International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary
Research and Growth Evaluation.

Developing a Practical Exercise on Digital Signature Encoding and Decoding

Do Manh Dung
Faculty of Fundamental Technical, AD-AF Academy of Vietnam, Son Tay, Ha Noi, Vietnam

* Corresponding Author: Do Manh Dung

Article Info Abstract _ _ _ _
Digital signatures are one of the most important security technologies, ensuring the
authenticity, integrity, and non-repudiation of data in digital environments. This paper

ISSN (online): 2582-7138 presents the development of a practical exercise on digital signature encoding and

Volume: 06 decoding, helping students understand the working principles and practical
Issue: 01 implementation of digital signatures. The exercise includes the following steps:
January-February 2025 generating public and private key pairs, digitally signing data using the private key,

and verifying the signature using the public key. The exercise utilizes the Python

Received: 15-12-2024 programming language and popular cryptographic libraries to demonstrate the

Accepted: 16-01-2025 implementation process. The results of the exercise enable learners to master digital
Page No: 1957-1961 signature encoding and decoding techniques and apply them in information security
systems.

Keywords: Digital signature, public key, private key, encryption, decryption, information security

Introduction

In the context of digital transformation and the rapid development of information systems, data security has become a critical
factor in ensuring the safety, integrity, and authenticity of information. Digital signatures are one of the most important
technologies in the field of information security, widely used to verify identities, protect data, and prevent forgery. According
to Stallings' research, digital signatures are built on asymmetric encryption systems, where a private key is used to sign data and
a public key is used to verify the signature Il This is an effective security method in electronic transactions, digital contracts,
and online document authentication.

Digital signatures not only help protect information but also play a crucial role in building trust between parties involved in
online transactions. According to research by Menezes, van Oorschot, and Vanstone [, digital signature systems ensure three
main security properties: Authentication: Ensuring that data comes from a legitimate source. Integrity: Ensuring that data is not
altered during transmission. Non-repudiation: The signer cannot deny having created the signature. In e-commerce systems, e-
government, and digital banking, digital signatures are used to verify the identities of participating parties, ensuring that
documents and transactions are legitimate and not forged [,

Digital signatures are built on public-key encryption algorithms, the most common of which are:

= RSA (Rivest-Shamir-Adleman): Developed in 1977, RSA is one of the first public-key encryption algorithms and is still
widely used in digital signatures. RSA operates based on the difficulty of factoring large integers [,

= DSA (Digital Signature Algorithm): A digital signature standard developed by the U.S. National Institute of Standards and
Technology (NIST), using encryption based on the discrete logarithm problem [,

= ECDSA (Elliptic Curve Digital Signature Algorithm): An improved version of DSA, using elliptic curves to enhance
security and reduce key size 12,

1957|Page

International Journal of Multidisciplinary Research and Growth Evaluation

Each algorithm has its own advantages and disadvantages,
and the choice of algorithm depends on the specific
requirements of the system.

Although digital signatures play an important role in
information security, many students and IT engineers have
not had the opportunity to directly practice these algorithms.
Some challenges include: Lack of detailed practical materials
on digital signature encryption and decryption processes. The
complexity of algorithms and the requirement for
foundational knowledge in cryptography. Limited
availability of supporting tools in educational environments.
To address these challenges, this paper proposes a practical
exercise to help students directly engage with digital
signature algorithms through Python programming. Python is
chosen because of its many encryption libraries, such as
pycryptodome and cryptography, which simplify the
implementation of digital signatures [2].

This paper aims to develop a practical exercise to help
students understand the process of digital signature
encryption and decryption, including: Instructions for
generating public and private key pairs. Performing data
signing with a private key. Verifying digital signatures with
a public key. Applying digital signatures in data security.
Through this exercise, students can improve their
programming skills, gain a deeper understanding of how
digital signatures work, and apply them in practice.

The remainder of the paper is organized as follows: Principles
of digital signatures. Building the practical exercise. Results
and evaluation. Conclusion.

Integrating digital signature encryption and decryption
exercises into the curriculum will help students master
theoretical knowledge and practical skills in information
security. This paper provides a detailed guide to building an
effective practical exercise, helping students gain a visual and
practical understanding of digital signatures.

2. Principles of Digital Signatures

= Digital signatures are based on public-key cryptography,
utilizing a pair of keys:

Private Key: Only the signer has the authority to use this key

to create a digital signature.

Public Key: Shared widely to verify the signature.

= The process of creating and verifying a digital signature
includes the following steps:

Creating a Digital Signature

Hash the Input Data: Use a cryptographic hash algorithm
(e.g., SHA-256, SHA-3) to generate a hash value from the
input data.

