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Abstract 
This paper explores integrating foundation models, particularly Transformers, into 
robotic systems to address challenges in task planning and contextual execution. 
Current robotic methodologies often struggle with adaptability and real-time decision-
making in dynamic environments, limiting their effectiveness in complex tasks. 
Foundation models, known for their success in natural language processing and 
computer vision, offer significant potential to enhance robotic performance through 
improved contextual awareness and adaptability. The paper proposes a conceptual 
framework for incorporating these models into robotic architectures, detailing the 
necessary adaptations to model architecture, training techniques, and real-time sensor 
data integration. It also discusses expected outcomes, including increased precision, 
adaptability to new environments, and handling complex tasks. Finally, the paper 
identifies key areas for future research, such as exploring alternative foundation 
models, advancing training methodologies, and developing new evaluation metrics for 
robotic systems. This review underscores the transformative potential of foundation 
models in robotics and calls for continued innovation to realize their benefits fully. 
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1. Introduction 

1.1 Background and motivation 

Robotics has seen remarkable advancements over the past few decades, with systems increasingly capable of performing 

complex tasks in diverse environments (Agarwala, 2020). Task planning and contextual execution are critical components of 

robotic functionality, enabling machines to make decisions, adapt to new information, and carry out tasks in dynamic settings. 

Effective task planning allows robots to sequence actions logically to achieve a specific goal. At the same time, contextual 

execution ensures that these actions are carried out in a manner that is appropriate to the surrounding environment. However, 

despite the progress in robotic technology, the field still faces significant challenges, particularly in achieving a high contextual 

awareness and adaptability level (Javaid, Haleem, Singh, & Suman, 2021). 

Current approaches to task planning and contextual execution often rely on traditional machine-learning techniques and rule-

based systems. While these methods have enabled robots to perform a wide range of tasks, they are often limited by their inability 

to generalize across different contexts or adapt to unforeseen circumstances. Traditional models typically require extensive hand-

crafted features and domain-specific knowledge, making them inflexible and difficult to scale across different applications. 

Moreover, these models struggle to handle the complexity and variability inherent in real-world environments, leading to 

suboptimal performance in situations that deviate from the conditions under which they were trained (Sarker, Khan, Abushark, 

& Alsolami, 2021). 
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In contrast, foundation models, such as Transformers, have 
demonstrated remarkable capabilities in other fields, 
particularly in natural language processing (NLP) and 
computer vision. These models, characterized by their ability 
to process large amounts of data and learn generalizable 
representations, have revolutionized how tasks are 
approached in these domains. Transformers, for example, 
have become the backbone of state-of-the-art NLP systems, 
enabling machines to understand and generate human 
language with unprecedented accuracy. The success of these 
models in other areas raises the question of their potential 
applicability to robotics, particularly in enhancing task 
planning and contextual execution (Ekman, 2021; Tunstall, 
Von Werra, & Wolf, 2022). Despite the proven capabilities 
of foundation models in other domains, their adoption in 
robotics has been relatively limited. This gap presents a 
significant opportunity for innovation. The ability of 
foundation models to generalize across different tasks and 
contexts could address many of the limitations currently 
faced in robotic systems. By leveraging these models, it may 
be possible to develop robots that are more adaptable and 
capable of making more informed decisions in complex, 
dynamic environments. This paper seeks to explore this 
potential by proposing a conceptual framework for 
integrating foundation models into robotic systems to 
transform task planning and contextual execution. 
 
