

International Journal of Multidisciplinary Research and Growth Evaluation.

Boosting Fire Safety in GTL Plants: Innovative Solutions for Early Detection

Joseph Malvin ¹, Samira Khanom ², Ali Parvez ^{3*}

¹⁻³ School of Management, University of Asia and the Pacific, Pasig City, Philippines

* Corresponding Author: Ali Parvez

Article Info

ISSN (online): 2582-7138

Volume: 06 Issue: 02

March-April 2025 Received: 29-01-2025 Accepted: 24-02-2025 Page No: 594-599

Abstract

Fire hazards in Gas-to-Liquids (GTL) processing facilities present substantial safety and operational challenges due to the intrinsic nature of these environments, which involve highly flammable gaseous materials, elevated temperatures, and intricate industrial processes. The convergence of these factors creates a high-risk setting where even minor ignition sources can lead to catastrophic consequences. Traditional fire detection systems, such as smoke and heat detectors, often fall short in such complex settings due to delayed response times, susceptibility to false alarms, and interference from environmental conditions like dust, humidity, or vapor emissions. To address these limitations and enhance fire safety protocols, there is a growing emphasis on deploying advanced early warning systems equipped with cutting-edge technologies. These include artificial intelligence (AI) for intelligent pattern recognition, Internet of Things (IoT) frameworks for continuous, networked data collection, and multispectral imaging for enhanced flame detection across various wavelengths. This paper provides a comprehensive analysis of the inherent fire detection challenges specific to GTL facilities, critically assesses the shortcomings of conventional systems, and highlights the potential of next-generation fire monitoring technologies. Through the integration of AI-driven flame recognition algorithms, real-time sensor networks, and predictive analytics, modern fire detection systems can significantly increase the speed and accuracy of incident response. Furthermore, this study presents real-world case studies and practical applications of these advanced technologies, illustrating their role in minimizing fire-related risks and reinforcing operational safety across GTL plants. Ultimately, the implementation of intelligent, proactive fire detection solutions represents a paradigm shift in safeguarding critical infrastructure within the energy sector.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.2.594-599

Keywords: Gas-to-Liquids (GTL), Fire Detection, Early Warning Systems, Industrial Safety, AI-Based Fire Detection, IoT Sensors, Infrared (IR) Detection, Risk Mitigation, Process Safety, Machine Learning

1. Introduction

Gas-to-Liquids (GTL) technology plays a pivotal role in the modern energy industry by converting natural gas into liquid hydrocarbons such as diesel, naphtha, and jet fuel through processes like Fischer-Tropsch synthesis. This conversion not only offers a cleaner and more efficient alternative to conventional fossil fuels but also supports energy diversification and sustainability goals. However, despite these advantages, GTL operations inherently carry substantial fire risks due to the presence of high-pressure flammable gases, sophisticated heat exchange systems, and exothermic chemical reactions that occur under elevated temperatures and pressures (Hossain & Alasa, 2024) [15]. Ensuring safety in such high-risk environments necessitates the deployment of advanced fire detection mechanisms capable of identifying and mitigating threats at the earliest possible stage. Conventional fire detection systems including heat sensors, smoke detectors, and optical flame detectors—have been widely deployed in industrial settings. Yet, in the dynamic and often harsh operating environments of GTL plants, these traditional systems face several limitations. False alarms triggered by dust, humidity, and chemical vapors, slow response times, and

difficulty in detecting fires within confined or visually obstructed spaces (White & Ajax, 2025) [39] severely limit their effectiveness. Additionally, reliance on manual surveillance and human intervention is inadequate given the rapid onset and escalation of fire incidents in such facilities. These challenges underscore the urgent need for robust, intelligent fire detection solutions tailored for GTL-specific hazards.

Emerging technologies, particularly those involving artificial intelligence (AI), Internet of Things (IoT), and computer vision, offer promising solutions to address these challenges (Alasa, et al, 2024; Sarwer, et al, 2022) [6]. Recent advances in AI and deep learning have significantly enhanced the accuracy and reliability of fire detection. AI-powered systems can process real-time video feeds, analyze thermal signatures, and utilize multispectral imaging to detect early signs of combustion with remarkable precision (Sinchai et al, 2024; Hossain & Alasa, 2024a; Hossain & Alasa, 2024b) [25, 15, 16]. Complementing this, IoT-enabled fire monitoring frameworks integrate smart sensors and communication networks to provide 24/7 surveillance, capture real-time environmental data, and trigger automatic responses to potential fire outbreaks (Babu et al, 2024) [7]. These technologies facilitate rapid detection and proactive mitigation, thereby reducing response time and preventing the escalation of fire incidents.

