

International Journal of Multidisciplinary Research and Growth Evaluation.

Optimizing Project Management in Multinational Supply Chains: A Framework for Data-Driven Decision-Making and Performance Tracking

Osazee Onaghinor 1*, Ogechi Thelma Uzozie 2, Oluwafunmilayo Janet Esan 3

- ¹ Independent Researcher, Alberta, Canada
- ² Independent Researcher, Lagos Nigeria
- ³Amazon.com, USA
- * Corresponding Author: Osazee Onaghinor

Article Info

ISSN (online): 2582-7138

Volume: 03 Issue: 01

January-February 2022 Received: 23-12-2021 Accepted: 20-01-2022 Page No: 907-913

Abstract

This paper examines the critical role of data-driven project management in optimizing multinational supply chains. In an increasingly complex global market, businesses face the challenge of managing cross-border operations efficiently while maintaining flexibility and responsiveness. The study highlights key project management frameworks, including PMI's PMBOK, Agile, and Lean methodologies, which provide structured approaches for managing supply chain projects across diverse regions. Furthermore, it emphasizes the integration of advanced data-driven tools, such as IoT, ERP systems, and SCM software, to enhance real-time decision-making, improve operational efficiency, and optimize resource allocation. The research also delves into the significant role of big data analytics, predictive analytics, and machine learning in improving forecasting, identifying inefficiencies, and mitigating risks within supply chain management. Performance tracking using key performance indicators (KPIs) is identified as a pivotal strategy for monitoring project progress and ensuring continuous improvement through feedback loops. The study provides practical recommendations for integrating data-driven tools into project management practices and emphasizes the importance of fostering a data-centric culture within organizations to improve supply chain performance. The paper suggests areas for future research, including the application of artificial intelligence, machine learning, and blockchain technology in enhancing supply chain transparency, risk management, and sustainability. Ultimately, this study offers insights into the evolving landscape of multinational supply chain management, demonstrating how data-driven project management practices can enable businesses to achieve operational excellence, mitigate risks, and stay competitive in a rapidly changing global environment.

DOI: https://doi.org/10.54660/.IJMRGE.2022.3.1.907-913

Keywords: Data-Driven Project Management, Multinational Supply Chains, Big Data Analytics, Predictive Analytics, Performance Tracking, Continuous Improvement

1. Introduction

1.1 Overview of project management in multinational supply chains

Project management in multinational supply chains involves coordinating the flow of goods, services, and information across multiple countries and regions. These operations are often complex due to the diverse regulatory environments, cultural differences, and logistical challenges inherent in global trade. Successful project management in this context requires not only technical expertise but also strategic foresight to align resources, timelines, and objectives in a way that meets both local and international demands (Sikirat, 2022).

In today's interconnected world, multinational supply chains operate across various industries such as manufacturing, technology, and healthcare. The global nature of these operations necessitates the management of multiple stakeholders, including suppliers, distributors, and customers, each located in different parts of the world. As a result, project managers must be adept at navigating crosscultural communication, international regulations, and market variability to ensure smooth and efficient supply chain operations (Ogunmokun, Balogun, & Ogunsola, 2022; Ogunsola, Balogun, & Ogunmokun, 2022).

The growing trend of outsourcing and offshoring has further complicated multinational supply chain management. Companies often depend on suppliers from different parts of the world, creating a web of interdependencies. This complexity requires robust project management strategies to mitigate risks, handle uncertainties, and capitalize on opportunities for cost reduction, efficiency improvements, and market expansion (Otokiti, Igwe, Ewim, Ibeh, & Sikhakhane-Nwokediegwu, 2022).

1.2 The importance of data-driven decision-making in global supply chains

Data-driven decision-making is pivotal in the management of global supply chains, as it allows companies to optimize operations, reduce costs, and enhance efficiency. With vast amounts of data being generated at every stage of the supply chain—from procurement to distribution—companies that leverage analytics can make more informed decisions. This includes choosing suppliers, managing inventory, forecasting demand, and identifying potential risks (Ogbuagu *et al.*, 2022b).

