

# International Journal of Multidisciplinary Research and Growth Evaluation.



# The Role of AI in Oil and Gas Supply Chain Optimization

Awodola Olufemi John 1\*, Babatunde Bamidele Oyeyemi 2

- <sup>1</sup> University of Lagos, Nigeria
- <sup>2</sup> Federal Polytechinc Offa, Nigeria
- \* Corresponding Author: Awodola Olufemi John

# **Article Info**

**ISSN (online):** 2582-7138

Volume: 03 Issue: 01

January-February 2022 Received: 06-01-2022 Accepted: 03-02-2022 Page No: 1075-1086

# Abstract

The oil and gas industry is undergoing a revolution in supply chain management through the integration of artificial intelligence (AI) technologies, such as automation, machine learning, and predictive analytics, which are being used more and more to optimize various aspects of the oil and gas supply chain, from exploration and production to transportation and distribution. AI-driven solutions allow for real-time monitoring and data analysis, which enables businesses to predict equipment failures, optimize logistics, and improve the accuracy of demand forecasting. In exploration and production, AI is used to analyze vast amounts of seismic and geological data, which speeds up the identification of possible drilling sites and improves the efficiency of resource extraction. By using machine learning algorithms to forecast reservoir behavior, operators can minimize operational risks and improve drilling methods. AI also plays a key role in pipeline monitoring and maintenance, utilizing sensor data to identify irregularities, reduce downtime, and avert expensive mishaps. AI improves scheduling and routing in distribution and transportation to speed up deliveries and use less fuel. AI-based solutions can also assist with inventory control, guaranteeing the effective distribution of gas and oil supplies throughout international markets. However, despite its enormous potential, the oil and gas industry faces obstacles like data integration, cybersecurity threats, and the need for skilled labor. As AI technologies continue to advance, their role in improving the sustainability and efficiency of oil and gas supply chains will only grow more prominent, leading to more streamlined operations and a reduction in environmental impact. Predictive maintenance powered by AI algorithms helps to prevent delays by identifying potential issues before they lead to costly disruptions.

DOI: <a href="https://doi.org/10.54660/.IJMRGE.2022.3.1.1075-1086">https://doi.org/10.54660/.IJMRGE.2022.3.1.1075-1086</a>

Keywords: Roles, AI, Oil, Gas, Supply chain optimization, Review

### Introduction

With its previously unheard-of potential for efficiency, cost savings, and innovation, artificial intelligence (AI) has become a disruptive force in supply chain management (Kandziora, 2019; Sircar, *et al.*, 2021). Supply chains can operate more intelligently thanks to artificial intelligence (AI), which includes a variety of technologies like robotics, automation, machine learning, and predictive analytics (Helo and Hao, 2022; Modgil *et al.*, 2022). AI is capable of analyzing enormous volumes of data in the context of supply chain management in order to discover inefficiencies, automate procedures, optimize routes, and forecast changes in demand. Businesses may increase productivity and profitability by using these technologies to make better-informed decisions in real time (Helo & Hao, 2022; Koroteev & Tekic, 2021).

Artificial Intelligence is very significant in the oil and gas sector. This industry's supply chain is intricate and frequently experiences significant instability. Oil and gas firms can optimize operations at every level because to AI's capacity to handle

real-time data from various sources, including sensors, GPS, and weather forecasts (Qing, 2021; Choubey and Karmakar 2021). While managing the complexities of an international supply chain, AI-driven solutions assist businesses in minimizing delays, cutting expenses, enhancing safety, and maintaining regulatory compliance. In the oil and gas industry, where operational inefficiencies can lead to large financial losses and operational interruptions, this optimization is crucial (Sircar *et al.*, 2021; Ebrahimi and Bagheri, 2022).

From exploration and extraction to transportation, refinement, distribution, and, finally, delivery to the final customer, the oil and gas supply chain is a huge and complex system. Companies look for and extract oil and gas deposits through exploration and drilling, which is the first step in the supply chain. Following extraction, the resources need to be delivered to refineries via trucks, ships, or pipelines where they are converted into useable goods like jet fuel, diesel, and gasoline (Watts, 2021; Guerin, 2021). After that, a network of wholesalers and retailers distributes these refined goods until they are purchased by customers.

From exploration and extraction to transportation, refinement, distribution, and, finally, delivery to the final customer, the oil and gas supply chain is a huge and complex system. Companies look for and extract oil and gas deposits through exploration and drilling, which is the first step in the supply chain. Following extraction, the resources need to be delivered to refineries via trucks, ships, or pipelines where they are converted into useable goods like jet fuel, diesel, and gasoline (Watts, 2021; Guerin, 2021). After that, a network of wholesalers and retailers distributes these refined goods until they are purchased by customers.

