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Introduction 

We generalize a well-known Gregus (1980) [10] result by establishing a common fixed point theorem for self mappings that are 

not always commuting of a closed and convex subset of a Banach space.  

For every 𝛼, 𝛽 in 𝑋, let 𝐺 be a mapping of 𝑋 into itself that satisfies the inequality  ∣∣ 𝐺𝛼 –  𝐺𝛽 ∣∣ ≤ ∣∣ 𝛼 − 𝛽 ∣∣. The class of 

contraction mapping is generally known to be non-expensive, and 𝐺 is appropriately included in the class of all continuous 

mappings. For non-expansive mappings defined on a closed, bounded, and convex subset of a uniformly convex Banach space 

and in spaces with richer structure, Kirk (1965) [2] separately demonstrated a fixed point theorem. 

Many authors have considered various generalizations of non-expansive mappings. Particularly noteworthy are the works of 

Goebel (1969) [6]; Goebel and Zlotkiewicz (1971) [7]; Goebel, Kirk, and Shimi (1973) [8]; Massa and Roux (1978) [9]; Dotson 

(1972a and b) [2, 3]; Emmanuele (1981) [5]; and Rhoades (1982) [11]. Kirk (1965, 1981, 1983) [2, 12, 13] provides a thorough overview 

of fixed point theorems for non-expansive and related mappings. 

However, certain mappings have a unique fixed point and meet constraints that are comparable to those of non-expansive 

mappings. However, these mappings cannot be thought of as extensions of non-expansive mappings. Recent instances of this 

type can be found in Rhoades (1978) and Gregus (1980) [10]. Inspired by a contractive condition of Hardy and Rogers (1973) [14], 

we expand Gregus's (1980) [10] solution to the situation of two mappings in this chapter. 

Let 𝑀 be a subset of 𝑋 that is closed and convex. In conclusion, this author demonstrated the following outcome under the 

assumption that 𝑦 =  𝑧 in Gregus's (1980) [10] contractive condition.  

 

Preliminaries 

a) Banach space  

A complete vector space with a norm is called a Banach space. If two norms provide the same topology, which is equivalent to 

the presence of constants and such that and hold for all, they are said to be comparable. All norms are comparable in the situation 

of finite dimensions. There are numerous possible standards for an infinite-dimensional space. 

b) Non expansive mapping 

Let C be a nonempty convex subset of a real Banach space 𝐸 and ℝ be the set of real numbers. A mapping 𝑇:  𝐶 →  𝐶 is called 

non expansive if ∥ 𝑇𝑥 −  𝑇𝑦 ∥  ≤  ∥ 𝑥 −  𝑦 ∥ for all 𝑥,  𝑦 ∈  𝐶. 
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Theorem 1: 
Let 𝐺 be a mapping of 𝑀 by itself, so resolving the inequality 
 

∣∣ 𝐺𝛼 – 𝐺𝛽 ∣∣ ≤  𝑥. ∣∣ 𝛼 − 𝛽 ∣∣  + 𝑦.  {∣∣ 𝐺𝛼 – 𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣}  (1) 
 
for all 𝛼, 𝛽  in  𝑀, where 0 <  𝑥 <  1, 𝑦 >  0 and 𝑥 +  2𝑦 =  1. Then 𝐺 has a unique fixed point.                   
The following theorem is now proven. 
 
Theorem 2: 
Let 𝐹 and 𝐺 be mappings of 𝑀 into themselves satisfying the inequality 
 

∣∣ 𝐹𝛼–  𝐺𝛽 ∣∣ ≤  𝑥. ∣∣ 𝛼 – 𝛽 ∣∣ + 𝑦.  {∣∣ 𝐹𝛼 – 𝛼 ∣∣ + ∣∣ 𝐺𝛽 – 𝛽 ∣∣}  
 (2) 
+ 𝑧.  {∣∣ 𝐹𝛼 –  𝛽 ∣∣ + ∣∣ 𝐺𝛽 – 𝛼 ∣∣} 

 
for all 𝛼, 𝛽 in 𝑀, where 0 <  𝑥 < 1, 𝑦 > 0 and 𝑥 + 2𝑦 + 2𝑧 = 1 and (1 −  𝑦). 𝑧 <  𝑥𝑦. If 
 

∣∣ 𝐺𝛼 –  𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 –  𝛼 ∣∣  (3) 
 
∀ 𝛼 in 𝑀, then 𝐹 and 𝐺 have a unique common fixed point 𝑤 in 𝑀. Moreover, 𝑤 is the unique fixed point of 𝐹 and 𝐺. 
 