In multinational supply chains, data-driven approaches enable real-time tracking and monitoring of goods as they move across borders. This enhances visibility, allowing project managers to make timely decisions regarding inventory management, shipping routes, and customs procedures. Additionally, data analytics can provide insights into market trends, customer preferences, and economic shifts, allowing companies to adapt their supply chain strategies accordingly (Ogbuagu *et al.*, 2022a).

Moreover, the use of data can also improve collaboration across different regions and departments. With accurate and timely information at hand, stakeholders across the supply chain can align their efforts, resulting in better coordination, minimized disruptions, and faster response times. Ultimately, data-driven decision-making helps multinational companies to stay competitive and resilient in an increasingly globalized market (Mustapha & Ibitoye, 2022b; Odunaiya, Soyombo, & Ogunsola, 2022).

1.3 Objectives and scope of the study

The primary objective of this study is to examine the role of data-driven decision-making in enhancing the efficiency and resilience of multinational supply chains. The research will explore how different data analytics tools and techniques can be integrated into project management practices to improve the overall performance of supply chains. Additionally, the study aims to identify the challenges and opportunities that arise when applying data-driven strategies in global supply chain management.

The scope of this study is limited to multinational companies that operate in diverse industries, including manufacturing, technology, and logistics. The research will focus on case studies of companies that have successfully implemented data-driven project management strategies within their supply chains. By examining both successful implementations and challenges faced, the study aims to provide actionable insights for supply chain managers looking to integrate data analytics into their operations.

This study will also consider the implications of data-driven decision-making on various facets of supply chain management, such as risk management, supplier relations, and customer satisfaction. Through an in-depth analysis of the benefits and potential pitfalls of data analytics, the research will contribute to the broader understanding of how digital transformation is shaping the future of global supply chains.

2. Theoretical foundations of project management in supply chains

2.1 Key project management frameworks in global supply chains

Project management in global supply chains is guided by various frameworks that provide structured approaches to managing complex operations. One of the most widely used frameworks is the Project Management Institute's (PMI) Project Management Body of Knowledge (PMBOK) (Wei, Liang, & Wang, 2007). This framework outlines key knowledge areas and process groups, helping project managers navigate the planning, execution, and monitoring of projects. In the context of global supply chains, PMBOK helps integrate diverse project elements such as scope, time, cost, quality, and stakeholder engagement, ensuring that projects are completed successfully across international borders (Jessa, 2022; Mustapha & Ibitoye, 2022a).

Another key framework is the agile project management approach, which emphasizes flexibility and collaboration. Agile methodologies, particularly Scrum and Kanban, allow for iterative progress and continuous feedback, which is crucial when managing dynamic and uncertain conditions in multinational supply chains (Zayat & Senvar, 2020). These approaches are particularly useful when working with international suppliers and partners who operate in rapidly changing markets and environments. By embracing Agile principles, companies can more effectively respond to disruptions, adapt to new information, and meet evolving customer needs (Govender *et al.*, 2022; Isibor, Ibeh, Ewim, Sam-Bulya, & Martha, 2022).

Lean project management is also a critical framework for improving supply chain efficiency. Lean focuses on reducing waste, optimizing processes, and improving value creation. In multinational supply chains, Lean helps streamline operations by eliminating redundancies, improving communication, and minimizing delays. By combining Lean with other methodologies such as Six Sigma or Total Quality Management, companies can create a robust approach to enhancing both operational efficiency and project outcomes in complex, global supply chains (EZEANOCHIE, AFOLABI, & AKINSOOTO, 2022).

2.2 The role of data analytics in optimizing project management

Data analytics plays a pivotal role in optimizing project management within multinational supply chains by providing insights that improve decision-making and operational efficiency. By analyzing historical data, project managers can predict potential risks, identify trends, and optimize resource allocation. For instance, predictive analytics can forecast demand fluctuations, allowing managers to adjust production schedules and inventory levels accordingly. This proactive approach helps minimize the risk of stockouts or overstocking, both of which can disrupt global supply chains (Wang, Gunasekaran, Ngai, & Papadopoulos, 2016).

Moreover, real-time data analytics enhances visibility and communication across the entire supply chain. By integrating data from various stages—such as procurement, production, and logistics—project managers can track progress and monitor key performance indicators (KPIs) (Oliveira & Handfield, 2019). This ensures that projects stay on track, within budget, and meet quality standards. Advanced analytics tools can also enable companies to conduct scenario analysis, helping them to explore different project outcomes based on varying conditions and assumptions (Charles *et al.*, 2022; Elumilade, Ogundeji, Achumie, Omokhoa, & Omowole, 2022).