Optimizing the oil and gas supply chain is essential for preserving profitability and competitiveness in light of these difficulties. AI technologies provide a potent tool to solve these inefficiencies and improve supply chain operations because of its capacity to process vast amounts of data and produce insights that can be put to use (Talla, 2022; Volikatla *et al.*, 2022).

Examining how AI technologies are changing the oil and gas supply chain with an emphasis on how they might be able to solve the particular problems facing the sector and improve its many functions is the goal of this review. In order to show how these technologies can greatly improve supply chain performance, the analysis will examine important AI applications, including demand forecasting, inventory optimization, logistics management, and predictive maintenance. The article will illustrate the concrete advantages of using AI in oil and gas supply chains, including cost savings, higher productivity, enhanced sustainability, and safety, by examining real-world instances (An, Wilhelm & Searcy, 2011; Kuang, et al., 2021).

The difficulties of applying AI in the oil and gas industry, such as data quality, integration problems, and the requirement for infrastructure investment, will also be covered in this review. It will also look at the obstacles to AI adoption in developing nations, where advancements may be slowed by a lack of skilled workers and technological constraints.

To this end, this study aims to give readers a thorough grasp of how artificial intelligence (AI) is transforming the oil and gas supply chain, as well as insights into the opportunities and difficulties it poses as well as suggest ways to overcome these obstacles in order to fully utilize AI's potential for operational optimization, by highlighting the role of AI in improving operational efficiency, safety, and sustainability, this underscores the transformative power of AI in modernizing the oil and gas supply chain (Shah, Li & Ierapetritou, 2011; Urciuoli, *et al.*, 2014).

#### Methodology

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology is a structured approach to conducting systematic reviews, aiming to identify, evaluate, and synthesize all relevant research in a particular area. For the topic "The Role of AI in Oil and Gas Supply Chain Optimization," the methodology follows a process to ensure that the review is comprehensive, transparent, and reproducible.

The review begins with the formulation of clear research questions. These questions address key aspects such as the AI technologies currently applied to optimize oil and gas supply chains, the benefits AI brings in areas like operational efficiency, cost reduction, safety, and sustainability, the challenges and barriers faced in AI adoption, and any available case studies that demonstrate the successful implementation of AI in this sector. These research questions guide the selection of studies and the analysis that follows.

Next, relevant information sources are identified. These include academic literature from established databases such as Google Scholar, IEEE Xplore, ScienceDirect, Scopus, and Web of Science, which offer access to peer-reviewed articles and conference papers. Industry reports from companies in the oil and gas sector, such as BP, ExxonMobil, Shell, and the International Energy Agency (IEA), provide insights into real-world applications of AI. Additionally, proceedings from conferences focused on AI, automation, and energy systems are reviewed to capture cutting-edge developments. Government and regulatory documents, including policy papers and guidelines related to AI in energy and supply chains, are also considered.

To ensure the systematic nature of the review, inclusion and exclusion criteria are established. Only studies that focus on AI applications in the optimization of oil and gas supply chains are included. The review prioritizes research on AI techniques like predictive maintenance, route optimization, inventory management, and risk mitigation. Studies that discuss challenges, such as data integration, algorithmic bias, and infrastructure limitations, are also relevant. Exclusion criteria include studies that do not directly address AI's role in the oil and gas supply chain, as well as those that do not provide sufficient methodological transparency or reliable data.

The search process for relevant studies is comprehensive, using specified keywords and terms related to AI, optimization, oil and gas supply chains, and related technologies. Databases and industry-specific sources are searched systematically, ensuring that all potentially relevant studies are included. Duplicate studies across databases are removed, and studies are screened for relevance based on title and abstract before being subjected to full-text review.

Data extraction involves gathering key information from each selected study, including the AI techniques applied, the specific supply chain processes optimized, the reported benefits, and any identified challenges. The extracted data is analyzed to provide an overview of the main trends and findings regarding AI applications in oil and gas supply chains.

Finally, a synthesis of the data is conducted to present a comprehensive understanding of the role of AI in optimizing oil and gas supply chains. This synthesis identifies common themes, patterns, and gaps in the research. The findings are categorized based on AI applications, benefits, challenges, and case studies. The systematic review is then reported transparently, ensuring that the methodology is fully documented, and the findings are presented in a manner that is replicable and accessible to other researchers in the field. This approach ensures that the review captures the full breadth of existing literature, addresses critical gaps, and provides actionable insights for future research, policy development, and industry practice.

#### AI applications in oil and gas supply chains

Changing demand, deteriorating infrastructure, supply chain interruptions, and environmental issues are just a few of the many difficulties facing the oil and gas sector as shown in figure 1. Many businesses are using artificial intelligence (AI) to solve these issues and boost operational effectiveness. Oil and gas supply chains are progressively being optimized through the use of AI technologies including automation, machine learning, and predictive analytics (Dauvergne, 2022; Yue, You & Snyder, 2014). These apps support sustainability objectives, lower expenses, increase productivity, and lessen hazards. Predictive maintenance, demand forecasting and inventory management, route and logistics optimization, real-time monitoring and data analytics, and supply chain risk management are some of the major AI applications in the oil and gas supply chain that are examined in this article.

