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Abstract 

Artificial intelligence (AI) has significantly transformed radiology by enabling 

automated medical image classification, particularly for detecting abnormalities in 

chest X-rays and other imaging modalities. While deep learning models achieve 

remarkable accuracy, their black-box nature limits interpretability, raising concerns 

among clinicians and regulatory bodies [1]. Explainable AI (XAI) techniques aim to 

bridge this gap by providing insights into the decision-making processes of these 

models [2]. This paper comprehensively examines XAI methods applied to radiological 

image classification, focusing on chest X-ray datasets and pneumonia detection 

models [3]. A detailed exploration of model architectures, feature attribution 

techniques, and evaluation metrics is conducted to understand the role of 

explainability in medical AI [4]. Furthermore, key challenges in implementing 

explainability frameworks and future directions for research and clinical adoption are 

discussed [5]. This study emphasizes the need for integrating XAI into radiology to 

ensure AI-driven systems are not only accurate but also transparent and trustworthy. 
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1. Introduction 

The application of deep learning in radiology has demonstrated exceptional potential in diagnosing various diseases through 

automated classification of medical images [6]. Radiologists and healthcare professionals increasingly rely on AI-based decision-

support tools to assist in disease detection, risk assessment, and prognosis prediction [7]. However, deep learning models operate 

as highly complex, multi-layered networks, making their decision-making opaque to users. This opacity poses significant ethical 

and practical challenges, including difficulties in clinical validation, regulatory compliance, and physician trust in AI-generated 

diagnoses [8]. 

Explainable AI (XAI) techniques aim to address these concerns by providing interpretable justifications for model predictions 
[9]. These methods enable clinicians to understand why a model assigns a particular label to a medical image, which regions of 

an image contribute most to a prediction, and how model confidence varies with different input conditions [10]. XAI approaches 

such as saliency maps, Gradient-weighted Class Activation Mapping (Grad-CAM) [11], SHapley Additive Explanations (SHAP) 
[12], and Local Interpretable Model-agnostic Explanations (LIME) [1] have been extensively explored for enhancing transparency 

in deep learning models. 
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Fig 1: Sample deep learning model workflow for X-ray classification and integration of explainability methods 
 

Table 1: Summary of key challenges in AI-based radiology and the role of explainability in addressing them 
 

Key Challenge Challenge Summary Role of Explainability 

Model Interpretability 
AI models act as black boxes, limiting clinician 

trust. 

Grad-CAM, SHAP provide visual and quantitative 

insights. 

Bias in AI Models AI can inherit biases from training data. SHAP helps detect and mitigate biases in predictions. 

Regulatory Compliance 
AI must meet medical regulations (FDA, HIPAA, 

etc.). 

Explainability ensures transparency for regulatory 

approval. 

Clinician Trust & Adoption 
Clinicians hesitate to trust AI without 

understanding it. 

XAI allows verification of AI decisions against 

knowledge. 

Data Quality & Variability Variations in dataset quality affect AI accuracy. XAI helps identify errors and refine dataset training. 

Generalizability of AI 

Models 
AI models struggle with unseen data. 

Explainability highlights key features, ensuring 

robustness. 

 

2. Related Work 

Numerous studies have emphasized the necessity of 

explainability in AI-driven radiology. Researchers have 

proposed various interpretability frameworks to bridge the 

gap between AI accuracy and human trust [13]. Ribeiro et al. 

introduced LIME, a method that generates locally faithful 

approximations of black-box models by perturbing input data 

and observing output changes [1]. Another significant 

development is Grad-CAM, which utilizes gradient-based 

feature importance to highlight relevant image regions 

contributing to a model’s decision [11]. SHAP, a game-

theoretic framework, offers a comprehensive way to attribute 

importance scores to different input features, providing a 

quantitative measure of how specific pixels influence a 

classification outcome [12]. Zech et al. demonstrated that deep 

learning models trained on medical datasets often incorporate 

biases that may affect generalizability, necessitating 

interpretability tools to ensure unbiased decision-making [14]. 

 

 
 

Fig 2: Comparison of various explainability techniques and their applicability in radiology 
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3. Datasets 

Two of the most widely used datasets for AI-driven radiology 

research are the NIH Chest X-ray dataset [15] and the RSNA 

Pneumonia dataset [16]. These datasets serve as benchmarks 

for evaluating deep learning models in medical imaging. The 

NIH Chest X-ray dataset comprises over 112,120 frontal-

view X-ray images from more than 30,000 patients [15]. These 

images are annotated with labels corresponding to 14 lung 

conditions, making the dataset an essential resource for multi 

class classification tasks in radiology. The dataset’s extensive 

volume and diversity allow for robust deep learning model 

training and evaluation. The RSNA Pneumonia dataset, 

developed in collaboration with radiology experts, contains 

annotated chest X-rays categorized into pneumonia-positive, 

pneumonia-negative, and normal cases [16]. The inclusion of 

expert-annotated bounding boxes for pneumonia-positive 

cases allows for objective comparison between model-

generated explanations and human expert assessments. 

 
Table 2: Overview of dataset characteristics used in explainability studies 

 

Dataset Source Size 
Number of 

Images 
Labels/Classes Key Features 

NIH Chest X-

ray 
NIH Clinical Center [15] 

30,000+ 

patients 
112,120 14 lung conditions 

Large dataset, multi-class 

classification, no bounding 

boxes 

RSNA 

Pneumonia 

Radiological Society of 

North America [16] 

26,684 

cases 
26,684 

Pneumonia-positive, 

pneumonia-negative, normal 

Expert-annotated bounding 

boxes, binary classification 

 

4. Explainability techniques in radiology 
To ensure transparency in medical AI applications, various 

explainability techniques have been implemented. Saliency 

maps highlight important image regions contributing to a 

model’s decision [17]. Gradient-based methods, such as vanilla 

gradient saliency and SmoothGrad, provide initial insights into 

neural network attention patterns. However, these methods often 

suffer from noise sensitivity and may not be robust enough for 

clinical validation [18]. 

