

International Journal of Multidisciplinary Research and Growth Evaluation.

Improving Decision-Making with Data-Driven KPI Dashboards

Simran Sethi

Independent Researcher, USA

* Corresponding Author: Simran Sethi

Article Info

ISSN (online): 2582-7138

Volume: 04 **Issue:** 02

March-April 2023 **Received:** 25-02-2023 **Accepted:** 19-03-2023

Page No: 633-638

Abstract

This paper analyses a case study for an e-commerce and PropTech company that utilizes well designed, data-centric dashboards for product strategy, marketing campaign management and business process improvement. KPI dashboards are predominantly being utilized by modern organizations because data is easily accessible and can improve the decision-making processes. Performance dashboards are effective innovation tools that are meant to improve organizational agility by enhancing the decision-making process in terms of speed and quality because these tools provide real-time insights. Nevertheless, data governance, user adoption, and emerging trends like augmented analytics pose challenges to personalized dashboards. There is a lack of research in the area of agile organizational design and the use of IT dashboards, therefore, the literature is insufficient in supporting this claim.

DOI: https://doi.org/10.54660/.IJMRGE.2023.4.2.633-638

Keywords: KPI dashboards, data-driven decision-making, real-time analytics, user adoption, data governance, e-commerce applications, proptech, interactive visualization, predictive models, AI-enhanced dashboards, agile organizations, performance monitoring, business intelligence

1. Introduction

Products and services digitization lead to a new shift in paradigm that focuses on data driven decision-making. Businesses today capture data at every level - website visits, CRM data, etc., but transforming these data resources into useful business intelligence poses new challenges. Systems theorists offer numerous valid techniques, however, in modern organizations KPI dashboards seem to be the only viable option to provide timely, relevant, and concise information to the appropriate users.

Dashboards are regarded as one of the most typical examples of data visualization technology at work [1]. By organizing performance indicators in a simple visual format, dashboards help stakeholders quickly identify trends, measure performance against expectations, and make sound decisions. Still, dashboards differ in their level of design complexity and integration. Inadequately constructed dashboards, as several authors note, can hinder comprehension and worsen information overload [2]. Well-designed dashboards, in contrast, support ongoing performance evaluation, strategic alignment, and dissemination of insights across teams [3].

This paper brings together several academic viewpoints with real-life practices to explain how data-driven KPI dashboards can improve decision processes significantly. Practical observations from the use of dashboards in managing e-commerce products and in proptech serve to illustrate the real-world challenges and the best practices such as calculating customer lifetime value (CLTV) or checking marketing campaign performance on a daily basis. Our closing remarks present lessons learned, emerging directions such as AI and personalization of dashboards, and recommendations on how to use KPI dashboards effectively.

2. Literature Review

2.1 Foundations of dashboard usage

Many authors define dashboards as the aids specifically created to present key figures in a condensed form, which allows for the faster generation of insights and detection of trends [1, 2]. Initially, dashboards were associated with executive information

systems, but today they have a much broader meaning as everything changed with the emergence of big data analytics and self-service business intelligence (BI) tools ^[4]. Modern dash boarding solutions are now part of an organization's business processes and allow for оперативное or more effective monitoring of the organization's performance.

Sarikaya *et al* ^[1] performed an initial research that explains how dashboards differ from exploratory analytics tools. They highlight that while exploratory tools are designed to assist in the extraction and validation of data, dashboards' goal is to automate the control of KPIs and provide them in a friendly graphic form (bar charts, line graphs, gauges etc.). Dashboards serve their primary purpose when attached to specific business problems or goals ^[3]. This business focus guarantees that the measured parameters are relevant for making strategic or operational decisions.

2.2 Dashboards and enhanced decision-making

A negative correlation exists between the use of dashboards

and decision-making quality; however, Zingde and Shroff ^[18] note that well-designed dashboards significantly aid managers in visualizing data as well as spotting trends, which in turn aids them in overcoming information overload, and ultimately, boosts their confidence in the decisions made. This tends to be true also in B2B marketing surroundings ^[3,5] where dashboards seem to serve as information cue subsystems that are decision aiding systems. This is further supported by Akter *et al* ^[4], who outlined a six-step analytic driven decision-making system in which dashboards feature most prominently in the "insight generation" phase.