Data analytics also fosters better collaboration among global teams. By centralizing data in a shared platform, stakeholders from different regions can access up-to-date information, making it easier to coordinate activities and align objectives. Additionally, data-driven insights can help identify potential areas for improvement, such as bottlenecks or inefficiencies, allowing project managers to take corrective actions before these issues escalate. In essence, leveraging data analytics is crucial for enhancing project management capabilities in the context of global supply chains (BALOGUN, OGUNSOLA, & SAMUEL, 2022).

2.3 Performance tracking models and metrics for multinational operations

Performance tracking is a vital aspect of project management in multinational supply chains, as it ensures that projects are progressing as planned and meeting predefined objectives. Key performance indicators (KPIs) are used to monitor various aspects of the supply chain, including cost efficiency, delivery timelines, quality control, and customer satisfaction. These metrics provide a quantitative basis for assessing the success of projects and identifying areas for improvement (Braglia & Frosolini, 2014).

In multinational operations, it is crucial to use a combination of both financial and non-financial metrics to track performance. Financial metrics such as return on investment (ROI), cost per unit, and profit margins are essential for evaluating the financial health of the project. Non-financial metrics, including on-time delivery, product quality, and customer satisfaction, help ensure that operational goals align with strategic business objectives. By utilizing a balanced set of metrics, companies can gain a comprehensive understanding of their supply chain performance (Abisoye & Akerele, 2022; Adekola, Kassem, & Mbata, 2022).

Performance tracking models, such as the Balanced Scorecard, are particularly effective in multinational supply chains. The Balanced Scorecard emphasizes the alignment of strategic objectives with performance metrics across four key areas: financial, customer, internal processes, and learning and growth (Frederico, Garza-Reyes, Kumar, & Kumar, 2021). By applying this model, companies can ensure that supply chain performance is evaluated holistically, taking into account not only financial outcomes but also the broader impact of the supply chain on organizational learning, innovation, and customer satisfaction. Regular monitoring and evaluation using these models allow companies to stay

agile, adapt to challenges, and make data-driven decisions to optimize their global supply chains (Paul, Abbey, Onukwulu, Agho, & Louis, 2021).

3. Leveraging data for decision-making in multinational supply chains

3.1 Data-driven tools and technologies for supply chain optimization

In the modern era, supply chains have become increasingly dependent on data-driven tools and technologies to optimize operations and improve efficiency. Technologies such as Enterprise Resource Planning (ERP) systems, Supply Chain Management (SCM) software, and Transportation Management Systems (TMS) are crucial for centralizing data and streamlining supply chain processes (Kamble & Gunasekaran, 2020). These systems integrate various functions, such as inventory management, order processing, and procurement, enabling real-time visibility and better coordination between different supply chain partners, regardless of their geographical location (Ogbeta, Mbata, & Katas, 2021; Otokiti, Igwe, Ewim, & Ibeh, 2021).

Moreover, the rise of the Internet of Things (IoT) has revolutionized data collection and monitoring in multinational supply chains. IoT devices, such as sensors and RFID tags, provide real-time tracking of products as they move through the supply chain. These devices allow companies to gather accurate data on product conditions, such as temperature, humidity, and location, helping to ensure quality control and compliance with regulatory requirements. Data gathered through IoT can be integrated with other supply chain management tools, facilitating data-driven decision-making at every stage of the supply chain.

Cloud-based technologies also play a significant role in enhancing supply chain optimization. Cloud computing enables seamless data sharing and collaboration between global teams, reducing the complexity of managing international operations. With cloud solutions, stakeholders from different regions can access up-to-date data and communicate effectively, thus improving the decision-making process and ensuring that supply chain activities are aligned with business objectives. These data-driven technologies collectively enable companies to enhance their operational efficiency, reduce costs, and improve overall supply chain performance (Hassan, Collins, Babatunde, Alabi, & Mustapha, 2021; Odunaiya, Soyombo, & Ogunsola, 2021).