Predictive maintenance is among the most revolutionary uses

of AI in the oil and gas supply chain. Conventional maintenance procedures frequently depend on planned examinations or reactive fixes for malfunctioning equipment, which results in costly downtime and interruptions to operations. Real-time equipment monitoring is made possible by AI-powered predictive maintenance solutions that gather sensor data and use machine learning algorithms to analyze it (Krishnan, Banga & Mendez-Parra, 2020; Raja Santhi & Muthuswamy, 2022). These instruments are able to spot trends and irregularities that point to possible malfunctions before they happen.

Oil and gas firms can take proactive steps, such arranging repairs or replacing components before a breakdown occurs, by anticipating these problems early (Das Nair & Landani, 2020; Lin, Lin & Wang, 2022). This method has various advantages, including decreased downtime, increased asset longevity, and lower expenses for unscheduled maintenance and emergency repairs. Furthermore, by increasing equipment dependability, predictive maintenance contributes to a more reliable and effective supply chain with fewer production and distribution hiccups (Alam, *et al.*, 2022; Kumar, *et al.*, 2022; Misra, *et al.*, 2020).

Another essential use in supply chains for oil and gas is AI-driven demand forecasting. Preventing overstocking, avoiding stockouts, and improving inventory management all depend on accurate demand forecasts. Particularly in a dynamic sector like oil and gas, traditional demand forecasting techniques frequently rely on historical data and simple statistical models, which might be inadequate in anticipating abrupt changes in demand (Babatunde, 2019; Nahr, Nozari & Sadeghi, 2021; Olukunle, 2013).

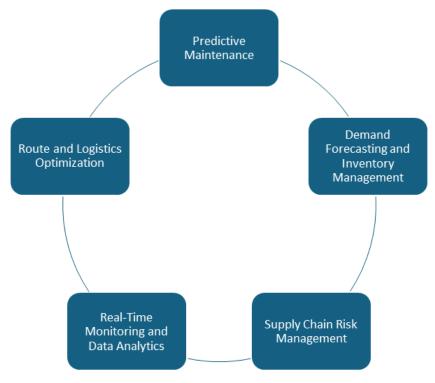



Fig 1: AI Applications in Oil and Gas Supply Chains

Large volumes of historical data, market trends, weather patterns, and geopolitical considerations can all be analyzed by AI algorithms, especially machine learning models, to produce incredibly accurate demand forecasts. Over time, more accurate forecasts are made possible by these AI

models' constant learning and improvement through the incorporation of new data. As a result, companies can align their production, transportation, and storage strategies with anticipated demand, leading to better resource allocation and more efficient inventory management (Chaudhuri, *et al.*,

2018; Stathers & Mvumi, 2020). AI is also essential in avoiding stock level-related supply chain inefficiencies. To avoid stockouts, predictive algorithms, for example, can determine when inventory levels are expected to drop to dangerously low levels and initiate automatic replenishment orders. By precisely forecasting demand spikes, cutting storage expenses, and lowering the possibility of unsold goods, artificial intelligence (AI) can also help prevent overstocking. AI-driven forecasting improves responsiveness and agility in a market where changes in the price of gas and oil can affect demand (Jagtap, *et al.*, 2020; Sibanda & Workneh, 2020).

Because they entail moving massive amounts of goods across great distances, logistics and transportation are essential parts of the oil and gas supply chain. AI-powered route optimization methods can eliminate delays, drastically cut transportation costs, and increase supply chain efficiency overall (Ahiaba, 2019; Hodges, Buzby & Bennett, 2011). These algorithms identify the most effective routes for the delivery of oil, gas, and associated products by analyzing real-time data from traffic, weather, and road conditions.

AI can assist lower the supply chain's carbon footprint in addition to lowering transportation expenses. AI helps the oil and gas industry be more environmentally sustainable by streamlining routes and cutting fuel usage. Delivery scheduling can also be optimized by AI-based solutions, which guarantee the most effective use of transportation resources, cutting down on idle time and delays. AI can also improve safety by keeping an eye on traffic conditions and automatically modifying routes in the event of accidents or extreme weather. This proactive strategy ensures operational continuity and environmental safety by reducing the hazards connected to the transportation of hazardous products like gas and oil (Akande & Diei-Ouadi, 2010; Morris, Kamarulzaman & Morris, 2019).