Encrypt the Hash Value: Encrypt the hash value using the
private key to create the digital signature.

Send Data with Signature: Transmit the original data along
with the digital signature to the recipient.

Verifying a Digital Signature

Decrypt the Signature: The recipient uses the sender's public
key to decrypt the digital signature and retrieve the original
hash value.

Rehash the Received Data: Hash the received data using the
same hash algorithm.

Compare Hash Values: Compare the decrypted hash value
with the newly computed hash value. If the two hash values
match, the signature is valid, and the data has not been
altered. If the hash values do not match, the data may have
been tampered with or forged.

Digital signatures are a critical technology in information

www.allmultidisciplinaryjournal.com

security, ensuring data integrity, authenticity, and non-
repudiation. Algorithms such as RSA, DSA, and ECDSA
have unique characteristics, making them suitable for specific
applications. Understanding the principles and
implementation of digital signatures is a fundamental
foundation for building secure systems.

3. Building the Practical Exercise

3.1. Obijectives

This practical exercise aims to help students master the
concepts of digital signatures, understand how to generate
keys, sign data, and verify digital signatures by practicing
with the widely-used Python encryption tools. Upon
completion, students will be able to:

Understand the working principles of digital signatures.
Know how to generate public-private key pairs.

Practice signing and verifying digital signatures on a file or
message.

Apply digital signatures in real-world information security
scenarios.

3.2. Tools and Software Used

Operating System: Windows

Python Software with Required Libraries: fitz, PIL, tkinter,
PyPDF2, cryptography.

Original PDF File: The data file to be signed.

Signature Image File: signature.png.

3.3. Implementation Steps

Step 1: Generate a Secret Encryption Key

Generate a secret encryption key to be used for encrypting
and decrypting data. This key is a 44-character byte string.
Step 2: Encrypt the Signature Image to Secure the Digital
Signature

Encrypt the signature.png file and save it as
signature_encrypted.bin to protect it from unauthorized
access.

Step 3: Decrypt the Signature Image

Decrypt the signature_encrypted.bin file into
signature_decrypted.png for use. Only individuals with the
key can decrypt and use the digital signature.

Step 4: Embed the Digital Signature into the PDF

Read the signature from the decrypted file.

Determine the signature's position on the document.

Embed the signature into the last page of the PDF file and
save it under a new name.

This structured approach ensures that students gain hands-on
experience with digital signatures, from key generation to
embedding signatures into documents, while understanding
the underlying security principles.

3.4. Program Code

import fitz # PyMuPDF

from PIL import Image, ImageTk

import tkinter as tk

import io

from reportlab.pdfgen import canvas

from reportlab.lib.utils import ImageReader
import PyPDF2

from cryptography.fernet import Fernet

Generate encryption key (run once and save)
def generate_key():
key = Fernet.generate_key()

with open(“secret.key", "wb") as key _file:
key_file.write(key)

1958 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

Load key from file
def load_key():
return open(“secret.key", "rb").read()

Encrypt the signature image
def encrypt_image(image_path, encrypted_path):
key = load_key()

www.allmultidisciplinaryjournal.com

writer = PyPDF2.PdfWriter()

for i, page in enumerate(reader.pages):

packet = io.ByteslO()

can = canvas.Canvas(packet, pagesize=(page_ width,
page_height))

if i == len(reader.pages) - 1:

cipher = Fernet(key) can.drawlmage(ImageReader(decrypted_signature), X, ',
with open(image_path, "rb") as file: width=sig_width, height=sig_height)

encrypted_data = cipher.encrypt(file.read()) can.save()

with open(encrypted_path, "whb") as file: packet.seek(0)

file.write(encrypted_data)

Decrypt the signature image

def decrypt_image(encrypted_path, output_path):
key = load_key()
cipher = Fernet(key)
with open(encrypted_path, "rb") as file:

new_pdf = PyPDF2.PdfReader(packet)
page.merge_page(new_pdf.pages[0])
writer.add_page(page)

with open(output_pdf, "wh") as output:
writer.write(output)

print(f*Signed PDF created at ({x}, {y}): {output_pdf}")

decrypted_data = cipher.decrypt(file.read()) # Execute the process
with open(output_path, "wb") as file: generate_key() # Run once to generate the key
file.write(decrypted_data) input_pdf = "filePDFgoc.pdf"”
output_pdf = "filePDFky.pdf"
Determine the signature position on the PDF encrypted_signature = "signature_encrypted.bin”
def get_mouse_position(pdf_path):
doc = fitz.open(pdf_path) # Encrypt the signature
last_page = doc[-1] encrypt_image("'signature.png", encrypted_signature)