With well-defined KPI strategies, dashboards can convert big data analytics to useful information. Hallikainen *et al* ^[5] proved that companies that display customer KPI dashboards experience greater sales and improved customer relations. Munshi *et al* ^[6] also developed an ecommerce specific big data analytics architecture which deployed real-time dashboards for dynamically monitoring the inventory during peak ordering periods.

Fig 1: Dashboard data pipeline or Architecture

2.3 Real-time analytics and organizational performance

The business case for implementing data-driven dashboards is well established. Wamba and others suggest a relationship between the use of analytics (including the use of dashboards) and organizational performance improvements, some authors argue that the most successful firms use data actively to monitor operational KPIs in real time ^[6]. The shift from responding to problems towards proactively requiring decision making is crucial, particularly in the rapidly changing e-commerce environment.

Dashboards facilitate the enhancement of both products and marketing through constant evaluation of various campaigns, product changes, and client groups ^[5, 9]. For example, in one e-commerce environment, teams had daily standups where they reviewed dashboards with metrics around average order value, forecasted CLTV, conversion rate, and profit margin. This daily discussion greatly clarified the effectiveness of newly launched marketing campaigns and facilitated rapid changes in the targeted promotions and products offered.

2.4 Advances in visualization and AI-enhanced dashboards

New studies look into how Artificial Intelligence (AI) can improve dashboards for advanced analytics. Alghamdi and Al-Baity [11] describe "augmented analytics" as the use of AI and machine learning (ML) in automating data processes such as preparation, analysis, and even insight generation. In this case, their AI powered dashboards provide quicker time to insights extracted from the data and emphasize trends or anomalies that might not be highlighted; however, context interpretation is still very much human driven.

At the same time, the idea of customized dashboards is also gaining popularity ^[12]. By flexibly changing the content and the design of the dashboard for the specific user's role, skill level, or particular situation, it is possible to make the dashboard more user friendly. Earlier collaborative analytics research has explored sharing "dashboard snapshots" on

platforms so that non-technical users could access insights without the need for technical expertise. Some authors [12] envision advanced personalization strategies for dashboards, similar to how recommendation systems tailor content, where smart systems analyze user interactions with a dashboard and automatically provide recommendations tailored to the user, similar to content suggestion systems used in video platforms.

2.5 Practical implementations and case studies

A case in point illustrates how organizations can structure their KPI selection, stakeholder involvement, and performance measurement practices. The tangible success stories of the use of dashboards in highway construction and education organizations illustrate the ease with which businesses can transform their processes. For example, Abduldaem and Gravell [17] studied how business intelligence (BI) dashboards were employed in higher education institutions to strategically measure outcomes and what critical success factors were related to user training, data quality, and clear governance structures. These factors ultimately clarified the expectations needed to execute the programs.

In a manufacturing context, Suschnigg *et al* ^[12] explored the impact of real-time dashboards in depicting process mining data. They demonstrated how such fusion facilitated the identification of bottlenecks along production lines. The results highlighted the contribution of user training along with the output quality and governance structure to the overall achievement of objectives.

A prior study [10] illustrated how manufacturing-related dashboards, once properly aligned with KPIs, led to improved interdepartmental collaboration. The managers attributed improved decision-making speed, interdepartmental collaboration, and holistic view of performance to the dashboards enabling cross.

3. Designing effective KPI dashboards: Best practices 3.1 Align dashboards with strategic objectives

Determining the most appropriate KPIs is perhaps the most challenging part of dashboard design. Research shows that organizations are expected to integrate the dashboards with the strategic goals of the organization [17,18]. A well-designed dashboard should guarantee that each metric is connected to a wider and bigger goal such as growing revenue, expanding market share, enhancing customer satisfaction, or improving operational efficiency.

Suggestion: Conducting stakeholder interviews would enhance understanding of what KPIs are important at the employee level and make sure that those metrics are business drivers, not meaningless numbers

3.2 Focus on data quality and governance

Every beautifully crafted dashboard is likely to mislead users if it lacks the relevant information within the right time frame. As defined by Anderson [4, 18], governance also includes processes for own data, cleansing, validating, and standardizing data. In an e-commerce setting, teams may, during daily stand-ups, note some discrepancies with the

predicted CLTV (customer lifetime value) figures. Further digging might show incomplete updates in the CRM or delays in confirmations.