From exploration to production and distribution, AI is essential to real-time monitoring and data analytics at every stage of the oil and gas supply chain. Businesses can accurately track drilling operations, production processes, and pipeline operations using real-time monitoring (Affognon, et al., 2015; Balana, Aghadi & Ogunniyi, 2022). Businesses may gather enormous volumes of data from machinery, pipelines, and operations by combining artificial intelligence (AI) with Internet of Things (IoT) sensors. Artificial intelligence systems instantly evaluate this data, spotting problems like leaks, obstructions, or equipment failures before they become more serious ones. This capacity is particularly crucial for lowering environmental hazards and averting expensive mishaps like oil spills. In exploration, AI tools can process geological data to identify potential drilling sites, reducing the time and cost of resource extraction (Jarrahi, 2018; Terziyan, Gryshko & Golovianko, 2018).

Moreover, AI enables faster and more informed decision-making by providing decision-makers with real-time insights into operations. This capability allows companies to respond quickly to changing conditions, whether in terms of production output, logistics challenges, or market demand fluctuations, enhancing the resilience and adaptability of the supply chain (Duan, Edwards & Dwivedi, 2019; Korteling, *et al.*, 2021; Tien, 2017).

AI is an effective tool for managing supply chain risk as well. The supply chain for oil and gas is vulnerable to a number of hazards, such as those relating to the environment, politics, and the market. By forecasting possible disruptions through the analysis of historical data, market patterns, geopolitical developments, and environmental issues, artificial intelligence (AI) techniques can assist in identifying and mitigating these risks. AI can foresee how such occurrences may impact supply and demand by evaluating previous data and applying predictive modeling, enabling businesses to modify their strategy appropriately (Javaid, *et al.*, 2022; Lu, 2019; Zhang & Lu, 2021). AI is also capable of assessing environmental hazards that could interfere with operations or transit routes, such as severe weather.

In addition, AI-driven risk management tools can assist in developing contingency plans and mitigation strategies to address potential disruptions. These tools continuously monitor supply chain conditions and provide real-time alerts to decision-makers, enabling them to take immediate corrective actions and reduce the impact of disruptions.

Applications of AI in the oil and gas supply chain are completely changing how businesses run their operations, cut expenses, and boost productivity. AI is revolutionizing the business in a number of ways, including risk management, real-time monitoring, logistics optimization, demand forecasting, and predictive maintenance (Dong, *et al.*, 2020; Tien, *et al.*, 2019). Oil and gas firms may enhance operational performance, guarantee safety, lessen their influence on the environment, and react to market volatility more skillfully by utilizing AI. AI's contribution to supply chain optimization will only grow as it develops, propelling additional gains in productivity, sustainability, and profitability throughout the oil and gas industry.

#### 2.2 Benefits of AI in Oil and Gas Supply Chains

The complexity, high operating expenses, and urgent demand for efficiency and safety are characteristics of the oil and gas sector. AI technologies are becoming more and more important in changing the way oil and gas supply chains function as they develop. Numerous advantages are provided by AI, such as lower costs, increased production and efficiency, better safety and risk mitigation, and improvements in sustainability as shown in figure 2. Oil and gas firms can improve sustainability practices, lower operational risks, and streamline operations while retaining profitability by utilizing AI technologies (Mwangi, 2019; Zohuri & Moghaddam, 2020).

AI has shown itself to be a potent instrument for lowering costs in supply chains for gas and oil. The optimization of logistics is among the most important areas where AI helps reduce costs. In order to minimize fuel consumption and improve delivery times, artificial intelligence (AI) systems examine large datasets to optimize transportation routes for gas, oil, and related items (Ogunyankinnu *et al.*, 2022). In order to cut down on idle time, enhance fleet management, and guarantee that assets are used effectively, these algorithms also help with shipping scheduling.

AI has shown itself to be a potent instrument for lowering costs in supply chains for gas and oil. The optimization of logistics is among the most important areas where AI helps reduce costs. In order to minimize fuel consumption and improve delivery times, artificial intelligence (AI) systems examine large datasets to optimize transportation routes for gas, oil, and related items (Ogunyankinnu *et al.*, 2022). In order to cut down on idle time, enhance fleet management, and guarantee that assets are used effectively, these algorithms also help with shipping scheduling.

AI has a significant impact on the productivity and efficiency of the oil and gas supply chain. Artificial intelligence (AI) algorithms can discover drilling locations, evaluate geological and seismic data, and increase the precision of resource extraction in exploration and production. As a result, drilling operations are more efficient and exploration time is decreased. Drilling parameters can also be optimized by AI-driven systems, which guarantees safer and more effective operations with less resource consumption (Ripperger *et al.*, 2022; Aminzadeh *et al.*, 2022). AI speeds up decision-making and improves operational efficiency by automating processes that would often require human interaction.

