International Journal of Multidisciplinary Research and Growth Evaluation

 $International\ Journal\ of\ Multidisciplinary\ Research\ and\ Growth\ Evaluation$

ISSN: 2582-7138

Received: 14-01-2020; Accepted: 11-02-2020

www.allmultidisciplinaryjournal.com

Volume 1; Issue 1; January-February; 2020; Page No. 115-119

Comprehensive VR Test Strategies Insights from Meta Quest

Komal Jasani

QA Engineering Lead, Union City, California, USA

Corresponding Author: Komal Jasani

DOI: https://doi.org/10.54660/.IJMRGE.2020.1.1.115-119

Abstract

VR has become influential in a number of industries, yet the effectiveness of this technology relies on testing evaluating the capacity and feasibility of this technology. Meta Quest has developed elaborate strategies for testing VR across preexisting Level and its associated applications, with priority given to problems like mechanical and electronic inseparability, decrease in latency, accuracy in motion tracking, and suitability for users. Studying these methodologies, we determine how Meta Quest

meets key testing priorities and establishes a benchmark for the VR industry. Furthermore, the article provides tips for the software's performance assessment, as well as the user experience improvement, which make the article useful for developers and researchers. Lastly, future developments, encompassing artificial intelligence integrated testing for VR applications and enhanced accessibility standards, incorporate further evolution of VR testing as a concept.

Keywords: VR, Meta quest, VR testing methodologies, VR technologies, software verification, UX testing

1. Introduction

The potential of Virtual Reality (VR) has increased, becoming from basic low Kernel technology to modern higher Kernel technology helping industries such as gaming, education, healthcare, and others. Therefore, as VR progresses as a field, it is essential to carry out extensive testing for them and analyze their functionality, ergonomics and their experience for all the classes of users. Regular testing enables one to determine challenges with performing the devices, integrating software, and the final user or the ultimate consumer of the VR system, who is critical to the success of the VR systems. This article is specifically about the test approaches used by Meta Quest, earlier known as Oculus that have significantly contributed to making the VR cheaper and available to those who wish to offer high-quality products. Some of the testing methodologies being applied by Meta Quest are an excellent reference point in understanding how testing guarantees the pinnacle of VR performance in concern with different aspects of devices and an interaction of the equipment. From analyzing Meta Quest, the current testing practices identified in this article can be useful for other VR platforms and the situations experienced by Meta Quest, which has introduced effective strategies to meet the growing requirements of the VR market, are relevant lessons that can be learned by both beginners and advanced developers.

2. Background and importance of VR testing

Virtual Reality (VR) technology has come from simple experiments in tourism and traveling and now has become complex systems that are used in various organizations. Virtual reality technology is in frequent use in gaming, health care, education, training, and the simulation in the current world and more frequently in every year. Another factor meaning that all system processes must function correctly is that clear with increasingly complex VR systems. Thorough VR testing guarantees that the various components of the user interfaces and the hardware and software act as one seamless system providing rich experiences. The relevance of VR testing is best illustrated by the issues specific to the VR environment, including the need for accurate motion tracking, correct rendering in real time, and user comfort issues [8, 9]. These factors should be exhaustively quadrature-tested, so problems like motion sickness, lag and distorted interactions, for instance, should not compromise the UX. In addition, growth in VR has resulted in various methods of testing. These include functional testing in which the compatibility of hardware and software is assessed and the user experience testing, which involves determination of comfort, easy access and

of hardware and software is assessed and the user experience testing, which involves determination of comfort, easy access and entertainment. Testing processes are then critical enablers to increase the chance of providing improved usability and safety of VR systems to a larger populace [10]. A paradigm in the present development of consumer-oriented applications of VR is the necessity to devise stringent test approaches beyond item-level test schemes as the consumer interest in novel VR technologies Increases.

3. Focus on Meta quest

Meta Quest, formerly known as Oculus, is a prominent player in the VR market and serves as a valuable case study in the development and testing of VR systems. The platform has helped to deliver high-quality, wireless VR experiences to consumers, and its approach to VR testing has significantly influenced how immersive technologies are refined for performance and usability. Meta Quest has faced and overcome challenges related to integrating complex hardware, such as headsets with built-in sensors, with sophisticated software, including VR environments and interactive applications. The company's testing strategies have been key to its success in maintaining high-quality standards across both hardware and software. This article explores Meta Quest's comprehensive testing methodologies, including hardware durability tests, software functionality checks, and detailed user experience assessments. These strategies offer valuable insights into best practices for testing VR devices and apply to other VR platforms striving for similar levels of quality and user satisfaction. The article aims to analyze the testing phases Meta Quest undertakes, highlight key challenges faced during the testing process, and present the innovative solutions Meta Quest has implemented to overcome those challenges. By examining Meta Quest's approaches, this article provides a foundation for understanding how thorough VR testing can enhance user experience and support the growth of the VR industry.