3.2 Big data analytics for improving supply chain efficiency

Big data analytics has become a game changer in the optimization of multinational supply chains by enabling companies to process and analyze vast amounts of data to derive actionable insights. In a global supply chain, big data analytics can help businesses understand patterns, predict trends, and make more informed decisions regarding inventory, procurement, and distribution. By analyzing large datasets, companies can identify inefficiencies, detect bottlenecks, and optimize routes and delivery schedules, thereby improving overall supply chain efficiency (Sanders, 2014).

One of the most significant advantages of big data analytics in supply chain management is its ability to improve demand forecasting. By analyzing historical sales data, market trends, and consumer behavior patterns, businesses can predict demand more accurately (Wang *et al.*, 2016). This allows for better inventory management, reducing the risk of stockouts and excess inventory. In addition, big data can assist in determining the best suppliers and sourcing locations based on performance data, lead times, and costs, further enhancing supply chain efficiency and reducing operational risks (Ewim, Omokhoa, Ogundeji, & Ibeh, 2021).

Furthermore, big data analytics allows businesses to enhance supply chain transparency. By integrating data from various sources, including suppliers, manufacturers, and logistics providers, companies can gain a comprehensive view of their entire supply chain. This transparency helps identify potential issues early on, such as delays or quality issues, enabling timely interventions and minimizing disruptions. Ultimately, big data analytics empowers multinational companies to create smarter, more agile supply chains that can quickly respond to changing market conditions and customer demands (Elumilade, Ogundeji, Achumie, Omokhoa, & Omowole, 2021; EZEANOCHIE, AFOLABI, AKINSOOTO, 2021).

3.3 Predictive analytics and machine learning for project risk management

Predictive analytics and machine learning (ML) are transforming the way multinational supply chains manage project risks. Predictive analytics uses historical data and statistical algorithms to forecast potential risks and challenges in supply chain operations. By identifying patterns in data, businesses can anticipate disruptions, such as delays, supply shortages, or fluctuations in demand, and take proactive measures to mitigate these risks before they occur. Predictive models can be applied to various stages of the supply chain, from procurement and production to distribution, ensuring that risks are minimized at every point of the process (Wang *et al.*, 2016).

Machine learning, a subset of artificial intelligence (AI), further enhances risk management by enabling systems to learn from historical data and make decisions without human intervention. In a supply chain context, machine learning algorithms can continuously improve their predictions by analyzing new data as it becomes available (Kache & Seuring, 2017). This capability allows businesses to refine their risk models in real-time, adapting to new conditions and making more accurate predictions. For example, machine learning can predict supply chain disruptions caused by external factors, such as geopolitical instability or natural disasters, and recommend alternative sourcing strategies to reduce potential impacts (Elujide *et al.*, 2021; Elumilade *et al.*, 2021).

Together, predictive analytics and machine learning provide supply chain managers with a powerful toolkit for risk management. These technologies not only enable companies to foresee potential problems but also help in devising strategies for risk mitigation. By leveraging these advanced tools, multinational supply chains can improve their resilience, reduce the likelihood of costly disruptions, and ensure smoother project execution, even in the face of uncertainty.

4. Developing a framework for performance tracking in multinational supply chains

4.1 Key performance indicators (KPIs) for monitoring project progress

Key Performance Indicators (KPIs) are essential tools for monitoring and evaluating the progress of projects within multinational supply chains. KPIs provide measurable data points that help assess the effectiveness of various processes, from procurement to delivery. In the context of supply chain management, KPIs can focus on multiple aspects, including operational efficiency, cost management, and customer satisfaction. These indicators allow project managers to gauge the success of supply chain activities and make necessary adjustments to keep projects on track.

Some of the most common KPIs in global supply chains include on-time delivery, inventory turnover, and cost per unit. On-time delivery is a critical metric, especially in multinational supply chains, where delays can have ripple effects across various regions. High inventory turnover reflects effective inventory management, ensuring that products are moving through the supply chain efficiently. Additionally, cost per unit provides valuable insights into cost control and resource optimization. These KPIs are not only essential for day-to-day operations but also contribute to long-term decision-making and strategic planning (Afolabi & Akinsooto, 2021; BALOGUN, OGUNSOLA, & SAMUEL, 2021).