Suggestion: Put in place a data validation workflow prior to KPI changes being made available on dashboards. Make certain that the data feed providers are held accountable to review the reliability of the data provided, rectify inaccuracies at the origin, and record the changes made to the data.

3.3 Simplify visual design and enhance readability

Too complex dashboards can easily overload users. A good design is marked by clear visual hierarchies, low clutter, and simple navigation. The layout of elements can be guided by Fitts's law and Gestalt principles to ensure effortless interpretation of essential insights from a glance [1, 12].

Recommendation: Keep the number of KPIs on the viewable dashboard to a reasonable limit (4–7 key metrics) per individual for easy assimilation. Assign performance color codes consistently (i.e., below target - red, on target - green) and use common chart forms to enable quick evaluation of multiple metrics.

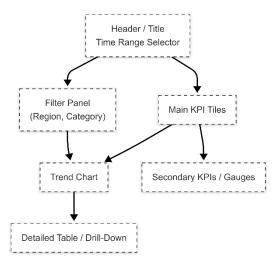


Fig 2: Example Dashboard Layout (Wireframe)

3.4 Provide contextual and comparative views

It is not enough to only present raw values. A dashboard should allow comparisons across time (week-over-week, month-over-month) and to goals or standards ^[3]. Setting thresholds or metrics to be monitored is useful for identifying when something unexpected happens and taking corrective measures ^[16].

Recommendation: Include benchmark lines and historical trend lines in the same graphs together with tool tips that explain the external factors that govern the metric of interest, for instance, seasonal spikes or special sales promotions.

3.5 Promote interactivity and drill-down capabilities

New ways of engaging with data make the answering of follow—up questions without boundary hopping possible interactivity fosters ^[20]. Unlike standard dashboards, which are considered 'over the top' supervision gadgets, users are able to delve into the information beneath the graphics. Interactive dashboards promote self-service analytics, resulting in decreased reliance on ad-hoc reports. Recommendation: Permitting the combination of filters,

drill-downs, and dimensions (region, product category, user segment) boosts the ease at which transformational static visuals can be utilized. This increases decision speed as the visuals are non-restrictive and grant easier access to improving angles for crucial decisions.

3.6 Integrate predictive and prescriptive analytics

There are more complex dashboards that integrate machine learning models to forecast demand, predict customer churn, or simulate profit margins. Consider e-commerce. Several businesses have automatic predictive models for CLTV which update performance marketing dashboards every day. These models would facilitate modifications to the customer acquisition tips' strategies. Marketers can layer real-time sales data because predictive CLTV being monitored constantly on dashboards makes targeting high value cohorts much easier. Recommendation: Use augmented analytics for flagging oversights, or possible next steps. Their reasoning should, however, be presented in simple, clear language to protect from misunderstanding and enable trust towards "black box" among non-technical stakeholders.

3.7 Foster a data-driven culture

A dashboard's effectiveness is only limited to the actions and decisions it motivates [4, 8]. Earning an accountability provides a routine where dashboard data is analyzed, anomalies are discussed, and actionable tasks are assigned daily or weekly. In proptech, a cycle of continuous improvement evolved where problems were identified, flagged and repaired after a daily KPI dashboard review of every department.

Recommendation: Leaders should be encouraged to cultivate a culture of data-driven questioning and learning within the organization. This can be achieved by creating formal feedback loops where teams actively interpret dashboard data, challenge its meaning, and refine metrics collaboratively as required.

4. Implementation Challenges

4.1 Selecting Meaningful KPIs

The most common of these mistakes is counterproductive "information saturation" or "dashboard hell" where a set of inexcusably large amounts of metrics make the important ones irrelevant ^[18]. In order to avoid operationalizing metrics for the sake of measurement, a robust KPI selection process is essential.