1.2 Objectives 
The primary objective of this paper is to bridge the gap 
between the capabilities of foundation models and their 
application in robotics. Specifically, the paper aims to 
propose a conceptual framework that integrates these models 
into robotic systems to enhance both task planning and 
contextual execution. The framework will draw on the 
successes of foundation models in other domains, such as 
NLP and computer vision, adapting these approaches to the 
unique challenges of robotics. 
To achieve this objective, the paper will begin by reviewing 
current applications of foundation models in various fields, 
highlighting their key strengths and the reasons for their 
success. This review will provide a foundation for 
understanding how these models can be adapted to robotics. 
The paper will then explore the specific adaptations required 
to integrate foundation models into robotic systems, 
considering factors such as model architecture, training 
processes, and the incorporation of sensor data for real-time 
decision-making. 
In addition to proposing a framework, the paper will outline 
future research directions that could further enhance the 
integration of foundation models into robotics. This will 
include suggestions for improving model training techniques, 
exploring new types of foundation models, and developing 
more sophisticated evaluation metrics to assess the 
performance of robotic systems. The ultimate goal is to pave 
the way for more adaptable, precise, and context-aware 
robotic systems that operate effectively in various 
environments. 
By addressing these objectives, this paper aims to contribute 
to the growing body of research on applying advanced 
machine-learning techniques in robotics. It seeks to 
demonstrate that foundation models, which have already 
proven transformative in other fields, have the potential to 
enhance the capabilities of robotic systems significantly. In 
doing so, it hopes to inspire further research and development 
in this area, ultimately leading to more intelligent and 
adaptable robots that can better meet the demands of real-
world applications. 

The proposed framework is not intended to be a one-size-fits-
all solution but rather a starting point for exploring the 
potential of foundation models in robotics. As such, the paper 
will emphasize the importance of ongoing research and 
experimentation to refine and optimize these models for 
specific robotic tasks. By building on the foundation laid by 
this paper, researchers and practitioners in the field of 
robotics can continue to push the boundaries of what is 
possible, ultimately leading to more capable and versatile 
robotic systems. 
 
2. Foundation Models: An overview 
2.1 Definition and core concepts 
Foundation models represent a significant advancement in 
artificial intelligence (AI) and machine learning (ML), 
characterized by their ability to generalize across various 
tasks and domains. Unlike traditional machine learning 
models, which are often task-specific and require extensive 
domain knowledge for effective deployment, foundation 
models are designed to be versatile, capable of learning from 
vast amounts of data and applying this knowledge to various 
contexts. The term "foundation" reflects their role as a 
foundational layer upon which various applications can be 
built, leveraging the model's broad understanding to tackle 
diverse problems (Akrout, Feriani, Bellili, Mezghani, & 
Hossain, 2023; Bommasani et al., 2021). 
Their architecture is at the heart of foundation models, which 
typically employ deep learning techniques to construct 
models with millions or even billions of parameters. One of 
the most notable examples of a foundation model is the 
Transformer, a model initially introduced for natural 
language processing tasks but has since been adapted for 
various other domains. The Transformer architecture is based 
on self-attention mechanisms, allowing the model to weigh 
the importance of different words in a sentence relative to 
each other. This capability enables the Transformer to 
understand context and relationships between elements in a 
sequence, making it particularly powerful for tasks that 
require contextual understanding (Tunstall et al., 2022). 
Transformers consist of an encoder-decoder structure, where 
the encoder processes input data (such as a sentence), and the 
decoder generates the output (such as a translated sentence). 
The self-attention mechanism within the Transformer allows 
it to consider the entire input sequence when making 
predictions rather than just focusing on the immediate 
vicinity of a given word or token. This global attention 
mechanism is a key factor in the model's ability to capture 
long-range dependencies and relationships, a significant 
advantage over traditional recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs), which are more 
limited in their capacity to handle such dependencies (Khan 
et al., 2022; Shreyashree, Sunagar, Rajarajeswari, & 
Kanavalli, 2022; Tunstall et al., 2022). 
Another critical feature of foundation models, particularly 
Transformers, is their scalability. The architecture is designed 
to handle large datasets. It can be scaled up to accommodate 
more data and parameters, resulting in models with 
increasing levels of performance and generalization. This 
scalability has led to the developing of models like GPT 
(Generative Pre-trained Transformer) and BERT 
(Bidirectional Encoder Representations from Transformers), 
which have set new benchmarks in NLP tasks. These models 
are pre-trained on massive datasets and can be fine-tuned for 
specific tasks, making them highly adaptable and efficient 
(Patwardhan, Marrone, & Sansone, 2023; Raiaan et al., 
2024). 
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The difference between foundation and traditional machine 
learning models lies in their approach to learning and 
generalization. Traditional models are often trained on 
specific datasets for specific tasks, with performance highly 
dependent on the quality and relevance of the training data. 
These models typically require extensive feature engineering 
and domain expertise to perform well. In contrast, foundation 
models are designed to learn broadly applicable 
representations from large, diverse datasets. This pre-training 
allows them to generalize across various tasks with minimal 
fine-tuning, making them more robust and versatile in 
handling different types of data and challenges. 
 