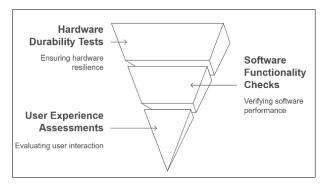


Fig 1: Meta Quest VR Testing Process

4. Literature review

The literature review answers questions about past studies and processes connected to VR testing. Since the emergence of VR, more storage of information about the use of testing methodologies in VR systems has been established. This section discusses conventional approaches of performing VR testing and determines key issues with these approaches before describing how Meta Quest has improved them. Studying these approaches and Meta Quest's advancements, it is possible to draw general conclusions about the present state of affairs concerning VR testing and the changes that might be brought to increase the compatibility of VR platforms for end-users.

A. Current VR test approaches

Because of the ever-changing nature of technology, there has been a change in how the traditional VR testing is conducted. In the beginning, most VR systems were designed with hardware validation at their core, where applications majorly assessing whether devices like a headset or a motion controller were functioning properly or not were created. As VR systems developed, integration tests added alongside

software tests, UX tests, and performance tests. Earlier testing models include functional testing that checks if an application performs according to expectations, performance testing which tests frame rates, latency and overall responsiveness and the user experience testing, which aims at comfort, engagement and ease of use [8, 9]. Another issue is that to perform VR tests, simple hardware has to be combined with rather complex software systems. The VR equipment is typically made up of headsets, sensors and the motion controllers and these have to combine with the VR software to deliver a set environment. Despite this hardware-software integration, some challenges are encountered, especially regarding latency and motion tracking problems that cause users discomfort or disorientation. In addition, VR testing should test of real-time rendering, how fast graphics is painted and there is no latency between action and reaction of the system [9]. User comfort is another typical issue that arises when conducting VR testing, as a user may become uncomfortable over a long testing period. Sensory conflict or motion sickness is a common occurrence with many users interacting with VR or immersed in a high interactive or fast responding VR setup. This means that the cases need to go through very intense user experience to find out the right frame rates, the right motion tracking quality and the smooth visuals it offers. Testing becomes another requirement of increased VR adoption to ensure that persons of different abilities and disabilities can use VR systems [10, 12].

B. Meta quest's contributions

Where it comes to testing possible real world consumer level wireless VR systems Meta quest has been leading. As highlighted by Meta Ouest, another achievement that they have made with the product they have developed it is on taking the focus to the development of testing frameworks that should not only meet the functional test ability the but also the user experience, comfort and safety. The company has been of great importance in setting up of wireless for VR and therefore the test factors include latency of the wireless connection, particularly when used for many hours. Meta Quest has developed specific testing approaches that address almost all elements of experience a user might face. For example, Meta Quest has implemented steps to minimize latency Copied at the moment because it causes effects such as motion sickness and eye-strain when using VR systems with high latency levels [11]. However, the company has already developed some concrete models for testing comfort of VR such as weight of the set and of ergonomics to guarantee the fatigue set on the users even if they are using it for many hours. Them, all the endeavors done in the past have come quite useful in enhancing the users' experience and physical discomfort, thus extending the applicability of VR to more market niches [12]. Meta Quest has also discharged information and data regarding its testing processes in Virtual Reality testing. For example, the company has reported research on the effectiveness motion, a factor that determines the feel of an object in an interactive environment. These findings have become useful for developers and testers in VR and set industry standards on how testing in the VR space should be done [9]. Meta Quest seems to provide one of the more coherent visions of VR platform when it is compared with the competitors, focusing on the simplicity of the developed VR applications and platform robustness at the same time. Also, because of methods used in testing wireless VR technology and the type of testing strategies

implemented, the company has helped to set higher standards

in the industry [8, 11].

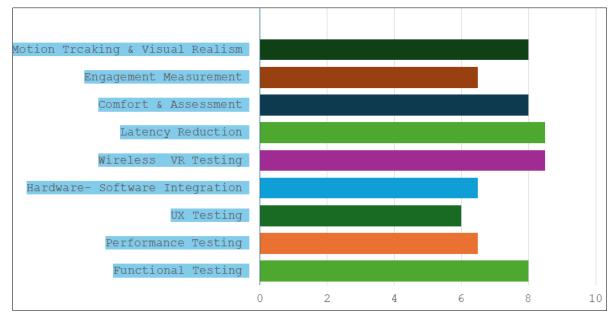


Fig 2: Proportion of VR Testing Aspects in Literature Review

C. User-centered testing in VR

It has been established that to ensure VR technology responds to users' needs optimally, testers need to conduct user-centered testing. It has an emphasis on determining general areas of the user experience that are comfort, immersiveness, and engagement levels. Comfort is evaluated using techniques such as humidity, skin conductance, or infrared cameras to track heart rates and eye movement, to understand factors that can cause discomfort, such as nausea, head motion sickness, or eyestrain. Engagement is another important criterion of the quality of virtual environment and is defined by the degree to which the user feels 'there'; its assessment includes motion tracking precision, visual realism and designing of the environment. These are important to use in improving the precision of VR systems in order to facilitate fun and real experiences.

