud detection.
- **Recall:** Recall, sometimes called sensitivity, equals the number of true positives found and divided by the total actual positives in the dataset. But it also stresses the model's capability of detecting all relevant instances and, therefore, is important where positives missed (false negatives) are dear, like in detecting diseases or safety defects.
- **F1-Score:** The F1-score is the harmonic mean of precision and recall: the measure is more useful when both metrics are essential. It is very effective for use in cases where the dataset is skewed and one has to have either a higher precision rate or a higher recall rate. A higher F1 score means that the classifier distinguishes well between positive and negative instances, and in between, on average, it accurately identifies instances as relevant.
- **Area Under the Receiver Operating Characteristic Curve (AUC-ROC):** The AUC-ROC assesses the cases classified correctly across the different rates of true positives and against the false positives. ROC stands for the receiver operating characteristic curve, and AUC stands for ROC area; the ROC curve shows the true positive rate against the false positive rate. The higher value of AUC shows better performance because, for all threshold levels, the model always places higher importance on positive classes rather than negative ones. This metric is suitable for the binary classification problem and offers a detailed measure of the discriminant capacities of a model.

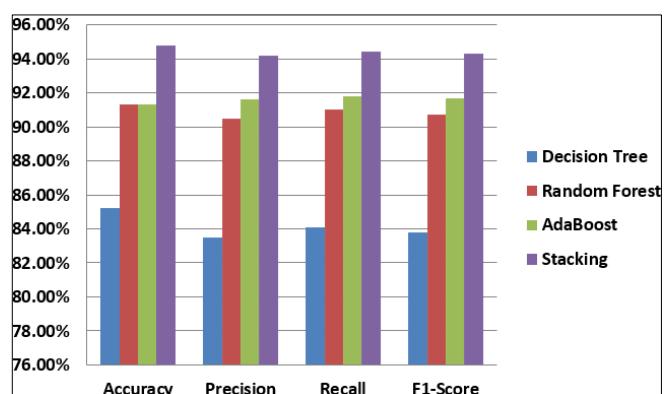
4. Results and Discussion

4.1. Model Performance

The performances of the various types of models used in the designs have been assessed. They are presented in Table 1 in terms of the convergence of accuracy, precision, recall and F1 score. In the results, we also demonstrated that ensemble methods were superior to individual models and the superiority of stacking over other approaches. These metrics are informative in that they represent distinct characteristics of a model that, when combined, offer an overview of how these algorithms approach predictive maintenance problems.

Table 1: Model Performance

Model	Accuracy	Precision	Recall	F1-Score
Decision Tree	85.2%	83.5%	84.1%	83.8%
Random Forest	91.3%	90.5%	91.0%	90.7%
AdaBoost	91.3%	91.6%	91.8%	91.7%
Stacking	94.8%	94.2%	94.4%	94.3%

**Fig 8:** Model Performance

- **Decision Tree Performance:** The Decision Tree model had an accuracy level of 85.2 percent which aptly showed its basic strength of classifying data correctly. Nonetheless, it has a high accuracy of 83.5% and recalls of 84.1%, which may indicate that it overfits or underperforms when confronted with a new or noisy problem. However, it is relatively simple to understand and interpret; the model lacks scalability and possesses low robustness.
- **Random Forest Performance:** When comparing a Random Forest with a Decision Tree as an ensemble algorithm, better results were obtained, with overall accuracy being 91.3%. The bagging approach used by Random Forest minimizes overfitting and adds up to generalization, as evidenced by a moderate precision of 90.5% or a reasonable recall of 91%. This makes it suitable for dealing with different datasets at a relatively low sensitivity to noisy data.
- **AdaBoost Performance:** Random forest was slightly outdone by AdaBoost with an accuracy of 92.1%. Its boosting element makes it a great characteristic that misclassified data is accorded a higher weight during training, improving its functionality. The accuracy (91.6%) and recall (91.8%) show that the model works effectively when it is necessary to identify the minority class, for example, in forecasting a rare machine malfunction.

- **Stacking Performance:** The last type of stacking was the most effective, boasting an accuracy of 94.8%. In this technique, the predictions of the base models, which include Decision Tree, Random Forest, AdaBoost and so on, are combined with the help of a meta-learner (commonly logistic regression). 90% of communication to them is nonverbal, and its high precision (94.2%) and recall (94.4%) depict how it can embrace the diverse perspectives from individual models that make it accurate and robust. The score of 0.943 is easy to interpret and very useful in situations where it's equally important to minimize both false positives and false negatives.