In multinational supply chains, it is also vital to consider regional and cultural factors when selecting KPIs. For example, some markets may prioritize fast delivery times, while others may emphasize product quality or sustainability. Project managers should therefore tailor their KPIs to the specific needs and goals of each region while ensuring they align with the overall objectives of the global supply chain. By using KPIs effectively, businesses can maintain better control over their projects, identify areas for improvement, and ensure successful project outcomes.

4.2 Integrating performance tracking with data-driven project management tools

Integrating performance tracking with data-driven project management tools is critical for ensuring that multinational supply chain projects are monitored in real time and adjusted as necessary. Project management software such as Microsoft Project, Asana, and Trello provides frameworks for tracking progress and monitoring performance metrics across different teams and regions. These tools enable the consolidation of data from multiple sources, providing project managers with a comprehensive overview of the project's status and performance at any given moment.

By linking performance tracking directly with these tools, managers can access real-time information on KPIs, such as delivery schedules, production timelines, and cost management. This integration allows for seamless data flow, reducing the risk of errors and discrepancies between different regions or departments. Furthermore, project management tools often include features that facilitate collaboration, enabling stakeholders from various locations to review progress, discuss issues, and contribute insights without delays. This not only boosts efficiency but also ensures better alignment across the entire supply chain.

Additionally, data-driven project management tools can automate performance tracking, reducing the administrative burden on project managers. For example, some systems can automatically generate reports on key metrics, making it easier to assess project performance against predefined goals. This automation leads to greater accuracy, efficiency, and consistency in monitoring and evaluating project progress.

With integrated performance tracking, multinational supply chain projects can be managed more effectively, ensuring that risks are minimized and objectives are met on time and within budget (Adepoju *et al.*, 2021; Alonge *et al.*, 2021).

4.3 Continuous improvement through performance tracking and feedback loops

Continuous improvement is a cornerstone of effective project management in multinational supply chains, and performance tracking plays a crucial role in fostering this process. By regularly monitoring KPIs and collecting data on project performance, companies can identify trends, assess outcomes, and pinpoint areas for improvement. However, to truly drive continuous improvement, performance tracking must be linked with feedback loops that encourage collaboration, learning, and adaptation. These loops involve the ongoing process of collecting feedback, analyzing results, and implementing corrective actions to optimize supply chain operations over time.

For example, if performance data indicates that certain suppliers consistently deliver late or that inventory levels are not aligning with demand forecasts, project managers can gather feedback from relevant stakeholders, such as suppliers, logistics teams, and customers. This feedback can then be used to identify the root causes of the issue and implement solutions, such as renegotiating contracts, improving demand forecasting models, or exploring alternative suppliers. Through this iterative process, supply chain performance can gradually improve, reducing inefficiencies and enhancing overall project outcomes.

Moreover, feedback loops encourage a culture of accountability and transparency within multinational supply chains. By regularly sharing performance data with all stakeholders, companies foster open communication and collaboration, enabling teams to address issues proactively. This continuous feedback-driven improvement approach can help organizations stay competitive in a rapidly changing global market, enhancing their ability to adapt to new challenges, optimize their operations, and meet customer expectations more effectively. Ultimately, integrating performance tracking with feedback loops ensures that multinational supply chains evolve and improve, supporting long-term success and resilience (Adebisi, Aigbedion, Ayorinde, & Onukwulu, 2021; Adeleke, Igunma, & Nwokediegwu; Sam-Bulya, Omokhoa, Ewim, & Achumie).

5. Conclusion and recommendation

This study has explored the crucial role of data-driven project management in optimizing operations within multinational supply chains. A key finding is the importance of leveraging robust project management frameworks, such as PMI's PMBOK, Agile methodologies, and Lean project management, to ensure efficient handling of complex, cross-border projects. These frameworks, when integrated with advanced data analytics tools, allow businesses to streamline processes, improve visibility, and enhance coordination across diverse regions. Additionally, it was evident that data-driven technologies, such as IoT, ERP, and SCM software, significantly contribute to enhancing real-time decision-making and operational efficiency.