This research aims to:

- Identify and categorize the key fire hazards prevalent in GTL processing facilities.
- Critically evaluate the limitations and shortcomings of conventional fire detection systems.
- 3. Explore cutting-edge technologies that enhance fire detection accuracy and reliability in industrial settings.
- 4. Develop and propose an AI-driven early warning framework tailored for GTL plant safety.

By addressing these objectives, this study contributes to the development of a safer operational environment in the GTL sector, aligning with broader industrial safety and risk mitigation strategies. The subsequent sections will provide a detailed examination of the fire hazards unique to GTL plants, assess current detection technologies and their limitations, explore technological innovations, and propose effective implementation strategies for next-generation fire detection systems.

2. Fire hazards in gas-to-liquids processing facilities

Gas-to-Liquids (GTL) processing facilities utilize a complex sequence of chemical reactions—typically under high-temperature and high-pressure conditions—to convert natural gas into liquid hydrocarbons such as diesel, naphtha, and jet fuel. While GTL technology offers cleaner fuel alternatives, it also introduces significant fire hazards. These hazards primarily arise from the use and generation of highly flammable gases, including methane, hydrogen, and carbon monoxide, during the synthesis and refining processes (Hossain & Alasa, 2024; Alasa *et al*, 2025) [15, 1]. The exothermic nature of these chemical reactions, combined with high operational pressures and intricate system designs, creates an environment where any malfunction can escalate into a fire or explosion.

One of the most pressing fire risks in GTL plants is gas leakage. Even small leaks of methane or syngas can lead to devastating fires or explosions when exposed to an ignition source. Such leaks may result from equipment degradation, pipeline corrosion, valve failures, or operational errors. In addition, static electricity buildup or electrical faults in

industrial machinery can serve as ignition sources, intensifying fire risks (Prashanth Kumar Reddy *et al*, 2020) ^[28]. GTL facilities must also manage the threat of vapor cloud explosions, which occur when flammable gases accumulate in the atmosphere and ignite resulting in massive energy releases and structural damage.

High-temperature process equipment presents another major hazard. Units such as reactors, heat exchangers, and distillation columns operate at elevated temperatures and are vulnerable to thermal runaway reactions if cooling systems fail or safety interlocks malfunction. These zones can become ignition points if heat builds up unchecked, and fires originating in these areas can quickly spread through interconnected systems. Traditional fire detection and thermal monitoring systems often struggle to detect such conditions early, highlighting the need for advanced, predictive, sensor-based solutions (Zhang et al, 2024) [41]. Case studies of industrial fires in petrochemical and GTL environments illustrate the devastating impact of delayed or inadequate fire detection. Many incidents have shown that undetected gas releases and slow emergency responses are major contributors to the severity of fire events. These findings underscore the need for real-time monitoring and intelligent, automated detection systems that can identify abnormal conditions and initiate mitigation protocols before the situation escalates (Hossain, 2021, 2022; Yu et al, 2024) [18, 17, 40]

Environmental factors also play a critical role in fire risk. GTL plants are often exposed to extreme weather conditions, such as high temperatures, humidity, and strong winds, all of which can affect fire behavior and detection accuracy. For example, wind can spread flames rapidly across facility zones, making it difficult for conventional detectors to localize and contain the fire effectively (Kim *et al*, 2024) [21]. These challenges emphasize the importance of fire detection systems that can account for both environmental and operational variables, ensuring rapid and reliable identification of threats.

In summary, the fire hazards in GTL facilities stem from a combination of chemical, mechanical, and environmental factors. Addressing these challenges requires a shift toward advanced fire detection technologies capable of real-time analysis, predictive monitoring, and automated response. Such systems are essential to safeguarding GTL infrastructure and minimizing the risk of catastrophic incidents.