Proof:  
Let 𝛼 be an arbitrary point in M. From (2), we deduce that 
 

∣∣ 𝐹𝐺𝛼 – 𝐺𝛼 ∣∣ ≤  𝑥. ∣∣ 𝐺𝛼 – 𝛼 ∣∣  + 𝑦.  {∣∣ 𝐹𝐺𝛼 – 𝐺𝛼 ∣∣ + ∣∣ 𝐺𝛼 – 𝛼 ∣∣ } 
 

+ 𝑧.  {∣∣ 𝐹𝐺𝛼 – 𝐺𝛼 ∣∣ + ∣∣ 𝐺𝛼 – 𝛼 ∣∣ } 
which implies that 
 

∣∣ 𝐹𝐺𝛼 –  𝐺𝛼 ∣∣ ≤   
𝑥+𝑦+𝑧

1−𝑦−𝑧
 . ∣∣ 𝐺𝛼 – 𝛼 ∣∣ = ∣∣ 𝐺𝛼  – 𝛼 ∣∣   (4) 

 
Similarly, we have 
 

∣∣ 𝐺𝐹𝛼 –  𝐹𝛼 ∣∣  ≤  ∣∣ 𝐹𝛼 – 𝛼 ∣∣.  (5) 
 
Since (4) holds ∀ 𝛼 in 𝑀, we deduce that 
 

∣∣  𝐹𝐺𝐹𝛼 – 𝐹𝐺𝛼 ∣∣  ≤  ∣∣ 𝐺𝐹𝛼 – 𝐹𝛼 ∣∣ , 
 
Which implies, by (3) and (5), that 
 

∣∣ 𝐺𝐺𝐹𝛼 –  𝐺𝐹𝛼 ∣∣  ≤ ∣∣  𝐹𝐺𝐹𝛼 –  𝐺𝐹𝛼 ∣∣  ≤ ∣∣ 𝐹𝛼 –  𝛼 ∣∣ .  (6) 
 
We now define the point 𝛾 by 
 

𝛾 =  
1

2
𝐺𝐹𝛼 +

1

2
𝐺𝐺𝐹𝛼 

 
Then, it follows, from (6), that 
 
2 ∣∣ 𝐺𝐹𝛼 – 𝛾 ∣∣ =  2 ∣∣ 𝐺𝐺𝐹𝛼 – 𝛾 ∣∣  =  ∣∣ 𝐺𝐺𝐹𝛼 – 𝐺𝐹𝛼 ∣∣ ≤  ∣∣ 𝐹𝛼 – 𝛼 ∣∣.  (7) 
 
Since 𝑀 is convex, 𝛾 belongs to 𝑀 and using (2), (5), (6) and (7), we have that 
 

2 ∣∣ 𝐹𝛾 –  𝛾 ∣∣ =  ∣∣ 2𝐹𝛾 − (𝐺𝐹𝛼 + 𝐺𝐺𝐹𝛼)  ∣∣ = ∣∣  𝐹𝛾 –  𝐺𝐹𝛼 ∣∣  + ∣∣ 𝐹𝛾 – 𝐺𝐺𝐹𝛼 ∣∣   (8) 
 

≤ ∣∣ 𝐹𝛾 − 𝐺𝐹𝛼 ∣∣ + ∣∣ 𝐹𝛾 –  𝐺𝐺𝐹𝛼 ∣∣ 
 

≤ 𝑥. ∣∣ 𝛾 − 𝐹𝛼 ∣∣ + 𝑦.  {∣∣ 𝐹𝛾 – 𝛾 ∣∣ + ∣∣ 𝐹𝛼 – 𝛼 ∣∣}  
 

+ 𝑧.  {∣∣ 𝐹𝛾 – 𝛾 ∣∣ + ∣∣ 𝐹𝛼 –  𝛾 ∣∣ + ∣∣ 𝐺𝐹𝛼 –  𝛾 ∣∣} 
 

+ 𝑥.  ∣∣ 𝛾 − 𝐺𝐹𝛼 ∣∣ + 𝑦.  {∣∣ 𝐹𝛾 –  𝛾 ∣∣ + ∣∣ 𝐹𝛼 –  𝛼 ∣∣}  
 

+ 𝑧.  {∣∣ 𝐹𝛾 –  𝛾 ∣∣ + ∣∣ 𝐺𝐹𝛼 –  𝛾 ∣∣  + ∣∣ 𝐺𝐺𝐹𝛼 –  𝛾 ∣∣} 
 

≤ 𝑥.  {∣∣ 𝐹𝛼 − 𝛾 ∣∣ +
1

2
.  ∣∣ 𝐹𝛼 − 𝛼 ∣∣} +  2𝑦.  {∣∣ 𝐹𝛾 –  𝛾 ∣∣ + ∣∣ 𝐹𝛼 –  𝛼 ∣∣}  
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+ 𝑧.  {2 ∣∣ 𝐹𝛾 –  𝛾 ∣∣ + ∣∣ 𝐹𝛼 –  𝛾 ∣∣  + 
3