2.2 Applications in various domains 
The versatility and adaptability of foundation models have 
made them highly successful in numerous fields beyond their 
initial application in NLP. One of the most prominent areas 
where foundation models have had a transformative impact 
is computer vision. In this domain, models like Vision 
Transformers (ViTs) have emerged, applying the principles 
of Transformers to image-processing tasks. ViTs treat images 
as sequences of patches analogous to words in a sentence, 
allowing the model to learn the spatial relationships between 
different parts of an image. This approach has led to 
significant improvements in tasks such as image 
classification, object detection, and image segmentation, 
where understanding the context and relationships within an 
image is crucial (K. Han et al., 2022; X. Han et al., 2021; 
Khan et al., 2022). 
In autonomous systems, foundation models have also 
demonstrated considerable potential. Autonomous vehicles, 
for instance, require sophisticated perception and decision-
making capabilities to navigate complex environments 
safely. Foundation models, with their ability to process and 
integrate information from multiple sensors (such as cameras, 
LiDAR, and radar), offer a way to enhance these vehicles' 
situational awareness and decision-making processes. By 
learning from large datasets encompassing various driving 
scenarios, these models can be generalized to new and unseen 
situations, improving the reliability and safety of autonomous 
driving systems (Ignatious, El-Sayed, Khan, & Mokhtar, 
2023). 
Moreover, foundation models have been leveraged in 
healthcare to enhance diagnostic accuracy and treatment 
planning. Models like GPT-3, while primarily designed for 
text generation, have been adapted to generate medical 
reports, assist in analyzing patient data, and even suggest 
possible diagnoses based on symptoms. These applications 
demonstrate the model's ability to synthesize vast amounts of 
information and provide contextually relevant insights, a 
capability that is invaluable in complex and high-stakes 
environments like healthcare (Nazi & Peng, 2024; 
Vavekanand, Karttunen, Xu, Milani, & Li, 2024). 
In the domain of robotics, while foundation models have not 
yet been widely adopted, their potential is significant. 
Robotics requires the integration of perception, decision-
making, and action, often in real-time and under varying 
conditions. Foundation models, with their ability to 
generalize across tasks and adapt to new contexts, are well-
suited to address the challenges of robotic systems. For 
example, foundation models could be used in robotic vision 
to enhance object recognition and scene understanding, 
enabling robots to navigate and interact with their 
environments more effectively. In task planning, these 
models could be applied to develop more flexible and 
adaptive strategies that can handle the unpredictability and 
complexity of real-world tasks (Mota, Sridharan, & 

Leonardis, 2021). 
The adaptability of foundation models also makes them 
promising candidates for enhancing contextual execution in 
robotics. Contextual execution involves understanding and 
responding to the nuances of the environment in which a task 
is performed. Foundation models, with their ability to capture 
and utilize context from large datasets, could enable robots to 
understand the specific circumstances of a task better and 
adjust their actions accordingly. This capability could 
significantly improve the precision and reliability of robotic 
systems, particularly in dynamic or uncertain environments. 
Overall, the success of foundation models in various domains 
underscores their potential for broader application, including 
in robotics. By leveraging their ability to learn from diverse 
datasets, generalize across tasks, and adapt to new contexts, 
foundation models offer a promising path forward for 
enhancing the capabilities of robotic systems. As research in 
this area continues to evolve, these models will likely play an 
increasingly important role in advancing the field of robotics, 
leading to more intelligent, adaptable, and context-aware 
robots that can operate effectively in various environments. 
 