The research also highlights the critical role of big data analytics in improving forecasting accuracy, supply chain transparency, and operational flexibility. By analyzing large datasets, companies can identify inefficiencies, reduce risks, and optimize inventory management. Predictive analytics and machine learning were found to be particularly effective in mitigating project risks by forecasting potential disruptions and recommending proactive measures. Furthermore, the study emphasized the importance of performance tracking and continuous improvement via KPIs and feedback loops, which are essential for maintaining alignment across the global supply chain.

To optimize project management in multinational supply chains, companies should invest in integrated, data-driven project management tools that allow for seamless communication, real-time monitoring, and centralized decision-making. These tools should support the continuous collection of performance data and the analysis of KPIs such as on-time delivery, cost per unit, and customer satisfaction. Additionally, businesses should prioritize flexibility in their project management approaches, utilizing Agile and Lean methodologies to adapt to the ever-changing dynamics of global supply chains.

Companies should also focus on building a data culture within their project management teams. This involves training on leveraging advanced data analytics tools, empowering decision-makers to utilize predictive models, and fostering collaboration between regional and global teams. By improving data literacy and promoting crossfunctional collaboration, companies can ensure that performance tracking becomes a more integral part of the decision-making process. Furthermore, developing strategic partnerships with suppliers and stakeholders can enhance supply chain visibility, ensuring that risks are minimized, and performance objectives are consistently met. Finally, organizations should continuously assess and refine their performance tracking models. The use of feedback loops, in particular, provides a mechanism for driving continuous improvement. Regularly reviewing performance metrics and gathering feedback from stakeholders will help companies identify potential inefficiencies and implement corrective actions before they escalate into larger issues. By embracing this iterative approach, multinational supply chains can maintain agility and resilience in the face of disruptions.

Future research in data-driven project management for multinational supply chains could explore several emerging areas. One potential direction is further developing and applying artificial intelligence (AI) and machine learning algorithms to enhance predictive analytics and risk management in supply chains. As AI continues to evolve, there are opportunities to automate decision-making processes, predict market fluctuations more accurately, and optimize the entire supply chain lifecycle, from procurement to delivery.

Another promising area for future research is the integration of blockchain technology into supply chain management. Blockchain's ability to provide transparent, secure, and traceable records could significantly enhance data sharing and accountability in multinational supply chains. Investigating the impact of blockchain on supply chain transparency, efficiency, and risk mitigation could provide valuable insights for businesses looking to strengthen their global operations.

Additionally, research could focus on data-driven supply chain management's social and environmental implications. As companies increasingly prioritize sustainability and corporate social responsibility, it is important to understand how data analytics can optimize operational performance and

sustainability outcomes. Future studies could investigate how data-driven project management can align supply chain strategies with environmental goals and ethical standards, contributing to both profitability and societal well-being.

References

- Abisoye A, Akerele JI. A practical framework for advancing *cybersecurity*, *artificial intelligence*, and technological ecosystems to support regional economic development and innovation. *International Journal of Multidisciplinary Research Growth and Evaluation*. 2022;3(1):700-713.
- Adebisi B, Aigbedion E, Ayorinde OB, Onukwulu EC.
 A conceptual model for predictive asset integrity
 management using data analytics to enhance
 maintenance and reliability in oil and gas operations.
 Journal of Asset Integrity Management.
 2021;Publication details incomplete.
- 3. Adekola AD, Kassem RG, Mbata AO. Convergence of *AI*, *blockchain*, and pharmacoeconomics in building adaptive pharmaceutical supply chains: A novel paradigm shift for equitable global drug access. *Journal of Pharmaceutical Supply Chain Innovation*. 2022; Publication details incomplete.
- 4. Adeleke AK, Igunma TO, Nwokediegwu ZS. Modeling advanced numerical control systems to enhance precision in next-generation coordinate measuring machines. *Journal of Advanced Manufacturing Systems*. Year unknown;Publication details incomplete.
- Adepoju P, Austin-Gabriel B, Hussain Y, Ige B, Amoo O, Adeoye N. Advancing zero trust architecture with *AI* and data science for *cybersecurity*. *Journal of Information Security and Privacy*. 2021;Publication details incomplete.
- 6. Afolabi SO, Akinsooto O. Theoretical framework for dynamic mechanical analysis in material selection for high-performance engineering applications. *Noûs*. 2021;3:Publication details incomplete.
- Alonge EO, Eyo-Udo NL, Ubanadu BC, Daraojimba AI, Balogun ED, Ogunsola KO. Enhancing data security with machine learning: A study on fraud detection algorithms. *Journal of Machine Learning Applications in Security*. 2021;Publication details incomplete.
- 8. Balogun ED, Ogunsola KO, Samuel A. A cloud-based data warehousing framework for real-time business intelligence and decision-making optimization. *Journal of Cloud Computing and Business Intelligence*. 2021;Publication details incomplete.
- 9. Balogun ED, Ogunsola KO, Samuel A. Developing an advanced predictive model for financial planning and analysis using machine learning. *Journal of Financial Analytics and Machine Learning*. 2022;Publication details incomplete.
- Braglia M, Frosolini M. An integrated approach to implement project management information systems within the extended enterprise. *International Journal of Project Management*. 2014;32(1):18–29.
- 11. Charles OI, Hamza O, Eweje A, Collins A, Babatunde GO, Ubamadu BC. Advancing *AI* in social sciences for exceptional research. *International Journal of Social Science Exceptional Research*. 2022; Publication details incomplete.
- 12. Elujide I, Fashoto SG, Fashoto B, Mbunge E, Folorunso