pix = last_page.get_pixmap()

img = Image.frombytes("RGB", [pix.width, pix.height], # Embed the signature into the PDF

pix.samples) add_signature_to_pdf(input_pdf,output_pdf,
root = tk.Tk() encrypted_signature)

root.title("Select Signature Position™)

img.thumbnail((600, 800)) 4. Results and Evaluation

pdf_img = ImageTk.Photolmage(img) 4.1. Preparation

canvas_widget = tk.Canvas(root, width=img.width, - Original PDF file to be signed

height=img.height)

canvas_widget.pack()

canvas_widget.create_image(0, 0, anchor=tk.NW,
image=pdf_img)

display_width, display_height = img.size

real_width, real_height = pix.width, pix.height

def on_click(event):
global x_real, y_real
x_real = int(event.x * real_width / display_width)
y_real = int(real_height - (eventy * real_height /
display_height))
root.destroy()

canvas_widget.bind("<Button-1>", on_click)
root.mainloop()
return x_real, y_real, real_width, real_height

Add signature to the last page of the PDF
def add_signature_to_pdf(input_pdf, output_pdf,
encrypted_signature):
X, Y, page_width, page_height
get_mouse_position(input_pdf)
if X is None or y is None:
print("Error selecting signature position.")

AD-AF ACADEMY OF VIETNAM
FACULTY OF FUNDAMENTAL TECHNICAL

LECTURE

Module: Principles of Communication

Lesson 16: Practice on Digital Signature Encoding and Decoding
Target Audience: Aviation Engineering Training
Academic Year: 2024-2025

January 14, 2025

HEAD OF DEPARTMENT

Dr. Le Ngoc Giang

HANOI, JANUARY 2025

Fig 1: Original PDF file to be signed

return - Signature image file

decrypted_signature = "decrypted_signature.png"
decrypt_image(encrypted_signature,
decrypted_signature)

sig = Image.open(decrypted_signature)

sig_width = 150

sig_height = int((sig.height / sig.width) * sig_width)
reader = PyPDF2.PdfReader(input_pdf)

il

Fig 2: Signature image file

1959 |Page

[international Journal of Multidisciplinary Research and Growth Evaluation

4.2. Experimental Results
Step 1. Create a secret encryption key for use in data
encryption and decryption.
This key only needs to be generated once and will then be

www.allmultidisciplinaryjournal.com

cannot be decrypted later. Saving the key ensures that the data
can be recovered in the future.

Note: Do not share the key with others if you do not want the
data to be exposed. If the key is lost, the encrypted data

saved to a file (secret.key) for future use. cannot be recovered.

The key must be saved to a file; otherwise, encrypted data
The key is a 44-character byte string:

& secretkey
1 D53k-8BE63vMuwFLImdQQBYCcCWHaM7pvK_M10DH3Bo=

Fig 3: The signature image is encrypted into a 44-character byte string

This key is used to:

Encrypt the signature image. When the digital signature
needs to be protected, the signature image is encrypted before
saving.

Decrypt the signature image when needed to retrieve the
original image.

Step 2: Encrypt the signature image to secure the digital

signature.

The file signature.png is encrypted and saved as
signature_encrypted.bin.

Benefits:

Protects the signature image from unauthorized access.

No one can use the signature without the decryption key.

= signature_encrypted.bin
1 gAAAAABNrBEan90CZ- 1H39k37ZGWBrTvhSBIXowsHBA4ehjf15W EZ6nwpYP
P-ejQAxdPScfmbAVqs80dNycGYPE6Q8IHSDE iwSGES76NIT13GUAE_SzKIaY
208rnjoMWfGX50]sPVeemKE31ZflqC5X1Qh71zQR0-uvSuzA23MdTpaKSdgs
boBkwp88qyHC7Kq7nD_SpqoCYmiwPjclrdFMcbZMIOOUICK-DI_rmFhf_1D4
ZaFJwyWZVb7haXbHHXs4yCfA6SspBWt cCMadEImLDiUXVrchNsnTXtXfe-clE
uYqD6udnMFdAe_YVKO30uOBI tQwwD2gVvRQKpiqDhCiPLOGRLNUQX69NIpfCH
ejZCKRIUT1 jtzc31k9386pVMgpg3nuMyY3EDKm2TLAMErIhhVWZOMGXXGOhOT
veyl IWWErcZG71LWB0931BB68JREIgwgcPNjnle0GbsKP1X- -mSqoo80eYem6
r1h8kuFwIN4AgyVnBgThE31n1eupEXhGMk3aMC7aHQVFdBVBKE -HLGSYXaAS8
Cg8paVu_6x9EQT20ySEQYYSztMduPtgnZgX3TXTmPVZSw8hO8EYMH_1B7r91
vayDDQGbAQ6BXATizgOQFWCSLBYFFSTF UnKNSF8 RYgZ2itDohQcTT-y3c-
eLdacQINggAs7vSON8ZtUMYkMCDZXtWMZ14RjeGt6XtV8ZkpanNrwe jzxczX