4.2. Discussion

- **Accuracy:** The findings presented strongly prove that ensemble models perform better than the individual models. By far, the most accurate among all methods is stacking, which has an accuracy of 94.8%, which is optimal for predictive maintenance work. The additional accuracy reduces the number of errors and increases efficiency and usability in practical applications.
- **Robustness:** Bagging (Random Forest) and boosting (AdaBoost), on the other hand, increase robustness through the decrease of the model's sensitivity to noise, as well as overfitting. Random Forest demonstrates a fairly high accuracy while keeping interpretability in check, and AdaBoost demonstrates its ability to work with imbalanced datasets and highlight misclassification instances.
- **Efficiency:** Incorporation of the ensemble models into the process leads to the enhancement of the maintenance schedule since failure is predicted more accurately. This minimizes avoidable repair costs that go a long way in cutting the operation costs, especially within the pharmaceutical sector where tolerances for reliability are very high.

4.3. Practical Implications

The results emphasize the reborn awakening of ensemble learning methods, especially when predictive maintenance of equipment is the objective where reliability is a key strength. Using these superior models such as Stacking, Random Forest, and AdaBoost, the maintenance of pharmaceutical organizations could be immensely efficient. These models are especially suited for decisions on predictive maintenance, which is the best time to expect a piece of equipment to fail. This capability confirms that risks in machinery are figured out early before they lead to large-scale breakdowns, a phenomenon, especially in the manufacturing industries, where downtime has numerous consequences, such as fines or safety risks.

- **Enhanced Equipment Reliability and Minimized Downtime:** Equipment reliability in the manufacture of drugs is essential since it determines the reliability of the production of drugs, which should be of high quality. Ensemble learning for predictive maintenance makes it possible for a company to know when equipment will fail, making it difficult and sparing the company's emblems of operational disruption. For instance, anticipating a piece of equipment breaking down can help schedulers plan for the repair when it is not operational or during low-profit periods rather than

during expensive downtime.

- **Proactive Scheduling and Compliance:** The given sets of data provide the opportunity for pharmaceutical companies to transition from regular, reactive maintenance to proactive maintenance. These models help communicate potential challenges to particular teams and cooperate to set up maintenance ahead of time. Apart from minimizing disruptions of operations by having to wait for equipment failure, which could be significant, it also assists companies that are bound by strict regulations of industries that demand continuous equipment performance and reliability. It is significant to meet these regulatory requirements to guard product safety and overlook the penalties to sustain competitive advantage.
- **Handling Noisy and Incomplete Data:** The strengths of ensemble models, which include The Random Forest model and AdaBoost, are that they work well with noisy, incomplete or missing data. In an industrial environment, for example, data acquired from a sensor system can be noisy or erroneous in some way because of various perturbations, realistic hardware failures, and so on. Such noise is ideal to address using ensemble methods as the results generated from different models are consolidated, enhancing accuracy. Ensuring that predictive maintenance systems are reliable when data is not perfect poses a tough test. However, the powerful handling of the data makes it efficient by ensuring that the systems remain reliable even in the worst scenarios for data.
- **Cost Savings and Efficiency Gains:** Implementing the developed models has pertinent and large positive impacts on cost. Since failure modes and potential breakdowns can be anticipated in advance, pharmaceutical firms can drastically reduce overall maintenance costs, thus eliminating as much unplanned maintenance as possible. However, with improved scheduling of the repairs and less time or downtime, total business capacity increases are other benefits companies will reap. This optimization results in a great degree of cost reduction, especially in organizations where the frequency of downtimes has to be minimized.
- **Improved Product Quality:** Notably, equipment reliability activity raises the issue of product quality in the drug manufacturing segment. A problem affecting a machine may cause a certain amount of time before full production is achieved or even cause a poor quality production outcome. By incorporating ensemble models for the deployment of predictive maintenance systems, firms can prevent hitches during production, which may lead to poor-quality products due to faulty equipment.

5. Conclusion

The findings of this work show that the employment of the ensemble learning models in the predictive maintenance of the system has numerous benefits, especially for pharmaceutical work orders. Through employing bagging (Random Forest), boosting (AdaBoost), and stacking models, the study shows that the proposed model outperforms other machine learning in terms of accuracy, precision, recall, and F1-score. Since multiple models are used to arrive at the best predictions, the maintenance activities are proven on time and efficiently. The models were applied to real-life data and

have proved their reliability in identifying failures in the equipment, and the maintenance schedules can be adjusted appropriately to dovetail with the operational calendar and thereby cut incremental operating expenses.