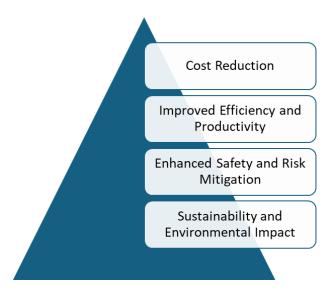



Fig 2: Benefits of AI in Oil and Gas Supply Chains

AI also makes transportation and production more efficient. For instance, by anticipating ideal production circumstances and spotting any bottlenecks in real time, artificial intelligence (AI) can optimize refining operations. AI algorithms are employed in transportation to improve scheduling and routing, which enhances the delivery of gas and oil goods to international markets. The quantity of manual work needed is decreased by automation and AI-based solutions, which also ensure that operations operate smoothly and with fewer inefficiencies (Qrunfleh & Tarafdar, 2014; Wang, *et al.*, 2016).

Furthermore, AI helps in asset management by providing real-time data on the performance of equipment and machinery. This continuous monitoring of asset conditions ensures that productivity is not interrupted due to unplanned maintenance. In turn, this drives higher throughput and enhanced productivity across exploration, production, and transportation (Richey, *et al.*, 2022; Simchi-Levi, Wang & Wei, 2018).

In the oil and gas sector, where dangerous working conditions present serious dangers to employees, machinery, and the environment, safety is crucial. It is impossible to overestimate AI's contribution to safety. Predicting and averting safety issues is one of the main uses of AI in this field. Artificial intelligence (AI) systems examine data from sensors installed in machinery, pipelines, and rigs to track variables like temperature, vibration, and pressure. AI can predict possible hazards, such leaks, explosions, or equipment breakdowns, before they happen by identifying anomalous patterns (Sattari *et al.*, 2021). By using this predictive capabilities, operators can minimize the risk of injury and avert expensive incidents by taking preventive measures.

Furthermore, AI-powered systems are able to continuously evaluate the operational hazards related to drilling, pipeline operations, and the transit of hazardous commodities. AI helps lower the incidence of mishaps and operational disruptions by detecting and mitigating risks early. AI solutions can also help with compliance monitoring, which helps to further reduce risk by guaranteeing that safety standards and regulations are regularly maintained. By offering real-time observation and predictive analysis, artificial intelligence (AI) contributes to the prevention of oil spills, gas leaks, and other dangerous incidents (Danese, Romano & Formentini, 2013; Khalifa, Abd Elghany & Abd Elghany,

Businesses may guarantee that their operations are safer for both employees and the environment by implementing AI-driven risk management techniques. This will ultimately lower the expenses related to accidents, environmental damage, and legal liability (Yaseen, 2021).

The oil and gas industry is not an exception to the growing emphasis on sustainability across businesses globally. Oil and gas supply networks are becoming more environmentally sustainable thanks in large part to artificial intelligence. Optimizing resource utilization is one of the main ways AI supports sustainability. In order to find chances for more effective resource allocation, artificial intelligence (AI) algorithms can track the amount of energy, water, and other resources utilized in drilling, refining, and production operations (Kuang *et al.*, 2021; Choubey and Karmakar, 2021). Businesses can lessen their environmental impact while increasing overall operating efficiency by cutting waste and making the most of the resources at their disposal.

AI helps reduce carbon emissions by streamlining operations and processes. AI algorithms that improve truck scheduling and routing in the transportation sector assist cut down on carbon emissions and fuel usage related to logistical operations. Furthermore, overproduction can be minimized by AI-based systems that forecast changes in demand, which lowers the need for extra energy and transportation.

The capacity of AI to help monitor and manage the environmental impact of the oil and gas industry's operations further supports the sector's drive toward sustainability. To make sure that operations don't go above permissible environmental limitations, AI may evaluate environmental data, including air quality and water contamination levels (Wong *et al.*, 2021; Asha *et al.*, 2022). By incorporating AI in environmental monitoring, companies can ensure compliance with environmental regulations and reduce their overall impact on the ecosystem.

There are several advantages to integrating AI into oil and gas supply chains, including lower costs, increased and efficiency, improved safety. production sustainability. Businesses may optimize operations and cut down on wasteful spending by utilizing AI for real-time monitoring, demand forecasting, predictive maintenance, and logistics optimization. Additionally, a safer workplace results from AI's predictive powers in safety and risk management, and the industry's environmental effect is reduced by its capacity to optimize resource utilization. A more effective, sustainable, and lucrative future for the oil and gas sector will be shaped by AI technologies' growing involvement in revolutionizing the supply chain (Ijeomah, 2020; Qi, et al., 2017).

#### Challenges in implementing ai in oil and gas supply chains

There are several chances for improved safety, cost savings, and operational optimization when artificial intelligence (AI) is included into the oil and gas supply chain. However, a number of obstacles make it difficult for AI to be widely used in this industry. These difficulties include issues with infrastructure and technology, data integration and quality, and ethical and legal considerations. To fully utilize AI in oil and gas supply chain optimization, certain challenges must be overcome (Ochinanwata, 2019; Negi, 2021; Otuoze, Hunt & Jefferson, 2021).