3. Challenges and opportunities in robotics 
3.1 Current state of task planning and contextual 
execution 
Robotic systems have made significant strides in recent years, 
particularly in their ability to perform complex tasks across 
various environments. Task planning and contextual 
execution are at the core of these advancements, enabling 
robots to sequence actions, adapt to new information, and 
execute tasks in dynamic settings. However, despite these 
developments, existing methods for task planning and 
contextual execution are not without their limitations, and the 
field continues to grapple with challenges related to 
adaptability, precision, and contextual awareness 
(Mikolajczyk et al., 2022). 
Traditional approaches to task planning in robotics often rely 
on rule-based systems and classical artificial intelligence 
techniques, such as search algorithms and finite state 
machines. These methods generate a sequence of actions a 
robot must follow to achieve a specific goal. While effective 
in structured environments with predictable conditions, these 
approaches struggle in more complex and dynamic settings. 
The rigidity of rule-based systems means that robots may fail 
to adapt when encountering unexpected obstacles or 
environmental changes, leading to suboptimal or even failed 
task execution (Javaid et al., 2021). 
Contextual execution, on the other hand, involves the robot's 
ability to interpret and respond to the nuances of its 
environment during task performance. This requires a deep 
understanding of the context in which a task is carried out, 
including the relationships between different objects, the 
intentions behind human actions, and the potential 
consequences of different courses of action. Current methods 
for achieving contextual execution often involve machine 
learning models trained on specific datasets to recognize 
patterns and make predictions. However, these models are 
typically limited by their dependence on the quality and 
diversity of the training data. In environments that differ 
significantly from the training scenarios, the performance of 
these models can degrade, leading to incorrect decisions and 
actions (Lakshmanan, Robinson, & Munn, 2020; Xi & Zhu, 
2023). 
The complexity of contextual awareness further exacerbates 
these challenges. A robot operating in a real-world 
environment must contend with many variables, including 
lighting changes, obstacles, object appearance variations, and 
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the unpredictable behavior of humans and other robots. The 
sheer diversity of possible scenarios makes it difficult to 
create models that can accurately predict and respond to 
every potential situation. As a result, robots often lack the 
flexibility and adaptability needed to operate effectively in 
unstructured environments, limiting their utility in many real-
world applications (Neu, Lahann, & Fettke, 2022). Moreover, 
integrating task planning and contextual execution remains 
an ongoing challenge. These two components are often 
developed and implemented separately, leading to disjointed 
systems where planning and execution are not fully aligned. 
This separation can result in inefficient task performance, as 
the robot may plan actions that are not well-suited to the 
specific context in which they are executed. The lack of a 
unified approach to task planning and contextual execution 
highlights the need for more advanced models to integrate 
these processes seamlessly, allowing robots to plan and 
execute tasks contextually appropriately and adapt to changes 
in their environment (Cacace, Caccavale, Finzi, & Grieco, 
2023). 
 