2
 .  ∣∣ 𝐹𝛼 –  𝛼 ∣∣} 

 
On the other hand, using (2), (5) and (6), we obtain that 
 

2 ∣∣ 𝐹𝛼 –  𝛾 ∣∣ = ∣∣ 2𝐹𝛼 − (𝐺𝐹𝛼 + 𝐺𝐺𝐹𝛼) ∣∣ = ∣∣ 𝐹𝛼 –  𝐺𝐹𝛼 ∣∣  + ∣∣ 𝐹𝛼 – 𝐺𝐺𝐹𝛼 ∣∣ (9) 
≤ ∣∣ 𝐹𝛼 –  𝐺𝐹𝛼 ∣∣  + ∣∣ 𝐹𝛼 –  𝐺𝐺𝐹𝛼 ∣∣ 

 

≤ ∣∣ 𝐹𝛼 – 𝛼 ∣∣  + 𝑥 . ∣∣ 𝛼 –  𝐺𝐹𝛼 ∣∣ + 𝑦.  { ∣∣ 𝐹𝛼 –  𝛼 ∣∣ + ∣∣ 𝐹𝛼 – 𝛼 ∣∣ } 
 

+ 𝑧.  { ∣∣ 𝐹𝛼 –  𝛼 ∣∣  + ∣∣ 𝐺𝐺𝐹𝛼 – 𝐺𝐹𝛼 ∣∣ + ∣∣ 𝐺𝐹𝛼 – 𝐹𝛼 ∣∣ + ∣∣ 𝐹𝛼 – 𝛼 ∣∣ } 
 

≤ ∣∣ 𝐹𝛼 – 𝛼 ∣∣ + 𝑥 . { ∣∣ 𝐹𝛼 –  𝛼 ∣∣ + ∣∣ 𝐺𝐹𝛼 –  𝐹𝛼 ∣∣ } +  (2𝑦 + 4𝑧)  .  ∣∣ 𝐹𝛼 – 𝛼 ∣∣ 
 

≤ (1 + 2𝑥 + 2𝑦 + 4𝑧)  .  ∣∣ 𝐹𝛼 – 𝛼 ∣∣ 
 

=  (3 –  2𝑦)  .  ∣∣  𝐹𝛼–  𝛼 ∣∣. 
 
It is easily seen that (8) and (9) imply that 
 

2 ∣∣ 𝐹𝛾 –  𝛾 ∣∣ ≤ 𝑥 . (2 − 𝑦)  .  ∣∣ 𝐹𝛼 – 𝛼 ∣∣  +2𝑦 . {∣∣ 𝐹𝛼 –  𝛼 ∣∣  + ∣∣ 𝐹𝛾 –  𝛾 ∣∣} 
 

+ 𝑧 .  {2 ∣∣  𝐹𝛾 –  𝛾 ∣∣  + (3 −  𝑦) . ∣∣  𝐹𝛼 –  𝛼 ∣∣}. 
 
Consequently, we have that 
 

∣∣ 𝐹𝛾 − 𝛾 ∣∣ ≤  𝛿 . ∣∣ 𝐹𝛼 –  𝛼 ∣∣,  (10) 
 
Where 

 𝛿 =  
1

2
 (

2𝑥 − 𝑥𝑦 +2𝑦 + 3𝑧 −𝑦𝑧

1−𝑦−𝑧
 ) 

 
It follows that 0 <  𝛿 <  1 based on the assumptions made about the constants 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧. We claim that ℎ =  𝑖𝑛𝑓{∣∣ 𝐹𝛼 –  𝛼 ∣
∣ ∶  𝛼 ∈ 𝑀}  =  0, otherwise for 0 < 𝜀 < (1 − 𝛿). ℎ 𝛿⁄   , there exists a point 𝛼̅ in 𝑀  such that ∣∣ 𝐹𝛼̅ − 𝛼̅ ∣∣  ≤  ℎ + ∈ and hence 
(10) implies that  ℎ ≤ ∣∣ 𝐹𝛾 –  𝛾 ∣∣  ≤  𝛿. ∣∣ 𝐹𝛼̅ – 𝛼̅ ∣∣  ≤  𝛿 . (ℎ+ ∈) <  ℎ, a contradiction. 
Thus ℎ = 0 and the sets 