Data quality is one of the biggest obstacles to the effective application of AI in oil and gas supply chains. The precision, comprehensiveness, and timeliness of the data that AI models handle have a significant impact on their efficacy. Data is gathered in the oil and gas industry from a number of sources, such as weather forecasts, pipeline monitoring systems, drilling equipment sensors, and logistical tracking systems (Mysorewala *et al.*, 2022). However, there are frequently gaps, inaccuracies, and contradictions in this data. The acquired data is frequently unstructured or incomplete, which makes it challenging for AI systems to evaluate and extract valuable insights.

Data integration is a barrier in addition to problems with data quality. There are several legacy systems in use in the oil and gas sector, and each one gathers various kinds of data. It takes a lot of work and resources to integrate these various systems into a single platform that can run AI applications. For many oil and gas organizations, achieving seamless data integration is a major problem that frequently necessitates large expenditures in technology and experience to align systems across all stages of the supply chain (Olayinka, 2021; Badgujar, 2022).

AI implementation also faces substantial infrastructure and technology barriers. The development of AI-driven solutions often requires a substantial upfront investment in hardware, software, and specialized personnel. Many oil and gas companies operate in resource-heavy environments, such as remote offshore platforms or difficult-to-reach drilling sites, where the infrastructure required to support AI is either nonexistent or insufficient (Ezenwa, 2019; Otokiti, et al., 2022). There are problems with data integration in addition to data quality. Numerous legacy systems that gather various kinds of data are used in the oil and gas sector. The process of combining these various technologies into a single platform that can accommodate AI applications is difficult and resource-intensive. Many oil and gas firms face a huge problem in achieving seamless data integration, which frequently necessitates large expenditures in technology and experience to align systems across all stages of the supply chain (Olayinka, 2021; Badgujar, 2022).

AI implementation in the oil and gas sector also raises important regulatory and ethical concerns. Due to the high-risk nature of the industry particularly concerning environmental impacts, worker safety, and national security there is a need for comprehensive regulatory frameworks that guide the use of AI technologies. In many regions, the regulatory landscape for AI in the oil and gas sector is still developing, which presents a challenge for companies seeking to implement AI solutions in compliance with local laws.

The use of AI in supply chain decision-making raises additional ethical questions. Often referred to as "black boxes," AI systems are capable of making judgments based

on enormous datasets without providing a clear explanation of the process. A lack of transparency in AI decision-making could be problematic in a high-stakes setting like the oil and gas industry, where choices can have significant effects on safety, the environment, and financial performance (Akang, et al., 2019; Oyewola, et al., 2022) This makes explicit accountability procedures necessary to guarantee that AI systems are monitored and that businesses are held accountable for the results of decisions made using AI.

Furthermore, the extensive use of AI may result in employment displacement in the oil and gas industry. AI-driven automation has the potential to increase productivity, but it may also result in the loss of some manual occupations, especially those that involve regular maintenance, transportation, and monitoring. This brings moral questions regarding the effects on the labor force, especially in areas where jobs in the oil and gas sector account for a sizeable share of the national economy (Talla, 2022). In order to ensure that the workforce is properly retrained and that the financial advantages of AI are shared equitably, governments and businesses must carefully examine the ethical implications of adopting AI.

Artificial Intelligence (AI) has enormous potential to optimize operations, save costs, and increase safety in oil and gas supply chains. However, for AI to be successfully applied in the industry, issues with infrastructure constraints, data integration and quality issues, and ethical and legal considerations must be resolved. It will take large expenditures in workforce training, policy creation, and technology to overcome these obstacles, in addition to a dedication to moral standards that guarantee the proper application of AI (Mukhuty *et al.*, 2022). To fully realize AI's promise in revolutionizing oil and gas supply chains, these obstacles must be removed as the sector develops.

2.4 Future Prospects of AI in Oil and Gas Supply Chain Optimization

With the ongoing incorporation of artificial intelligence (AI) into supply chain processes, the oil and gas sector is poised for a revolutionary change. As AI technologies advance, their use in the oil and gas industry will promote sustainability, increase safety, optimize supply chains, and boost overall operational efficiency. AI has bright future potential in the sector, especially when combined with the Internet of Things (IoT), robotic process automation (RPA), sustainability-focused projects, and new developments in machine learning methods. These advancements have the potential to influence the direction of the sector, improving its effectiveness and adaptability in a world that is changing quickly (Ramdoo, *et al.*, 2021; Talla, 2022).

One of the most important upcoming advancements in oil and gas supply chain optimization is the combination of artificial intelligence (AI) with robotic process automation (RPA) and the Internet of Things (IoT). The Internet of Things creates massive networks that produce real-time data by connecting devices, sensors, and equipment across the supply chain. This data becomes actionable insight when paired with AI, which can lead to more intelligent choices and effective procedures. By continuously assessing the condition of assets and anticipating possible problems, AI-powered IoT systems will make predictive maintenance possible. By putting these technologies in place, businesses may prolong the life of their equipment, cut maintenance expenses, and drastically minimize unscheduled downtime—all of which improve supply chain operations.