Fig 4: The file signature.png is encrypted and saved as signature_encrypted.bin

AD-AF ACADEMY OF VIETNAM
FACULTY OF FUNDAMENTAL TECHNICAL

LECTURE

Module: Principles of Communication

Lesson 16: Practice on Digital Signature Encoding and Decoding
Target Audience: Aviation Engineering Training
Academic Year: 2024-2025

January 14, 2025

HEAD OF DEPARTMENT

i

Dr. Le Ngoc Giang

HANOI, JANUARY 2025

Fig 5: The digital signature is embedded into the PDF document

1960 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

Step 3: Decrypt the signature image.

The file signature_encrypted.bin is
signature_decrypted.png.

Benefits:

Only individuals with the key can use the digital signature.
Ensures security while allowing recovery when necessary.
Step 4: Automatically embed the digital signature into the
PDF.

Read the signature from the decrypted file.

Create a temporary PDF file to contain the signature.

Embed the signature into the last page.

Save the modified page into a new PDF file.

decrypted into

Evaluation: After completing the steps in the practical
exercise, the following results were achieved:

Successfully generated and stored the secret encryption key.
The signature image was encrypted and securely stored, and
could only be decrypted using the corresponding key.

The digital signature was accurately embedded into the PDF
document and can be easily verified.

The entire process was automated using Python code, saving
time and ensuring accuracy.

4.2. Effectiveness Evaluation

The practical session is evaluated based on the following
criteria:

Security: The use of encryption ensures that the digital
signature cannot be forged or modified without the
decryption key.

Accuracy: The digital signature verification process operates
efficiently, ensuring reliable document authentication.
Automation: The entire process is programmed, minimizing
manual errors and improving workflow efficiency.

Practical Applicability: The solution can be expanded for use
in digital document authentication systems within enterprises
and organizations.

Performance: The source code runs stably and processes
medium-sized PDF files quickly.

In summary, this practical session provides a detailed and
applicable process for securely and accurately signing digital
documents.

5. Conclusion

The paper provides a detailed presentation of the process for
developing the practical session on digital signature
encryption and decryption, covering preparation,
implementation, and result evaluation. By applying modern
encryption algorithms such as RSA and ECC, the practical
session helps learners understand the operating principles of
digital signatures while enhancing their hands-on skills in
data security and authentication.

Experimental results demonstrate that this approach ensures
high reliability, maintaining the integrity and authenticity of
digital documents. The practical session also enables learners
to master digital signature processing techniques in real-
world environments, particularly when working with
electronic document systems.

In the future, this practical session can be expanded in the
following directions:

Integration with advanced security protocols: Combining
digital signatures with multi-factor authentication (MFA) to
enhance security.

Application in real-world systems: Researching the
implementation of digital signatures in smart contract
systems and electronic transactions.

Algorithm optimization: Improving encryption algorithm
performance for faster processing on resource-constrained

www.allmultidisciplinaryjournal.com

devices.

Blockchain integration: Applying digital signatures in
blockchain solutions to ensure data immutability and
security.

This paper aims to contribute to improving training quality in
the field of information security, providing students and
researchers with a solid foundation to further develop
practical applications in digital data security.

6. References

1. FIPS PUB 186-4. Digital Signature Standard (DSS).
National Institute of Standards and Technology (NIST);
c2013.

2. Hughes J, Bruce D. Practical Cryptography for
Developers. Sebastopol, CA: O'Reilly Media; ¢c2019.

3. Katz J, Lindell Y. Introduction to Modern Cryptography.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC; c2020.

4. Menezes AJ, van Oorschot PC, Vanstone SA. Handbook
of Applied Cryptography. Boca Raton, FL: CRC Press;
c2018.

5. Menezes AJ. Elliptic Curve Cryptography and Its
Applications. Cham, Switzerland: Springer; c2020.

6. Rivest RL, Shamir A, Adleman L. A method for
obtaining digital signatures and public-key
cryptosystems. Communications of the ACM.
1978;21(2):120-6.

7. Stallings W. Cryptography and Network Security:
Principles and Practice. 7th ed. Boston, MA: Pearson;
c2017.

1961|Page