3.2 Potential of foundation models in robotics 
The limitations of current approaches to task planning and 
contextual execution in robotics underscore the potential for 
innovation by integrating foundation models. Foundation 
models, such as Transformers, offer a promising solution to 
challenges faced by traditional methods. These models are 
characterized by their ability to generalize across a wide 
range of tasks and contexts, making them well-suited to the 
demands of robotic systems operating in dynamic and 
unpredictable environments. 
One of the key theoretical advantages of foundation models 
is their capacity for improved adaptability. Unlike traditional 
models, which are often rigid and task-specific, foundation 
models are designed to learn from vast amounts of data, 
allowing them to capture a broad range of patterns and 
relationships. This generalization capability enables 
foundation models to adapt more easily to new and 
unforeseen situations. For example, a Transformer-based 
model could be trained on a diverse dataset that includes 
various environmental conditions, object types, and human 
behaviors. This training would allow the model to develop a 
deep understanding of the contextual factors that influence 
task performance, enabling it to adapt its actions in real-time 
based on the specific circumstances of the task (Yang et al., 
2023). 
In addition to adaptability, foundation models offer 
significant potential for enhancing real-time decision-making 
in robotics. The architecture of models like Transformers 
allows for parallel information processing, enabling them to 
analyze and integrate data from multiple sources quickly. 
This capability is particularly valuable in robotics, where 
timely decision-making is critical to successful task 
execution. By leveraging the processing power of foundation 
models, robotic systems can make faster and more informed 
decisions, reducing the likelihood of errors and improving 
overall performance (Bommasani et al., 2021). 
Another important advantage of foundation models is their 
ability to enhance contextual understanding. As discussed 
earlier, contextual execution requires a robot to interpret the 
nuances of its environment and adjust its actions accordingly. 
Foundation models excel in this area because they can learn 
complex relationships between different elements within a 
dataset. For example, a Transformer-based model could 
analyze the spatial relationships between objects in a scene, 
the intent behind human actions, or the potential 
consequences of different decisions. This deep contextual 

understanding allows the model to generate more accurate 
and contextually appropriate responses, improving the robot's 
ability to execute tasks in a manner that is both effective and 
safe (Dennler et al., 2023; Xi & Zhu, 2023). Moreover, the 
scalability of foundation models presents an opportunity for 
developing more robust and versatile robotic systems. As 
these models are trained on increasingly large and diverse 
datasets, their ability to generalize and adapt to new tasks 
continues to improve. This scalability means foundation 
models can be continually updated and refined as new data 
becomes available, ensuring that robotic systems can handle 
the ever-evolving challenges of real-world environments 
(Kawaharazuka et al., 2024). 
Integrating foundation models into robotic systems also 
offers the potential for a more unified approach to task 
planning and contextual execution. By leveraging the same 
model for planning and execution, creating systems where 
these processes are more closely aligned becomes possible. 
For example, a foundation model could generate a task plan 
based on an initial analysis of the environment and then 
continuously update the plan as the task is executed, 
considering new information and changes in the 
environment. This integrated approach would allow for more 
efficient and contextually appropriate task performance, 
addressing one of the key limitations of current robotic 
systems. 
 
4. Proposed conceptual framework 
4.1 Framework Design 
Integrating foundation models into robotic systems presents 
an innovative approach to overcoming the limitations of 
current task planning and contextual execution 
methodologies. The proposed conceptual framework 
envisions a robotic architecture that leverages the strengths 
of foundation models, particularly their capacity for 
generalization and contextual understanding, to enhance the 
robot's ability to perform tasks in dynamic and complex 
environments. 
The framework is built around several key components that 
enable more sophisticated task planning and execution. The 
foundation model, such as a Transformer-based architecture, 
is at the framework's core, which serves as the primary 
decision-making engine. This model is responsible for 
processing input data, generating task plans, and adjusting 
execution strategies based on contextual information in real-
time. 
The first component of the framework is the data acquisition 
and preprocessing module, which collects and processes data 
from various sensors, including cameras, LiDAR, radar, and 
other environmental sensors. This module ensures that the 
foundation model receives high-quality, context-rich data 
that accurately represents the robot's operating environment. 
The preprocessing steps may involve noise reduction, 
normalization, and converting raw sensor data into formats 
the model can efficiently process, such as sequences or 
vectors. 
Next is the contextual analysis and understanding module, 
which employs the foundation model to analyze the 
processed data and extract meaningful contextual 
information. This module leverages the self-attention 
mechanisms of Transformers to understand relationships 
between different elements in the data, such as the spatial 
positioning of objects, the sequence of events in a task, and 
the intentions of human actors in the environment. The ability 
to process this information in parallel and at multiple levels 
of abstraction allows the model to understand the context in 
which it operates comprehensively. 
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The third component is the task planning module, which uses 
the insights gained from the contextual analysis to generate a 
sequence of actions the robot should follow to achieve its 
goals. Unlike traditional task planning systems, which often 
rely on predefined rules or heuristics, this module uses the 
foundation model's understanding of context to create 
flexible and adaptable plans. The task planning module 
continuously updates its plan as new data becomes available, 
ensuring that the robot's actions remain aligned with the 
current context. 
Finally, the execution and feedback module is responsible for 
implementing the planned actions and monitoring their 
outcomes. This module integrates with the robot's actuators 
and control systems, translating high-level plans into specific 
commands that drive the robot's movements and interactions. 
As the robot executes its tasks, the module provides real-time 
feedback to the foundation model, allowing it to adjust the 
plan as necessary. This feedback loop is crucial for handling 
unexpected events and ensuring the robot can adapt to 
unforeseen challenges without manual intervention. 
 