3. Limitations of traditional fire detection systems

Conventional fire detection systems in industrial environments primarily rely on heat sensors, smoke detectors, and optical flame detectors. While these technologies are well-established and widely implemented, they exhibit several critical limitations when applied to highrisk and fast-paced environments such as Gas-to-Liquids (GTL) processing facilities. In these contexts, the need for rapid, accurate fire detection is paramount due to the potential for fires to escalate within seconds. A major drawback of traditional fire detection systems is their delayed response time. Heat and smoke detectors typically require the accumulation of significant thermal energy or particulate matter to trigger an alarm (Alasa, et al, 2025b; Hossain et al, 2023) [5, 14]. In GTL settings, where flammable gases and high temperatures are present, even a short delay in detection can result in widespread damage and increased safety hazards (White & Ajax, 2025) [39].

False alarms are another frequent concern. Traditional detectors often struggle to distinguish between actual fire

events and non-threatening emissions such as steam discharges, hot gas releases, or controlled flare stack operations. For example, optical flame detectors, which rely on ultraviolet (UV) or infrared (IR) radiation to identify fire signatures, are prone to interference from background radiation, leading to numerous false positives (Obi, 2014) [25]. These false alarms not only disrupt operations but also erode confidence in the reliability of the detection system.

In addition, the architectural complexity of GTL plants creates further detection challenges. These facilities typically consist of intricate piping networks, enclosed reactors, and large storage units where fires can ignite in areas hidden from a direct line-of-sight. Traditional optical sensors may be unable to detect such events effectively. Smoke detectors, which depend on particulate matter for activation, are often rendered ineffective by high ventilation rates and the presence of non-combustible industrial gases that distort their readings (Phan *et al*, 2023) [27].

Maintenance challenges further diminish the effectiveness of conventional fire detection systems. The harsh operational conditions in GTL facilities including high ambient temperatures, chemical exposure, and continuous mechanical vibration can degrade sensor accuracy and longevity. Frequent recalibration and maintenance are required to ensure functionality, which increases operational costs and raises the risk of undetected sensor failure (Qu *et al*, 2025; Alasa, *et al*, 2025a) [29, 1]. Moreover, many legacy systems lack real-time monitoring or remote diagnostics capabilities, limiting situational awareness and delaying critical response actions during emergencies.

Given these limitations, there is a pressing need to adopt advanced fire detection technologies capable of providing real-time, accurate, and resilient performance under challenging conditions. Emerging systems that incorporate artificial intelligence (AI), Internet of Things (IoT) connectivity, and sensor fusion have shown significant promise in addressing these shortcomings (Alasa, 2020; Alasa, 2021; Medewar *et al*, 2024) [2,3,24]. These technologies enable intelligent data analysis, pattern recognition, and predictive monitoring transform fire detection in GTL plants from a reactive to a proactive safety strategy. The integration of AI-driven early warning systems represents a crucial step toward enhancing fire resilience and safeguarding high-risk industrial environments.

4. Emerging technologies for advanced fire detection in GTL facilities

The limitations of conventional fire detection systems have prompted the adoption of advanced technologies that enhance accuracy, minimize false alarms, and support real-time monitoring in Gas-to-Liquids (GTL) facilities. Innovations in artificial intelligence (AI), the Internet of Things (IoT), and machine vision have revolutionized industrial fire safety by enabling intelligent, responsive, and predictive fire detection frameworks.

4.1 AI-powered fire detection

AI-powered fire detection systems leverage deep learning algorithms to interpret visual and thermal data, enabling highly accurate fire identification. Unlike traditional flame detectors that rely on single-spectrum infrared (IR) or ultraviolet (UV) radiation, AI-driven models analyze multispectral and thermal imaging to detect early signs of ignition—even before visible flames appear (Sultan *et al*, 2024) [36]. These models are trained on vast datasets of fire and non-fire scenarios, allowing them to distinguish combustion-related patterns from non-threatening emissions

such as steam, smoke from flare stacks, or hot gas discharges. In addition to reactive detection, AI enhances predictive analytics. Machine learning algorithms can analyze trends in historical sensor data such as abnormal temperature fluctuations, gas leak patterns, and environmental variables to forecast fire risks before they materialize (Kim *et al*, 2024; Alasa, *et al*, 2025a) ^[22, 5]. This predictive capability facilitates proactive safety measures and significantly reduces response time, contributing to more resilient GTL operations.