ℍ𝑛  =  {𝛼 ∈  𝑀 ∶  {∣∣ 𝐹𝛼 –  𝛼 ∣∣ <  
1

𝑛
}} 

are non-empty for any 𝑛 =  1, 2, … ;  
 
Now we have, 
 

ℍ1 ⊇ ℍ2 ⊇ . . . . . ⊇ ℍ𝑛 ⊇ . . . ..   (11) 
 

Let ℍ𝑛 be the closure of  ℍ𝑛. We now show that 
 

diam ℍ𝑛 ≤  
(3 −𝑥)

2𝑦𝑛
  (12) 

 
for any 𝑛 =  1, 2, … … . Indeed, we obtain on using (2) for all 𝛼, 𝛽 in ℍ𝑛, 
 

∣∣ 𝛼 − 𝛽 ∣∣ ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐹𝛼 − 𝛽 ∣∣ 
 

 ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣ + ∣∣ 𝐹𝛼 −  𝐺𝛽 ∣∣ 
 

 ≤
2

𝑛
 + 𝑥 . ∣∣ 𝛼 − 𝛽 ∣∣  + 𝑦 .  {∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣} + 

 

𝑧 . {∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝛼 − 𝛽 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣ + ∣∣ 𝛼 − 𝛽 ∣∣} 
 

≤
2

𝑛
 + (𝑥 + 2𝑧) . ∣∣ 𝛼 − 𝛽 ∣∣  + 

(2𝑦 + 2𝑧)

𝑛
  

 

=
(3 − 𝑥)

𝑛
 + (1 − 2𝑦) . ∣∣ 𝛼 − 𝛽 ∣∣  

 

By equation (3) ∣∣  𝐺𝛽 − 𝛽 ∣∣ ≤ ∣∣ 𝐹𝛽 − 𝛽 ∣∣ ≤  
1

𝑛
 . By above inequality (12)  

𝑑𝑖𝑎𝑚 ℍ𝑛 = 𝑑𝑖𝑎𝑚 ℍ𝑛  and clearly it follows from (11) that 
 

ℍ1 ⊇ ℍ2 ⊇ . . . . . ⊇ ℍ𝑛 ⊇ . . . ..  
 

The series 𝑑𝑖𝑎𝑚 ℍ𝑛 converges to zero as 𝑛 →  ∞  by (12), indicating that {ℍ𝑛}  is a decreasing sequence of non-empty subsets 
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of 𝑀. Cantor's intersection theorem states that since 𝑋 and 𝑀 are complete, there is a point 𝑤 in 𝑀 such that  
 

𝑤 ∈ ⋂ ℍ𝑛

∞

𝑛=1
. 

 

Accordingly, ∣∣  𝐹𝑤 –  𝑤 ∣∣ ≤  
1

𝑛
  for any 𝑛 =  1, 2, … …, and so 𝐹𝑤 =  𝑤, By using (3), we have           𝐺𝑤 =  𝑤. Then, 𝑤 is a 

fixed point that both 𝐹 and 𝐺 share. Assume that 𝑤’ is an additional fixed point of 𝐹. With (2) applied to 𝛼 = 𝑤 𝑎𝑛𝑑 𝛽 = 𝑤’  we 
obtain that  

∣∣ 𝑤’ −  𝑤 ∣∣ = ∣∣ 𝐹𝑤’ − 𝐺𝑤 ∣∣  
 

≤  𝑥 . ∣∣ 𝑤’ – 𝑤 ∣∣  + 𝑧 . {∣∣ 𝑤’ – 𝑤 ∣∣ + ∣∣ 𝑤 –  𝑤’ ∣∣}  
 

=  (𝑥 +  2𝑧) . ∣∣ 𝑤’ –  𝑤 ∣∣.  
 
This implies that 𝑤’ =  𝑤 since 𝑥 +  2𝑧 =  1 –  2𝑦 < 1. Therefore 𝑤 is the unique fixed point of 𝐹 and similarly it is shown 
that 𝑤 is the unique fixed point of 𝐺. This completes the proof. 
 