Grad-CAM and its extended versions, including Grad-

CAM++ and Score-CAM, generate visually interpretable 
heatmaps that overlay model attention on radiological images 
[11]. These techniques enable clinicians to verify whether a model 

is attending to disease-relevant regions rather than relying on 

dataset artifacts or spurious correlations. 

SHAP assigns importance scores to input features, enabling a 

quantitative assessment of pixel contributions [12]. This method 

is particularly useful in identifying biases within deep learning 

models, ensuring that predictions are based on meaningful 

features rather than dataset-dependent anomalies [19]. 

 

 
 

Fig 3: Grad-CAM-generated heatmap overlaying pneumonia-affected regions on a chest X-ray 
 

5. Evaluation metrics for explainability 

Assessing the effectiveness of XAI techniques in medical 

imaging requires specific evaluation metrics. The 

Intersection over Union (IoU) metric measures the degree of 

overlap between model-generated explanations and expert-

labeled ground truth, providing a quantitative assessment of 

alignment [20]. Fidelity score evaluates whether an 

explanation accurately reflects a model’s true decision-

making behavior [21]. 

Another widely adopted evaluation method is human trust 

studies, where radiologists assess the interpretability and 

usability of AI-generated explanations [22]. Such studies offer 

valuable qualitative insights into the effectiveness of 

explainability tools in real-world clinical settings. 

 
Table 3: Common evaluation metrics for explainability techniques in radiology 

 

Metric Definition Application in Radiology 

Intersection over Union 

(IoU) 

Measures the overlap between model explanation and 

expert-labeled regions. 

Used to validate heatmaps in tasks like 

pneumonia detection. 

Fidelity Score 
Evaluates how well the explanation reflects the model’s 

decision process. 

Ensures trustworthiness in AI-driven diagnostic 

systems. 

Localization Error 
Measures the distance between explanation and actual 

target region. 

Validates bounding box accuracy in 

segmentation tasks. 

Pixel Attribution 

Accuracy 
Quantifies pixel-level correctness of explanations. 

Evaluates fine-grained correctness for critical 

findings. 

Expert Agreement Score 
Compares the explanation with radiologist-provided 

regions. 

Ensures explainability matches clinical 

relevance. 
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6. Conclusion 

Explainability in AI-driven radiology is essential for 

fostering trust and ensuring widespread clinical adoption of 

deep learning models. This paper reviewed various XAI 

techniques applied to chest X-ray and pneumonia 

classification, discussing their advantages, limitations, and 

evaluation methods [23]. As AI continues to evolve, 

integrating explainability into medical imaging models will 

be crucial for bridging the gap between AI advancements and 

clinical implementation. Future research should aim to refine 

XAI techniques, making them more reliable, efficient, and 

aligned with radiologists’ needs. 

 

7. References 

1. Ribeiro MT, Singh S, Guestrin C. "Why Should I Trust 

You?" Explaining the Predictions of Any Classifier. 

Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. 

2016;1135–44. 

2. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh 

D, Batra D. Grad-CAM: Visual Explanations from Deep 

Networks via Gradient-Based Localization. Proceedings 

of the IEEE International Conference on Computer 

Vision. 2017;618–26. 

3. Lundberg SM, Lee SI. A Unified Approach to 

Interpreting Model Predictions. Advances in Neural 

Information Processing Systems. 2017;30:4765–74. 

4. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, 

Oermann EK. Confounding Variables in Chest 

Radiograph Deep Learning Models. PLOS Medicine. 

2018;15(7):e1002683. 

5. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, 

et al. CheXNet: Radiologist-Level Pneumonia Detection 

on Chest X-Rays with Deep Learning. arXiv preprint 

arXiv:1711.05225. 2017. 

6. Montavon G, Samek W, Müller KR. Methods for 

Interpreting and Understanding Deep Neural Networks. 

Digital Signal Processing. 2018;73:1–15. 

7. Tjoa E, Guan C. A Survey on Explainable Artificial 

Intelligence (XAI): Toward Medical Transparency. 

Journal of Artificial Intelligence Research. 2020;69:1–

37. 

8. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. 

Causability and Explainability of Artificial Intelligence 

in Medicine. Wiley Interdisciplinary Reviews: Data 

Mining and Knowledge Discovery. 2019;9(4):e1312. 

9. Linardatos P, Papastefanopoulos V, Kotsiantis S. 

Explainable AI: A Review of Machine Learning 

Interpretability Methods. Entropy. 2021;23(1):18. 

10. Chen JH, Asch SM. Machine Learning and Prediction in 

Medicine—Beyond the Peak of Inflated Expectations. 

New England Journal of Medicine. 2017;376(26):2507–

9. 

11. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, 

Tabik S, Barbado A, et al. Explainable Artificial 

Intelligence (XAI): Concepts, Taxonomies, 

Opportunities, and Challenges. Information Fusion. 

2020;58:82–115. 

12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau 

HM, et al. Dermatologist-Level Classification of Skin 

Cancer with Deep Neural Networks. Nature. 

2017;542(7639):115–8. 