- SO, Olamijuwon JO. Application of deep and machine learning techniques for multi-label classification performance on psychotic disorder diseases. *Informatics in Medicine Unlocked*. 2021;23:100545.
- 13. Elumilade OO, Ogundeji IA, Achumie GO, Omokhoa HE, Omowole BM. Enhancing fraud detection and forensic auditing through data-driven techniques for financial integrity and security. *Journal of Advanced Education and Sciences*. 2021;1(2):55–63.
- 14. Elumilade OO, Ogundeji IA, Achumie GO, Omokhoa HE, Omowole BM. Optimizing corporate tax strategies and transfer pricing policies to improve financial efficiency and compliance. *Journal of Advanced Multidisciplinary Research*. 2022;1(2):28–38.
- 15. Ewim CP-M, Omokhoa HE, Ogundeji IA, Ibeh AI. Future of work in banking: Adapting workforce skills to digital transformation challenges. Future. 2021;2(1):45–56.
- 16. Ezeanochie CC, Afolabi SO, Akinsooto O. A conceptual model for Industry 4.0 integration to drive digital transformation in renewable energy manufacturing. Journal of Industry 4.0 Applications. 2021;4(3):89–101.
- 17. Ezeanochie CC, Afolabi SO, Akinsooto O. Advancing automation frameworks for safety and compliance in offshore operations and manufacturing environments. Journal of Offshore Operations Safety. 2022;5(2):132–145.
- Frederico GF, Garza-Reyes JA, Kumar A, Kumar V. Performance measurement for supply chains in the Industry 4.0 era: A balanced scorecard approach. International Journal of Productivity and Performance Management. 2021;70(4):789–807.
- Govender P, Fashoto SG, Maharaj L, Adeleke MA, Mbunge E, Olamijuwon J, *et al*. The application of machine learning to predict genetic relatedness using human mtDNA hypervariable region I sequences. PLOS ONE. 2022;17(2):e0263790.
- 20. Hassan YG, Collins A, Babatunde GO, Alabi AA, Mustapha SD. AI-driven intrusion detection and threat modeling to prevent unauthorized access in smart manufacturing networks. Artificial Intelligence Applications in Manufacturing. 2021;16:85–97.
- 21. Isibor NJ, Ibeh AI, Ewim CP-M, Sam-Bulya NJ, Martha E. A financial control and performance management framework for SMEs: Strengthening budgeting, risk mitigation, and profitability. Journal of Financial Management in Small Enterprises. 2022;10(3):110–123.
- 22. Jessa EK. Evolution of masonry techniques. Communication in Physical Sciences. 2022;8(4):67–74.
- 23. Kache F, Seuring S. Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations & Production Management. 2017;37(1):10–36.
- 24. Kamble SS, Gunasekaran A. Big data-driven supply chain performance measurement system: A review and framework for implementation. International Journal of Production Research. 2020;58(1):65–86.
- 25. Mustapha SD, Ibitoye B. Comprehension analysis of traffic signs by drivers on urban roads in Ilorin, Kwara State. Journal of Engineering Research and Reports. 2022;23(6):53–63.
- 26. Mustapha SD, Ibitoye B. Understanding of traffic signs by drivers on urban roads: A case study of Ilorin, Kwara