4.2 IoT-enabled smart fire detection systems

The integration of IoT technology has transformed fire detection from a localized process into a real-time, interconnected system. IoT-enabled fire detection solutions use a distributed network of smart sensors including temperature probes, gas detectors, and thermal imaging devices to continuously collect environmental data and transmit it to a centralized monitoring platform (Pandey, Jain, & Saritha, 2023) [26]. This infrastructure supports real-time hazard assessment and can automatically trigger alarms and suppression systems when thresholds are exceeded.

Advanced IoT systems are often equipped with edge computing capabilities, allowing data to be processed at or near the source. This reduces latency and enables immediate detection of fire anomalies without the need for cloud-dependent processing. Moreover, remote access to IoT dashboards and mobile applications empowers safety personnel to monitor fire threats across facility zones even in areas with limited physical oversight (Babu *et al*, 2024) ^[7]. The result is a more agile and responsive fire safety network across the GTL facility.

4.3 Computer vision and multispectral imaging

Computer vision technologies, when integrated with multispectral imaging, offer highly effective fire detection tools in industrial settings. Multispectral cameras capture data across several wavelengths including visible, near-infrared, and thermal bands enabling the system to identify subtle combustion signatures that may elude the human eye or single-spectrum detectors (Sinchai *et al*, 2024) [35]. These systems apply AI algorithms to differentiate real fire events from heat sources unrelated to combustion, thereby reducing false alarms caused by routine industrial operations.

Thermal imaging is particularly valuable in identifying fire hazards in obscured environments, such as enclosed pipe systems, insulation-covered units, or sealed storage tanks. Using convolutional neural networks (CNNs), advanced detection models can interpret thermal video feeds in real time to pinpoint unusual heat distributions that may signal the onset of fire (Tran, 2025) [38]. This combination of computer vision, deep learning, and multispectral data analysis forms a comprehensive detection strategy capable of overcoming the spatial and sensory limitations of conventional systems.

By integrating AI-driven analysis, IoT-connected sensor networks, and computer vision technologies, GTL facilities can move beyond reactive fire safety models toward proactive and intelligent fire prevention strategies. These advanced systems not only improve detection accuracy and reduce false positives but also ensure faster response times and greater operational resilience in high-risk industrial environments.

5. Implementation strategies for AI-driven fire detection

The successful deployment of AI-driven fire detection systems in Gas-to-Liquids (GTL) facilities requires a wellstructured and integrated approach. This includes seamless sensor integration, real-time data processing, and the deployment of intelligent decision-making mechanisms. This section outlines key strategies for implementing AI-based fire detection frameworks, emphasizing sensor fusion, performance evaluation, and latency optimization to ensure effectiveness in real-world industrial environments.

5.1 Sensor integration and data fusion

An essential foundation of AI-based fire detection lies in the integration of multiple sensor types to capture diverse firerelated indicators. These systems commonly incorporate data from thermal imaging cameras, infrared and ultraviolet flame sensors, gas detectors, and acoustic sensors to create a comprehensive view of the monitored environment. The fusion of data from these heterogeneous sources allows for multidimensional analysis, which significantly improves detection accuracy and minimizes false positives (Qu et al, 2025) [29]. Multisensor fusion enables the AI system to crossverify anomalies detected by one sensor with data from others, enhancing system reliability. For instance, a temperature spike detected by a thermal sensor can be validated by the presence of gas leakage or an acoustic anomaly, ensuring that alarms are triggered only when multiple indicators suggest a potential fire event.

5.2 Performance evaluation and accuracy enhancement

Evaluating the effectiveness of AI-powered fire detection systems involves analyzing key performance metrics such as detection accuracy, false alarm rate, and system response time. Deep learning models, particularly convolutional neural networks (CNNs), have demonstrated fire detection accuracies exceeding 90% when trained on diverse and high-resolution datasets (Shrivastava *et al*, 2024) [34]. However, maintaining high accuracy in dynamic GTL environments requires continual model refinement.

To improve robustness and generalizability, AI models must be trained with datasets that reflect the wide variability of real industrial conditions—such as changes in lighting, smoke density, fire size, and background noise. Incorporating synthetic fire datasets, augmentation techniques, and real incident footage can further enhance the model's learning capacity and adaptability.