AI and robotic process automation (RPA) can also be combined to expedite a number of operational procedures, including order processing, inventory management, and documentation. While AI can optimize the decision-making involved in repetitive tasks like data input and invoicing, RPA can automate these procedures, leading to speedier, error-free operations. The oil and gas sector will eventually benefit from smarter, more autonomous supply chains thanks to the integration of IoT, AI, and RPA, which will decrease the need for manual intervention and increase operational efficiency (Belot, 2020; West, Kraut & Ei Chew, 2019).

AI has the potential to be a key factor in accelerating the oil and gas sector's shift to more environmentally friendly energy methods as pressure mounts. Minimizing the environmental impact of its operations and lowering its carbon footprint are two of the industry's top environmental priorities. By increasing the effectiveness of resource extraction, refinement, transportation, and energy utilization along the supply chain, artificial intelligence (AI) can support sustainability. Artificial intelligence (AI) can spot energysaving opportunities that would otherwise go overlooked by examining operational variables and historical data. Additionally, by streamlining transportation routes and scheduling, artificial intelligence (AI) can lower fuel consumption in logistics and the greenhouse gas emissions linked to the transportation of goods, gas, and oil (Olanipekun, Ilori & Ibitoye, 2020).

Additionally, AI can make it easier to track environmental performance throughout the supply chain. Large volumes of data from sensors placed in pipelines, processing facilities, and oil rigs can be processed by machine learning algorithms, allowing for real-time monitoring of environmental indicators such as soil contamination, water and air quality, and others. By taking a proactive approach to environmental monitoring, businesses may reduce the danger of environmental catastrophes like oil spills and guarantee adherence to environmental standards (Kolade, et al., 2021). Furthermore, by maximizing the integration of alternative energy production techniques with oil and gas operations, artificial intelligence (AI) has promise for assisting the shift to renewable energy sources (Ilori & Olanipekun, 2020; Koroteev and Tekic, 2021. AI can assist businesses in finding potential for hybrid energy solutions by evaluating data from both conventional and renewable energy sources. This can lessen dependency on fossil fuels and facilitate a more seamless shift to more sustainable energy practices.

In the future, developments in artificial intelligence and machine learning methods will improve AI's capacity to optimize supply chains for gas and oil. New approaches to operational optimization, decision-making, and supply chain efficiency are provided by emerging technologies such as deep learning, reinforcement learning, and advanced analytics.

Neural networks capable of processing vast volumes of unstructured data, including images and sensor data, are used in deep learning, a subset of machine learning (Ajibola & Olanipekun, 2019, Olanipekun & Ayotola, 2019). Deep learning could be applied in the oil and gas industry to tasks like detecting anomalies in real-time monitoring data from sensors or identifying possible drilling locations from seismic imagery. Predictive analytics will be improved by this technology, allowing for quicker decision-making and more precise forecasts.

Another exciting development in AI that may be used to

improve supply chain efficiency is reinforcement learning. By using the results of past actions, reinforcement learning algorithms enable machines to learn from trial and error and make decisions that get better over time. Reinforcement learning could be applied to supply chains to improve route planning and inventory management by continuously modifying tactics in response to shifting circumstances (Olanipekun, 2020).

Furthermore, AI-powered advanced analytics will enable oil and gas firms to examine enormous datasets, offering insightful information on how well supply chain activities are performing. More precise demand forecasting, improved resource management, and the discovery of operational inefficiencies will all be made possible by predictive models that make use of sophisticated analytics (Ogunyankinnu, *et al.*, 2022, Kolade, *et al.*, 2022). By providing real-time insights into variables like market swings, legislative changes, and outside disturbances, AI-driven advanced analytics may also aid in decision-making and guarantee that oil and gas firms can promptly and efficiently adjust to shifting market conditions.

With significant potential to revolutionize operations, enhance sustainability, and save costs, artificial intelligence has a bright future in oil and gas supply chain optimization. The industry will be able to optimize everything from logistical management to predictive maintenance by combining AI with IoT and robotic process automation, increasing productivity and safety. As the oil and gas business looks to strike a balance between environmental responsibility and profitability, AI's role in promoting sustainability and lessening the sector's environmental effect will only grow more important (Olanipekun, Ilori & Ibitoye, 2020). More intelligent decision-making, real-time insights, and more flexible supply chain operations will also be made possible by developments in machine learning techniques, such as deep learning and reinforcement learning (Francis Onotole, et al., 2022). As these technologies continue to evolve, they will play a pivotal role in shaping a more efficient, sustainable, and resilient oil and gas supply chain for the future.