4.2 Adaptation of models for robotics 
While foundation models like Transformers have proven 
their effectiveness in fields such as natural language 
processing and computer vision, their direct application to 
robotics requires certain adaptations to meet the unique 
demands of robotic systems. One of the primary 
considerations is modifying model architecture to 
accommodate the diverse and often continuous nature of 
sensor data in robotics. Unlike text or images, sensor data in 
robotics can vary widely in format, frequency, and scale, 
necessitating adjustments to how the model processes and 
integrates this information. 
One potential adaptation is incorporating multi-modal 
processing capabilities, enabling the foundation model to 
simultaneously handle inputs from multiple sensors. This 
could involve extending the model's architecture to include 
specialized layers or modules for processing different data 
types, such as visual data from cameras, depth data from 
LiDAR, and positional data from GPS. These layers would 
fuse the sensor data into a unified representation that the 
model can use for task planning and contextual 
understanding. 
Another crucial adaptation involves the training process. 
Traditional foundation models are often trained on large, 
static datasets collected and labeled in advance. However, 
robotic systems operate in dynamic environments where data 
constantly changes. To address this, the training process for 
foundation models in robotics may need to incorporate 
elements of online learning, where the model continues to 
learn and update its parameters as it interacts with the 
environment. This approach allows the model to remain 
flexible and responsive to new data, ensuring it can adapt to 
real-time changes. 
The integration of sensor data for real-time contextual 
awareness is another critical adaptation. In robotics, 
responding to environmental changes on the fly is essential 
for effective task execution. Foundation models in this 
framework must be able to process sensor data in real time, 
making rapid decisions based on the latest contextual 
information. This might involve optimizing the model's 
inference processes to reduce latency and increase 
computational efficiency, allowing the robot to react quickly 
to dynamic situations. 
Additionally, the foundation model may require specialized 
pre-training to develop a strong understanding of the specific 
contexts and tasks relevant to robotics. This could involve 

training the model on synthetic datasets generated by 
simulations replicating real-world robotic environments. 
These simulations can expose the model to various scenarios, 
including rare or extreme conditions that would be difficult 
to capture in real-world data. The model can develop robust 
generalization capabilities by pre-training on such diverse 
scenarios that enhance its performance in real-world 
applications. 
 
4.3 Expected Outcomes 
The integration of foundation models into robotic systems, as 
outlined in this conceptual framework, is expected to yield 
several significant improvements in task planning and 
contextual execution. One of the most notable outcomes is 
increased precision in task execution. By leveraging the 
advanced contextual understanding provided by foundation 
models, robots can make more informed decisions that are 
closely aligned with the specific requirements of each task, 
reducing the likelihood of errors and enhancing overall 
performance. 
Another expected outcome is greater adaptability to new 
environments. Foundation models, with their ability to 
generalize across diverse contexts, are well-suited to 
handling the variability and unpredictability of real-world 
environments. This adaptability means that robots equipped 
with foundation models can operate effectively in new or 
unfamiliar settings without extensive reprogramming or 
manual intervention. As a result, these robots can be deployed 
in a wider range of applications, from manufacturing and 
logistics to healthcare and service industries. 
The framework also anticipates improved handling of 
complex tasks. Tasks that involve multiple steps, interactions 
with humans, or coordination between different robots can be 
challenging for traditional systems to manage effectively. 
However, the ability of foundation models to understand and 
process complex relationships between different elements of 
a task allows for more sophisticated planning and execution 
strategies. This capability is particularly valuable in scenarios 
where the robot must respond to changes or interruptions, 
ensuring it can complete the task successfully even in the face 
of unforeseen challenges. 
Finally, integrating foundation models will result in more 
efficient and autonomous robotic systems. By enabling 
robots to plan and execute tasks with minimal human 
oversight, foundation models can reduce the need for 
constant supervision and manual control. This autonomy 
improves the efficiency of robotic operations. It frees human 
operators to focus on tasks like system monitoring and 
decision-making. Over time, this could lead to a shift in the 
role of humans in robotic systems from direct control to 
strategic oversight, further enhancing the capabilities and 
effectiveness of robotic technologies. 
 