5.3 Real-time processing and system optimization

In GTL facilities, where fire incidents can escalate rapidly, real-time detection and response are critical. AI models deployed in these settings must offer low-latency inference to enable immediate alert generation and the activation of suppression systems. Achieving this requires optimizing the computational performance of the models through techniques such as:

- Model pruning Reducing redundant parameters to speed up inference without compromising accuracy.
- Quantization Converting model weights to lower precision formats to decrease computational load.
- Edge computing Deploying models on local devices near the sensor source to eliminate transmission delays and ensure faster decision-making (Hossain & Alasa, 2024) [16].

These strategies allow AI-based fire detection systems to operate efficiently within the constraints of industrial environments, providing real-time situational awareness and responsive safety interventions. By adopting these implementation strategies, GTL facilities can transition to intelligent fire monitoring systems that offer significant improvements in detection speed, accuracy, and reliability. Such advancements contribute to proactive fire prevention,

reducing the likelihood of catastrophic events and enhancing overall operational safety.

6. Conclusion

The increasing complexity and operational risks of Gas-to-Liquids (GTL) processing facilities demand the adoption of advanced fire detection mechanisms capable of addressing the limitations of traditional systems. Conventional methods—such as smoke, heat, and flame sensors—often exhibit delayed response times and high false alarm rates, them inadequate for high-risk environments. In contrast, AI-driven fire detection systems, enhanced by deep learning, Internet of Things connectivity, multispectral imaging, offer transformative improvements in accuracy, responsiveness, and predictive capability. The integration of AI and IoT technologies facilitates continuous, real-time monitoring of environmental and process-related variables through a network of interconnected smart sensors. These systems enable rapid identification of early-stage fire hazards, allowing for timely intervention before incidents escalate. Deep learning models, particularly those utilizing computer vision and thermal imaging, significantly reduce false alarms by distinguishing between fire and non-fire events with high precision. Additionally, IoT-based architectures support remote access and centralized control, enabling operators to monitor fire safety conditions from anywhere, thereby enhancing situational awareness and operational agility. Effective implementation of AI-based fire detection systems requires a structured deployment strategy. This includes multi-sensor data fusion, real-time model inference optimization, and ongoing training of detection algorithms to adapt to varying environmental and operational scenarios. While AI-based fire detection systems show strong potential, future research should prioritize the development of adaptive learning mechanisms to further reduce false positives and improve computational efficiency. Moreover, ensuring compliance with industrial safety standards and regulatory frameworks is critical for broader adoption across GTL facilities. In conclusion, the transition to intelligent fire detection systems represents a significant step forward in improving fire safety, minimizing operational disruptions, and protecting assets and personnel in GTL plants. Embracing these advanced technologies will empower GTL operations to proactively manage fire risks and maintain safety in increasingly complex and demanding industrial settings.

7. References

- 1. Alasa DK, Jiyane G. Bridging innovation and sustainability: the evolving role of information technology in plant biotechnology. Western Journal of Agricultural Science and Technology. 2025;1(1):1-6.
- 2. Alasa DK. Harnessing predictive analytics in cybersecurity: proactive strategies for organizational threat mitigation. World Journal of Advanced Research and Reviews. 2020;8(2):369-76. https://doi.org/10.30574/wjarr.2020.8.2.0425.
- 3. Alasa DK. Enhanced business intelligence through the convergence of big data analytics, AI, machine learning, IoT and blockchain. Open Access Research Journal of Science and Technology. 2021;2(2):23-30. https://doi.org/10.53022/oarjst.2021.2.2.0042.
- 4. Alasa DK, Hossain D, Jiyane G. Hydrogen economy in GTL: exploring the role of hydrogen-rich GTL processes in advancing a hydrogen-based economy. International Journal of Communication Networks and Information Security(IJCNIS).2025;17(1):81-91.