Remark:  
Theorem 2 becomes theorem 1 if 𝐹 =  𝐺 and 𝑧 =  0 are assumed.  
The following outcome is obtained by enunciating theorem 2 for certain iterates of 𝐹 and 𝐺.  
 
Theorem 3: 
The theorem States that the inequality is satisfied if 𝐹 and 𝐺 are mappings of 𝑀 into themselves.  
 

∣∣ 𝐹𝑢𝛼 –  𝐺𝑣𝛽 ∣∣  ≤  𝑥 . ∣∣ 𝛼 − 𝛽 ∣∣  +𝑦.  {∣∣ 𝐹𝑢𝛼 –  𝛼 ∣∣  + ∣∣ 𝐺𝑣𝛽 – 𝛽 ∣∣} 
 

+ 𝑧.  {∣∣ 𝐹𝑢𝛼 –  𝛽 ∣∣  + ∣∣ 𝐺𝑣𝛽  –  𝛼 ∣∣} 

 
for all 𝛼, 𝛽 in 𝑀, where 𝑢 and 𝑣 are positive integers and 𝑥, 𝑦, 𝑧 are as in theorem 2. If 

∣∣  𝐺𝑣𝛽 –  𝛼 ∣∣  ≤  ∣∣  𝐹𝑢𝛼 –  𝛼 ∣∣ 
∀ 𝛼 in 𝑀, then 𝐹 and 𝐺 have a unique common fixed point 𝑤 in 𝑀. Further, 𝑤 is the unique fixed point of 𝐹 and 𝐺. 
 
Proof:  
By theorem 2, mapping 𝐹𝑢 and 𝐺𝑣 of  𝑀 into itself have a unique common fixed point 𝑤 in 𝑀. Since 𝐹𝑤 =  𝐹𝐹𝑢𝑤 =  𝐹𝑢𝐹𝑤, 
we deduce that 𝐹𝑤 is also a fixed point of 𝐹𝑢, it follows that     𝐹𝑤 =  𝑤. Similarly, we can prove that 𝐺𝑤 =  𝑤 and therefore 
𝑤 is common fixed point 𝐹 and 𝐺. If 𝑤’ is another fixed point of 𝐹, then we have that 𝐹𝑢𝑤’ =  𝑤’ but the uniqueness of 𝑤 implies 
𝑤 =  𝑤’. Thus 𝑤 is also the fixed point of 𝐹 as well as for the mapping of 𝐺. 
The following example shows the stronger generality of theorem 3 over theorem 2. 
 
Example: 
Let 𝑋 be the Banach space of reals with Euclidean norm and 𝑀 =  [0,2]. We define 𝐹 and 𝐺 by putting 𝐹𝛼 =  0 𝑖𝑓 0 ≤   𝛼 < 
 

1, 𝐹𝛼 =  
3

5
  𝑖𝑓 1  ≤  𝛼 ≤  2, 𝐺𝛼 = 0 𝑖𝑓 0 ≤  𝛼 < 2 𝑎𝑛𝑑 𝐺𝛼 =  

9

5
 Then the condition (2) of theorem 1 does not hold,  

 
 

Otherwise, we should have for 𝛼 = 1 and 𝛽 = 2 
6

5
 = ∣∣ 𝐹1 − 𝐺2 ∣∣ ≤  𝑥. ∣∣ 2 −  1 ∣∣ + 𝑦. {∣∣ 1 − 

3

5
∣∣ + ∣∣ 2 − 

9

5
∣∣}  +  𝑧. {∣∣  

9

5
 −

1 ∣∣  + ∣∣ 2 − 
3

5
∣∣}  

 

=  𝑥 + 
3𝑦

5
 + 

11𝑧

5
 

 

 = 1 − 2𝑦 − 2𝑧 +  
3𝑦

5
 +  

11𝑧

5
 

 

Which implies  
1

5
+

7𝑦

5
≤  

𝑧

5
 , 𝑖. 𝑒, 1 +  7𝑦 ≤  𝑧, a contradiction. However, the conditions of theorem 3 are trivially satisfied for  

 
𝑢 =  𝑣 =  2 Since 𝐹2𝛼 = 𝐺2𝛼 = 0 for all 𝛼 in 𝑀. 
Although the contradictive condition used in this chapter is more general than (2), we explicitly note that the results for 𝐹 =  𝐺 
are not comparable to the results where the additional assumptions on the coefficients and the uniform convexity of 𝑋 neither 
imply nor are implied by the assumptions of theorem 2. 
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