5. Future research directions and conclusion 
5.1 Research Directions 
Integrating foundation models into robotic systems marks a 
significant advancement in robotics. Nevertheless, there 
remains ample scope for future research to enhance this 
integration further. One promising area of research involves 
exploring different foundation models beyond the commonly 
used Transformers. For instance, models such as BERT or 
GPT could be adapted and evaluated for their effectiveness 
in various robotic applications, potentially offering unique 
advantages in specific contexts or tasks. Investigating the 
suitability of these models in robotics could lead to the 
development of more specialized and efficient architectures 
tailored to the unique demands of robotic systems. 
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Another critical area for future research is the improvement 
of model training techniques. While current training 
methodologies have been successful in many domains, the 
dynamic and unpredictable nature of real-world 
environments presents unique challenges for robotics. 
Research could focus on developing hybrid training 
approaches combining offline pre-training with online 
learning, enabling robots to adapt to new data and scenarios 
continuously. Additionally, creating more sophisticated 
simulation environments for training foundation models 
could help expose them to a wider range of potential 
scenarios, thereby improving their generalization capabilities 
when deployed in real-world settings. 
Developing new evaluation metrics for robotic performance 
is another crucial research direction. Traditional metrics used 
in other domains, such as accuracy or loss functions, may not 
fully capture the complexities of robotic task execution and 
contextual understanding. Future research could focus on 
designing metrics that better assess a robot's ability to 
perform tasks in dynamic environments, considering 
adaptability, real-time decision-making, and the ability to 
learn from experience. These metrics could provide more 
meaningful insights into the effectiveness of foundation 
models in robotics and guide the development of more 
advanced and capable systems. 
Moreover, the research could explore collaborative learning 
techniques where multiple robots equipped with foundation 
models can share knowledge and experiences. This would 
enable the collective learning of models across different 
environments and tasks, accelerating the adaptation process 
and improving overall system robustness. Such approaches 
could be particularly valuable in industrial settings, where 
robots often work together to perform complex tasks. 
 
5.2 Conclusion 
Integrating foundation models into robotic systems 
represents a transformative leap forward in the capabilities of 
robots, particularly in task planning and contextual execution. 
Throughout this paper, we have explored the potential of 
foundation models like Transformers to enhance robotic 
systems' precision, adaptability, and contextual awareness, 
addressing many of the limitations inherent in traditional 
approaches. 
The proposed conceptual framework outlines how these 
models can be effectively integrated into robotic 
architectures, with key components such as data acquisition, 
contextual analysis, task planning, and execution working 
harmoniously to create more intelligent and autonomous 
systems. By adapting foundation models to the unique 
demands of robotics, including real-time processing and 
multi-modal data integration, we can unlock new levels of 
performance and versatility in robotic applications. 
However, the journey towards fully realizing the potential of 
foundation models in robotics is still ongoing. Future 
research in areas such as model exploration, training 
technique enhancements, and the development of new 
evaluation metrics will be crucial in pushing the boundaries 
of what robotic systems can achieve. By continuing to 
innovate and refine these models, the field of robotics 
benefits immensely, leading to robots that can perform 
complex tasks with a level of precision and contextual 
understanding that was previously unattainable. 
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