- https://www.ijcnis.org/index.php/ijcnis/article/view/802
- Alasa DK, Hossain D, Jiyane G, Sarwer MH, Saha TR. AI-driven personalization in e-commerce: the case of Amazon and Shopify's impact on consumer behavior. Voice of the Publisher. 2025;11:104-16. https://doi.org/10.4236/vp.2025.111009.
- Alasa DK, Jiyane G, Tanvir A. Exploring the synergy of artificial intelligence and blockchain in business: insights from a bibliometric-content analysis. Global Journal of Engineering and Technology Advances. 2024;21(2):171-8.
 - https://doi.org/10.30574/gjeta.2024.21.2.0216.
- Babu CS, Auroshaa A, Saltonya MS, Sathyanarayanan AS. Cloud-enabled fire safety in Industry 5.0 smart factories: leveraging IoT and sensor networks for realtime monitoring and proactive prevention. In: Emerging Technologies in Digital Manufacturing and Smart Factories. IGI Global Scientific Publishing; 2024. p. 150-66.
- Bhuiyan MMR, Noman IR, Aziz MM, Rahaman MM, Islam MR, Manik MMTG, et al Transformation of plant breeding using data analytics and information technology: innovations, applications, and prospective directions. Front Biosci (Elite Ed). 2025;17(1):27936. https://doi.org/10.31083/FBE27936.
- Bulbul IJ, Zahir Z, Tanvir A, Alam P, Parisha P. Comparative study of the antimicrobial, minimum inhibitory concentrations (MIC), cytotoxic and antioxidant activity of methanolic extract of different parts of Phyllanthus acidus (L.) Skeels (family: Euphorbiaceae). World J Pharm Pharm Sci. 2018;8(1):12-57. https://doi.org/10.20959/wjpps20191-10735.
- Das K, Ayim BY, Borodynko-Filas N, Das SC, Aminuzzaman FM. Genome editing (CRISPR/Cas9) in plant disease management: challenges and future prospects. J Plant Prot Res. 2023;63:159-72. https://doi.org/10.24425/jppr.2023.145761.
- Das K, Jhan PK, Das SC, Aminuzzaman FM, Ayim BY. Nanotechnology: past, present, and future prospects in crop protection. In: Ahmad F, Sultan M, editors. Technology in Agriculture. London, United Kingdom: IntechOpen Limited; 2021. p. 1-18.
- 12. Das K, Sarker A, *et al* Harnessing plant—microorganism interactions for nano-bioremediation of heavy metals: cutting-edge advances and mechanisms. Plant Trends. 2025;3(1):1-12. http://dx.doi.org/10.5455/pt.2025.01.
- 13. Das K, Tanvir A, Rani S, Aminuzzaman FM. Revolutionizing agro-food waste management: real-time solutions through IoT and big data integration. Voice Publ. 2025;11:17-36. https://doi.org/10.4236/vp.2025.111003.
- Hossain D, Alasa DK, Jiyane G. Water-based fire suppression and structural fire protection: strategies for effective fire control. International Journal of Communication Networks and Information Security (IJCNIS). 2023;15(4):485-94. https://ijcnis.org/index.php/ijcnis/article/view/7982.
- 15. Hossain D, Alasa DK. Fire detection in gas-to-liquids processing facilities: challenges and innovations in early warning systems. International Journal of Biological, Physical and Chemical Studies. 2024;6(2):7-13. https://doi.org/10.32996/ijbpcs.2024.6.2.2.
- Hossain D, Alasa DK. Numerical modeling of fire growth and smoke propagation in enclosures. Journal of Management World. 2024;(5):186-96.