The other part of user-centered testing is engagement, which shows how much the users are involved and concentrated. It is measured by assessing the user's behavior and via questionnaires and surveys. This makes it possible for the developers to tell the level of participation by users. Following the same point, the flow of RTMCs during and after the test sessions may show the main problematic areas and areas for improvements when the motivation of users is regarded not only in terms of the functional but also fascinating VR experience. This feedback, usually as surveys or focus group discussions, guides the strategies used in the development and testing of products to improve the success rates of the user experience. With the advancement of VR technology, referencing end-user testing is a useful approach to developing technological systems that are both innovative and supportive of user goals.

Future work

Using AI and machine learning in VR testing is currently seen as the key to the future development of that approach. AI can be used for testing, predicting problem conditions and for optimizing and adapting the system in response to real-time conditions to eliminate user discomfort where possible and enhance over all usability [8]. User behavior could be

modeled better using interaction analysis to increase the understanding of preference and effective engagement levels for improved VR. The utilization of AI in testing might lower the testing times and enable frequent updates on the VR systems [8]. With the maturity of VR technology, there will be more attention to the ease of testing VR. Future research should investigate interaction obstacles regarding disabled users and identify solutions to provide interfaces which allow persons with disabilities to interact effectively in VR environments. This could be as assessing various forms of input means or in guaranteeing that the different VR platforms reach out to every user [6]. Many-user scenarios, which VR systems will become as they expand beyond isolated user experiences, will also cause new methods for testing synchronization, latency and multiple users [3]. The following changes would also be required: standardization of VR testing frameworks. Even the current platform examples, such as Meta Quest, have made improvements in testing, but because there aren't standard protocols in testing, this affects the quality of VR applications. In this sense, for future work, it is proposed to regard as priorities the development of unified indicators and performance parameters that are to be equally effective across all the three levels and provide the user with a similarly engaging experience in VR platforms [14]. Integrating artificial intelligence, diversity, and standardized testing frameworks was determined to be the next trend that will define the future advancements of virtual reality in satisfying the needs of diverse users and labeling the field's progressing growth.

Acknowledgements

First, authors of this work would like to thank the Meta Quest team for their ideas and help in providing a suitable approach to the VR testing, which was an important premise for this research. We would also like to express our gratitude to talented researchers and developers whose efforts have been crucial for enhancing the VR concept and enlarging the pool of knowledge regarding immersive surroundings. As shown throughout this study, their research has laid the groundwork for most of the concepts that have been analyzed in this work.

5. Discussion

The way Meta Quest conducts the VR testing is systematic and systematic with stages to test not only the hardware but also the software of the VR device. The testing begins with hardware tests, testing for motion tracking, frame rate and latency testing, which are necessary because they reduce discomfort and allow natural movement within the VR system. Second, the software is validated for some technical issues such as bugs, glitches and compatibility with different VR applications. The fourth one is post-testing, where the level of immersion, comfort and engagement is determined to see the areas with lapses.

All the parameters employed in Meta Quest's testing, including latency, frame rate, and motion tracking accuracy, are crucial to delivering an efficient VR experience. Some of these metrics are described below and are continually checked to ensure that end-users suffer the least interruption or delay, especially when precision is important in the application, including game and training simulations. The aforementioned technical factors show that Meta Quest designs its VR systems to create both dependability and an engaging experience for customers. Interestingly, many Meta Quest's testing strategies are not limited just to their own platforms. These methodologies can be adopted by other VR platforms to enhance their solutions. For instance, several domain-specific advancements regarding the hardware and user-testing methodologies can be enhanced. The authors believe that developers and testers throughout the VR industry can use these best practices to improve the functionality and efficacy of their systems, thus ultimately improving the experience for end consumers that are demanding better quality that is more immersive and comfortable environments.