According to the study results, stacking models, which are built from several base models, can be considered the most effective overall, based on the best values of accuracy, precision and recall. Moreover, Random Forest and AdaBoost, as two cases of ensemble learning methods, were proven effective in dealing with noisy or missing data, which often occurred in actual pharmaceutical production scenarios. The availability of information that makes it possible to predict failures in advance enables organizations to change from reactive to proactive maintenance and maintain the reliability of production processes. It also helps the company reduce costs since avoidable repairs are avoided while meeting the required standards of the industry.

5.1. Future Work

Future studies can be made as follows: Although there are several promising paths to be explored and developed in the field of the predictive maintenance application of ensemble learning, One of these is the integration of the system with the Internet of Things (IoT) and real-time data feed. Real-time monitoring of equipment is becoming more common with IoT-enabled devices, producing large volumes of data. The extension of ensemble learning models to IoT systems will result in constant checking and immediate decisions, leading to much better forecasting of failures and responsive maintenance. Actual-time analysis enables the models for predictive maintenance to change dynamically, hence minimizing delays of possible failure identification in the manufacturing environment.

Another discussion area is the possibility of applying these models to other pharmaceutical plants. However, the results of the work showed that the use of the proposed models in the framework of this study yielded a high performance; nevertheless, their application in different production environments, as well as the effectiveness of the models when applied to various types of pharmaceutical equipment, requires further investigation. The flexibility of changing ensemble models to run the plants across different workflows and issues will determine the expansion's extent in broader industries.

Last, using enhanced deep-learning ensembles is also a promising field in predictive maintenance. Neural network-based deep learning models are famous for distinguishing multivariable patterns in big data sets. Incorporating ensemble learning into future models by reinforcing deep learning could ensure even more minute signs of Trend One regarding equipment failure. This could be especially helpful in many-sided manufacturing systems where fitting all the dynamics into a model is challenging.

6. References

1. Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. *Mech Syst Signal Process.* 2014;42(1-2):314-334.
2. Zhu X, Ninh A, Zhao H, Liu Z. Demand forecasting with supply-chain information and machine learning: Evidence in the pharmaceutical industry. *Prod Oper Manag.* 2021;30(9):3231-3252.
3. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. *Comput Chem Eng.* 2003;27(3):293-311.
4. Kavasidis I, Lallas E, Gerogiannis VC, Charitou T, Karageorgos A. Predictive maintenance in pharmaceutical manufacturing lines using deep transformers. *Procedia Comput Sci.* 2023;220:576-583.
5. Breiman L. Bagging predictors. *Mach Learn.* 1996;24:123-140.
6. Schapire RE. The boosting approach to machine learning: An overview. *Nonlinear Estim Classif.* 2003;149-171.
7. Wolpert DH. Stacked generalization. *Neural Netw.* 1992;5(2):241-259.
8. Friedman JH. Greedy function approximation: a gradient boosting machine. *Ann Stat.* 2001;1189-1232.
9. Biau G, Scornet E. A random forest guided tour. *Test.* 2016;25:197-227.
10. Chen C, Fu H, Zheng Y, Tao F, Liu Y. The advance of digital twin for predictive maintenance: The role and function of machine learning. *J Manuf Syst.* 2023;71:581-594.
11. Thekdi S, Aven T. An enhanced data-analytic framework for integrating risk management and performance management. *Reliab Eng Syst Saf.* 2016;156:277-287.
12. Maimon OZ, Rokach L. Data mining with decision trees: theory and applications. Vol. 81. World Scientific; 2014.
13. Zhou ZH. Ensemble methods: foundations and algorithms. CRC Press; 2012.
14. Sharma V, Mistry V. Machine learning algorithms for predictive maintenance in HVAC systems. *J Sci Eng Res.* 2023;10(11).
15. Ayvaz S, Alpay K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. *Expert Syst Appl.* 2021;173:114598.
16. Xu G, Liu M, Wang J, Ma Y, Wang J, Li F, Shen W. Data-driven fault diagnostics and prognostics for predictive maintenance: A brief overview. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE); 2019 Aug; pp. 103-108. IEEE.
17. Nunes P, Santos J, Rocha E. Challenges in predictive maintenance—A review. *CIRP J Manuf Sci Technol.* 2023;40:53-67.
18. Zhang Z, Huang Y. A linear regression framework for the receiver operating characteristic (ROC) curve analysis. *J Biom Biostat.* 2012;3(2):5726.
19. Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. *Bioinformatics.* 2015;31(15):2595-2597.
20. Hernandez I, Zhang Y. Using predictive analytics and big data to optimize pharmaceutical outcomes. *Am J Health Syst Pharm.* 2017;74(18):1494-1500.