- https://doi.org/10.53935/jomw.v2024i4.1051.
- 17. Hossain D. Fire dynamics and heat transfer: advances in flame spread analysis. Open Access Res J Sci Technol. 2022;6(2):70-5. https://doi.org/10.53022/oarjst.2022.6.2.0061.
- 18. Hossain D. A fire protection life safety analysis of multipurpose building. Cal Poly Digital Commons. 2021. Available from: https://digitalcommons.calpoly.edu/fpe_rpt/135/.
- 19. Islam MR, Aziz MM, Gonee Manik MMT, Bhuiyan MMR, Noman IR, Rahaman MM, *et al* Navigating the digital landscape: integrating advanced IT solutions with project management best practices. ICRRD Qual Index Res J. 2024;5:159-73. https://doi.org/10.53272/icrrd.v5i4.5.
- Khan RA, Bajwa UI, Raza RH, Anwar MW. Beyond boundaries: advancements in fire and smoke detection for indoor and outdoor surveillance feeds. Engineering Applications of Artificial Intelligence. 2025;142:109855.
- 21. Kim Y, Heo Y, Jin B, Bae Y. Real-time fire classification models based on deep learning for building an intelligent multi-sensor system. Fire. 2024;7(9):329.
- 22. Kim Y, Heo Y, Jin B, Bae Y. Real-time fire classification models based on deep learning for building an intelligent multi-sensor system. Fire. 2024;7(9):329.
- 23. Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, *et al* A critical review of sustainable application of biochar for green remediation: research uncertainty and future directions. Science of the Total Environment. 2023;904:166813.
- 24. Medewar AG, Sawarkar AD, Kshirsagar UV, Medewar AGM, Kshirsagar UV. A review on fire and smoke detection with intelligent control for enhanced safety using machine learning (ML) and Internet of Things (IoT). Cureus. 2024;1(1).
- 25. Obi E. Optimization of flame and gas detectors [master's thesis]. Stavanger, Norway: University of Stavanger; 2014.
- 26. Pandey VK, Jain S, Saritha SK. Advanced IoT-based fire and smoke detection system leveraging deep learning and TinyML. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT); 2023 Jul; pp. 1-10. IEEE.
- 27. Phan DT, Yap KH, Garg K, Han BS. Vision-based early fire and smoke detection for smart factory applications using FFS-YOLO. In: 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP); 2023 Sep; pp. 1-6. IEEE.
- 28. Prashanth Kumar Reddy A, Sathwik Reddy E, Bhaskar TNSS, Yadav BP, Singh AK. Design of fire and gas detection system for a process plant: a review. Advances in Industrial Safety: Select Proceedings of HSFEA 2018. 2020;271-280.
- Qu X, Dong H, Tan X, Li Z. Real-time fire detection and response system using machine vision for industrial safety. International Journal of Modern Physics C. 2025.
- 30. Rahaman MM, Gonee Manik MMT, Rahman Noman I, Islam MR, Aziz MM, Rahman Bhuiyan MM, *et al* Data analytics for sustainable business: practical insights for measuring and growing impact. ICRRD Quality Index Research Journal. 2024;5:110-25. https://doi.org/10.53272/icrrd.v5i4.2.
- 31. Rahaman MA, Saha S, Adewale C, Deb U, English H. Empowering small-scale farmers: an assessment of small farm program's effectiveness in Arkansas, USA. Journal of Business and Management Studies. 2024;6(6):347-

- 356. https://doi.org/10.32996/jbms.2024.6.6.17.
- 32. Rani S, Das K, Aminuzzaman FM, Ayim BY, Borodynko-Filas N. Harnessing the future: cutting-edge technologies for plant disease control. Journal of Plant Protection Research. 2023;63:387-98. https://doi.org/10.24425/jppr.2023.147829.
- 33. Sarker A, Masud MAA, Deepo DM, Das K, Nandi R, Ansary MWR, *et al* Biological and green remediation of heavy metal contaminated water and soils: a state-of-the-art review. Chemosphere. 2023;332:138861.
- 34. Shrivastava A, Gogoi A, Shahi S, Chaitanya S. IoTenabled real-time fire monitoring and response in urban areas. Information Sciences and Technological Innovations. 2024;1(1):19-27.
- 35. Sinchai A, Pumanee P, Lomwong R. Enhanced fire detection using deep learning and heat signatures. In: 2024 12th International Conference on Control, Mechatronics and Automation (ICCMA); 2024 Nov; pp. 261-266. IEEE.
- 36. Sultan T, Chowdhury MS, Safran M, Mridha MF, Dey N. Deep learning-based multistage fire detection system and emerging direction. Fire. 2024;7(12):451.
- Tanvir A, Jo J, Park SM. Targeting glucose metabolism: a novel therapeutic approach for Parkinson's disease. Cells. 2024;13:1876. https://doi.org/10.3390/cells13221876.
- 38. Tran HAN. Research and experimental implementation of an IoT-integrated fire detection and alarm system based on image processing using machine learning [doctoral dissertation]. Vietnam: Vietnam-Korea University of Information and Communication Technology; 2025.
- 39. White L, Ajax R. Improved fire detection and alarm systems. 2025.
- 40. Yu H, Sun Y, Liu Y, Wang X, Huang F, Liu H. A novel measurement strategy for explosion temperature field towards enhancing the fire process safety. Fire Safety Journal. 2024;145:104118.
- 41. Zhang Q, Tian Y, Chen J, Zhang X, Qi Z. To ensure the safety of storage: enhancing accuracy of fire detection in warehouses with deep learning models. Process Safety and Environmental Protection. 2024;190:729-43.