Fig 3: KPI selection & alignment diagram

4.2 Technical integration and data silos

Bringing together various data sources (for example, ERP systems, CRM databases, marketing automation platforms) tends to be a slow process. Data silo problems tend to occur as a result of poorly defined platforms or inadequate standards within different departments [4]. They can be solved by having robust IT support along with clearly defined metadata standards and ideally, a consolidated data warehouse or lakehouse structure [7].

4.3 User adoption and training

Even when the best practices are followed while creating the dashboards, achieving high adoption rates is still not guaranteed. Certain users may be bound by legacy reporting systems or can be skeptical of new technology [17]. Adopting the new technology has to be preceded by thorough training as well as well-designed Help interfaces and assistance from data advocates [15].

4.4 Maintaining data quality over time

The quality of the data deteriorates with system changes, extensions, or takeovers. Having a defined policy for regular monitoring of discrepancies is key governance for bias mitigation. Its governance must have data error responsibilities assigned, like data stewards, so that errors are not allowed to accumulate [19].

4.5 Evolving Needs and continuous improvement

Changes in an organization's structure can trigger a change in the definition or hierarchy of KPIs. Certain dashboards can lose their relevance and become obsolete or incomplete. Systematic KPI audits are conducted to enable relevance and completeness of the dashboards with the strategic objectives [4]

5. Case insight: E-commerce and proptech experiences 5.1 E-commerce context

A certain initiative in ecommerce using dashboards came

about as a result of the dynamic market and these were used to measure the:

- Customer lifetime value (CLTV): Predictive models were used with orders together with subscription data.
- Order values and profit margins: Feeds coming directly from the point of sale system.
- Marketing campaign performance: Metrical data include clicks, conversions, and cost per marketing term.

For teams to track metrics, determine outliers, and adjust marketing strategies, daily stand-up meetings were organized. For example, if there was a drop in the conversion rate for a certain target group, A/B tests on the landing pages were set up without delay. The dashboards almost instantly provided feedback which made agile decision making and product iteration effortless support ^[9].

5.2 Proptech Environment

In a proptech environment, dashboards for multiple segments of the digital value chain visually details the integration of costs, scheduling, and sustainability. Project managers could verify the status of a project against the planned timeline, which enabled them to identify if any resources were over allocated or if there were any time conflicts [10]. Furthermore, other sustainability R&D roadmaps for new building modules were also guided by KPIs, such as energy efficiency and material waste. Daily reviews of KPIs allowed proactive management of cost variance or supply chain delays by adjusting in time.

This case demonstrates how a simple routine of dashboard review ensures alignment within the organization. With the same KPI platform, executives, site managers, and engineering leads participated in the conversation with the "data language." Suschnigg *et al* [12] also demonstrate how real-time dashboards in manufacturing can identify process bottlenecks, improving collaboration and decision-making.

6. Emerging trends and future directions6.1 AI-Driven personalization

As Schrage's model of "Netflix-ification" suggests, AI associated user behavioral and positional context algorithms are being integrated with dashboards [14]. Adaptive dashboards would user log in to a system to highlight or even rank user-specific KPI's with the utmost relevance. This would aid in reducing cognitive load as much as possible. There is a need to test users in focus groups so that personalization does not get to a level where organizational metrics are obscured or inhibited.

6.2 Collaborative analytics and dashboard snapshots

Even for people who do not have and or know how to use BI tools, Snapshot dashboards make it easy to share data insights via Slack, e-mail, and Teams [13]. The business intelligence and analytic collaborative endeavor assists in advancing the data culture where all employees engage with the data either through input or query. Further research is needed to determine the contextualization and security configurations of the shared snapshots.

6.3 Voice-activated and conversational interfaces

Natural language interface (NLP) integration allows for simple conversational interfacing with dashboards, making them more user friendly. Instead of spending a considerable amount of time to extract information, users can just ask the question, "What were our sales in Region A last quarter?" and get an instant, detailed answer. Though there are prototypes, mainstream use will become obsolete because of the need for improved user interface and strong backend systems [14].

6.4 Adaptive layouts and multi-device experiences

Some authors [12] propose guidelines for designing dashboards that accommodate multi-device responsiveness and adapt to varying screen sizes. Given that employees are evermore using tablets or smart phones, necessary changes have to be made to the layout and interactivity design of dashboards so that users can work on smaller screens while still being clear. Concurrent editing of dashboards or co-exploration across teams that are geographically dispersed is yet another direction of ongoing research.