6. Conclusion

Thus, it is possible to conclude that successful testing and, therefore, the applications of VR belong to the principles that play the crucial role in the development of VR technologies. Meta Quest has developed a progressive testing strategy that proved as a guide for the whole industry. Their approach is a multilayered one that includes the examination of the general design and the individual components of the VR system and its user interface. Thus, Meta Quest prioritizes performance metrics important for VR by optimizing them for smooth and stable operation, low likelihood of causing discomfort to the user, and high engagement with applications provided. Through this multiple step testing strategy, not only is the product tested for its functionality but also the areas that require constant optimization. Finally, it sets a high bar for VR platforms [8]. Future prospective impacts of Meta Quest thus underline the potentiality of reinforcing the development of new testing practices in VR. Since the new technology is already setting in future expansion of techniques such as artificial intelligence and machine learning will be the key to improve efficiency of testing as well as create more innovative approaches. These enhancements will allow for the rapid detection of problems so that developers can take action to guarantee meaningful user engagement [7]. Testing can expand the accessibility of environments for multiple users and make outstanding VR platforms for everybody. It allows Meta Quest to solve existing VR shortcomings while introducing features that will apply to future advancements that will be useful for many users in different fields [9].

7. References

- 1. Basu S, Biswas G, Kinnebrew JS. Student modeling for adaptive support in the context of the learning environment designed using the elements of computational thinking within the context of learning science. User Modeling User-Adapted Interact. 2017;27(1):5-53.
- 2. Bowman DA, Hodges LF. A review on grasping and interacting with objects at a distance for users in ending virtual environment. In: 1997 ACM Symposium on Interactive 3D Graphics; 1997. p. 35-ff.
- Callaghan MJ, Gómez Eguíluz A, McLaughlin G, McShane N. The prospect and limitation of virtual reality application in remote and virtual laboratory. In: Proceedings of the 2015 12th International Conference on Remote Engineering and Virtual Instrumentation. 2015. doi: 10.1109/REV.2015.7087298.
- 4. Callaghan MJ, Gómez Eguíluz A, McShane N. The application of game metrics to evaluate student participation/interference particular to engineering learning. In: Proceedings of the International Conference on Remote Engineering and Virtual Instrumentation REV 2014; 2014.
- Carter L, Ellen L. Developing games for appearance in consumer VR. In: SIGMIS-CPR '16: 2016 ACM SIGMIS Conference on Computers and People Research Proceedings. 2016. p. 141-8. doi: 10.1145/2890602.2890626.
- 6. Craddock IM. Learning with virtual reality, Google expeditions, and language acquisition of English. Library Technol Rep. 2018;54(4):7-9.
- 7. Cruz-Neira C, Desmond T, Carlson K, *et al.* Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques; 1993. p. 135-42.
- 8. Rzig D, Elhaq I, Iqbal N, Attisano I, Qin X, Hassan F. Some characteristics of testing virtual reality software. 2022. Available from: https://doi.org/10.48550/arXiv.2211.01992.
- 9. Rzig D, Elhaq I, Iqbal N, Attisano I, Qin X, Hassan F. Testing definitions of virtual reality software characterization. 2022. Available from: https://doi.org/10.48550/arXiv.2211.01992.
- 10. Jensen L, Konradsen F. A research on virtual reality head-mounted display application in educational and training environments. Educ Inf Technol. 2018;23(4):1515-29.
- 11. Leung T, Fauzi Zulkernine H, Isah. Integrating applications of virtual reality technology into interdisciplinary healing and learning contexts. 2018. Available from: https://doi.org/10.48550/arXiv.1809.08585.
- 12. Marmitt G, Duchowski AT. Eye tracking patterns and performance while using Microsoft Mice. In: Proceedings of the 14th Annual International Conference on Computer Animation and Social Agents. 2002. p. 279-88.
- 13. Olmos A, Cavalcanti JF, Soler A, Contero M, Alcañiz M. Mobile virtual reality: a promising technology to transform learning and teaching/education. In: Chamberlain S, editor. Thinking about Mobile & Ubiquitous Learning. Springer; 2014. p. 95-106.

- 14. Pathan R, Rajendran R, Murthy S. Mechanism to capture learner's interaction in VR-based learning environment: design and application. Unpublished work.
- 15. Opler M, Roussou M, Slater M. The virtual playground: an educational virtual environment designed for the assessment of interactivity within a conceptual learning system. Virtual Reality. 2006;10(3-4):227-40.
- 16. Bernal-Agustín JL, Artal-Sevil JS. Virtual tours using virtual reality glasses for teaching purposes. In: ICERI2023 Proceedings. IATED; 2023. p. 9751-60.
- 17. Aziz S, Lohr DJ, Friedman L, Komogortsev O. Evaluation of eye tracking signal quality for virtual reality applications: A case study in the Meta Quest Pro. arXiv preprint arXiv:2403.07210. 2024.