- State. Journal of Engineering Research and Reports. 2022;23(12):39–47.
- 27. Odunaiya OG, Soyombo OT, Ogunsola OY. Economic incentives for EV adoption: A comparative study between the United States and Nigeria. Journal of Advanced Education and Sciences. 2021;1(2):64–74.
- 28. Odunaiya OG, Soyombo OT, Ogunsola OY. Sustainable energy solutions through AI and software engineering: Optimizing resource management in renewable energy systems. Journal of Advanced Education and Sciences. 2022;2(1):26–37.
- 29. Ogbeta C, Mbata A, Katas K. Innovative strategies in community and clinical pharmacy leadership: Advances in healthcare accessibility, patient-centered care, and environmental stewardship. Open Access Research Journal of Science and Technology. 2021;2(2):16–22.
- 30. Ogbuagu OO, Mbata AO, Balogun OD, Oladapo O, Ojo OO, Muonde M. Enhancing biopharmaceutical supply chains: Strategies for efficient drug formulary development in emerging markets. *Biopharmaceutical Supply Chain Management*. 2022;4(3):112-121.
- 31. Ogbuagu OO, Mbata AO, Balogun OD, Oladapo O, Ojo OO, Muonde M. Novel phytochemicals in traditional medicine: Isolation and pharmacological profiling of bioactive compounds. *Journal of Ethnopharmacology*. 2022;6(2):214-230.
- 32. Ogunmokun AS, Balogun ED, Ogunsola KO. A strategic fraud risk mitigation framework for corporate finance cost optimization and loss prevention. *Journal of Corporate Finance and Risk Management*. 2022;5(1):37-49.
- 33. Ogunsola KO, Balogun ED, Ogunmokun AS. Developing an automated ETL pipeline model for enhanced data quality and governance in analytics. *Data Management and Analytics Journal*. 2022;8(4):223-235.
- 34. Oliveira MPV, Handfield R. Analytical foundations for development of real-time supply chain capabilities. *International Journal of Production Research*. 2019;57(5):1571-1589.
- 35. Otokiti BO, Igwe AN, Ewim C, Ibeh AI, Sikhakhane-Nwokediegwu Z. A framework for developing resilient business models for Nigerian SMEs in response to economic disruptions. *International Journal of Multidisciplinary Research and Growth Evaluation*. 2022;3(1):647-659.
- 36. Otokiti BO, Igwe AN, Ewim CP-M, Ibeh AI. Developing a framework for leveraging social media as a strategic tool for growth in Nigerian women entrepreneurs. *International Journal of Multidisciplinary Research and Growth Evaluation*. 2021;2(1):597-607.
- 37. Paul PO, Abbey ABN, Onukwulu EC, Agho MO, Louis N. Integrating procurement strategies for infectious disease control: Best practices from global programs. *Prevention*. 2021;7:9-18.
- 38. Sam-Bulya NJ, Omokhoa HE, Ewim CP-M, Achumie GO. Developing a framework for artificial intelligence-driven financial inclusion in emerging markets. *Journal of Emerging Market Studies*. 2023;9(3):134-145.
- Sanders NR. *Big data driven supply chain management:
 A framework for implementing analytics and turning information into intelligence*. Pearson Education; 2014.
- 40. Sikirat MD. Comprehension analysis of traffic signs by drivers on urban roads in Ilorin, Kwara State.

- *Dissertation, Kwara State University (Nigeria)*. 2022.
- 41. Wang G, Gunasekaran A, Ngai EW, Papadopoulos T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. *International Journal of Production Economics*. 2016;176:98-110.
- 42. Wei C-C, Liang G-S, Wang M-JJ. A comprehensive supply chain management project selection framework under fuzzy environment. *International Journal of Project Management*. 2007;25(6):627-636.
- 43. Zayat W, Senvar O. Framework study for agile software development via scrum and Kanban. *International Journal of Innovation and Technology Management*. 2020;17(4):2030002.