7. Conclusion

Data driven KPI dashboards are increasingly the backbone of enabling agile, evidence-based decision making across domains. Research has shown consistently that organizations using accurate, real-time, and thoughtfully designed intuitive dashboards make decisions faster, more strategically, and as a result, have improved performance outcomes. The evidence in several case studies — and backed by my own experiences in e-commerce and proptech industries — shows that the move away from traditional reporting to real-time interactive KPI monitoring results in transformational change.

That is not to say, though, that dashboards can work for everyone without alteration. The specific benefits can be realized only with great care in selecting the relevant metrics, providing proper data governance, ensuring non-technical user-friendly designs, and cultivating a proactive data culture. New trends, such as augmented analytics, personalized dashboards, and conversational interfaces, suggest that we are moving towards a future when dashboard tools will be more engaging and proactive in capturing user attention. While AI is taking over more sophisticated tasks, there will

always have to be humans to rationalize the results and decide on the impact of the strategic change.

When properly constructed with effective goals, quality data, and user-friendly interface, KPI dashboards allow teams to continuously improve strategies, products, and resource management. As technology and policies regarding dashboards advance, organizations that implement such practices will be in stronger positions to compete in markets, influence product development plans, and provide real benefits to stakeholders.

8. References (IEEE Style)

- 1. Sarikaya A, Tory M, Kaya E, Wong B. What do we talk about when we talk about dashboards? IEEE Transactions on Visualization and Computer Graphics. 2019;25(1):682–692.
- 2. de Jong A, Hillebrand B, Kemp R. Key trends in B2B services marketing strategies: Developing a practice-based research agenda. Industrial Marketing Management. 2021;93:1–10.
- 3. Akter S, Wamba SF, Gunasekaran A, Dubey R, Childe SJ. Analytics-based decision-making for service systems: A qualitative study and agenda. International Journal of Information Management. 2019;48:85–95.
- 4. Gustafson BM, Pomirleanu N. A discursive framework of B2B brand legitimacy. Industrial Marketing Management. 2021;93:183–192.
- 5. Hallikainen H, Alamäki A, Laukkanen T. Fostering B2B sales with customer big data analytics. Industrial Marketing Management. 2020;86:90–98.
- 6. Munshi A, Patil J, Jindal A. An electronic commerce big data analytics architecture and platform. Applied Sciences. 2023;13(19):10962.
- 7. Fosso Wamba S, Akter S, Edwards A, Chopin G, Gnanzou D. Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research. 2017;70:356–365.
- 8. Gustafson BM, Pomirleanu N. A discursive framework of B2B brand legitimacy. Industrial Marketing Management. 2021;93:183–192.
- Cruz Villazón C, Ruckschloss de Oliveira R, Chalmeta R. Identification of key performance indicators in project-based organisations through the lean approach. Sustainability. 2020;12(14):5977.
- 10. Alghamdi N, Al-Baity H. Augmented analytics driven by AI: A digital transformation beyond BI. Electronics. 2022;11(17):2793.
- 11. Cappiello K, Gallinucci E, Golfarelli M, Rizzi S. Tailored performance dashboards State of the art. Systematic Literature Review. 2021.
- 12. Suschnigg J, Seitz R, Edegger H, Kreiner C. Industrial production process improvement by a process engine visual analytics dashboard. In: Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS-53). 2020.
- 13. Abduldaem A, Gravell A. Success factors of BI and performance dashboards to improve performance in higher education. In: Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS). SciTePress; 2021.
- 14. Zingde S, Shroff N. The role of dashboards in business decision making and performance management. In: Proceedings of Anvesh 2020 (Doctoral Conference). 2020.

15. Kaganski A, Karjust K, Toompalu T, Yatskiv I. Key performance indicators for dynamic and proactive department management. Procedia Manufacturing. 2018;19:263–270

Disclaimer

The author is presenting this article as an independent researcher. The views expressed herein are solely those of the author and do not necessarily represent the positions of any organizations or entities.