#### 2.5 Policy and Strategic Recommendations

Policies and strategies that support the efficient and responsible deployment of artificial intelligence (AI) are crucial as the oil and gas sector increasingly uses AI to optimize its supply chains. To overcome obstacles and realize AI's full potential in the oil industry, governments, oil corporations, and international organizations must cooperate. With an emphasis on AI adoption frameworks, investment in AI and talent development, and international cooperation on AI standards, this article provides a number of strategic and policy recommendations that can aid in directing the integration of AI into oil and gas supply chains (Pentyala, 2022).

The creation of thorough AI adoption frameworks is one of the first measures governments and oil firms can take to properly utilize AI. These frameworks ought to provide as a roadmap for the incremental incorporation of AI technology into current supply chain processes, guaranteeing compliance with legal and industry norms. Governments and industry stakeholders should work together to develop precise, implementable regulations that outline the goals, schedules, and best practices for the use of AI (Androutsopoulou, et sl., 2019; De Almeida, dos Santos & Farias, 2021).

These frameworks ought to contain rules pertaining to

cybersecurity, data protection, and AI transparency. Frameworks for adopting AI must address safety issues and environmental dangers related to AI-driven decision-making, given the vital role that oil and gas supply chains play. To guarantee that AI systems implemented in the industry follow stringent accountability guidelines and are intended to raise operational effectiveness and safety standards, governments should collaborate with regulatory agencies (Falco *et al.*, 2021; Mökander *et al.*, 2022).

Furthermore, frameworks must to support staggered deployment, beginning with pilot projects in supply chain segments that are less crucial. This makes it possible to test and improve AI programs prior to their widespread use. Adoption of AI must improve the supply chain rather than interfere with it. Furthermore, by encouraging cross-sector collaboration, industry-wide frameworks can minimize risks and boost innovation.

Significant investment in AI research and development is essential to the effective integration of AI technology in oil and gas supply chains. Governments and oil firms need to understand that using AI in this industry requires a sustained dedication to innovation. Partnerships between the public and commercial sectors are essential for promoting investments in AI technologies, including AI-driven inventory optimization, machine learning algorithms for predictive maintenance, and logistics and transportation automation (Achumie *et al.*, 2022; Kolade, *et al.*, 2021).

Oil businesses should spend money on educating and developing people who can install and maintain AI systems in addition to investing in AI technologies. Companies and governments should partner with academic institutions to create educational programs that emphasize artificial intelligence (AI), data science, and engineering with applications in the oil and gas industry in order to cultivate a qualified workforce. These programs have to focus on giving experts the know-how to manage and enhance AI systems in the workplace, guaranteeing a steady supply of skilled workers for the sector (Olanipekun, Ilori & Ibitoye, 2020). Furthermore, funding for AI and talent development ought to go beyond just technical expertise. Additionally, emphasis should be placed on soft skills like ethics, flexibility, and critical thinking. This guarantees that AI experts are aware of the ethical ramifications of their choices in addition to how to use AI tools. Through grants, subsidies, and scholarships, governments can encourage the development of talent, opening doors for underrepresented groups to enter the sector and add to the industry's diversity of ideas and inventiveness (Davenport et al., 2022; Taylor et al., 2022).

International cooperation on AI standards is crucial as AI becomes a crucial component of global supply chains in order to guarantee the moral and responsible application of these technologies. One of the biggest obstacles to the fair application of AI in oil and gas supply chains is the absence of international agreement on laws. Different nations may take different stances when it comes to regulating AI, which could result in disjointed procedures and uneven standards. This may make it more difficult for multinational corporations to use AI systems internationally and make the global supply chain more complex (Al-Besher & Kumar, 2022; Taeihagh, 2021).

International organizations like the World Economic Forum (WEF), the United Nations (UN), and the International Organization for Standardization (ISO) should work with governments and businesses to create common AI standards

in order to address this. Important topics like algorithmic transparency, data protection, and responsibility in AI decision-making should all be covered by these standards. Globally accepted frameworks, for instance, might set guidelines for data exchange, guaranteeing that information utilized in AI applications is correct, safe, and complies with local privacy laws (Gianni, Lehtinen & Nieminen, 2022; Kankanhalli, Charalabidis & Mellouli, 2019).

This international cooperation must also take ethics into account. Fairness must be considered while designing AI systems for oil and gas supply chains to prevent biased decisions that can disproportionately impact underserved groups or habitats. International regulations should make sure AI doesn't make inequality worse, especially in developing nations where adoption of AI can be more difficult because of gaps in technology infrastructure (Chan *et al.*, 2021; Olanipekun, 2020).

Global cooperation will also aid in the harmonization of AI governance standards, which will lessen the regulatory load on multinational oil and gas firms. Governments can promote innovation and reduce dangers related to the deployment of AI by establishing shared standards. Furthermore, such cooperation will improve nations' and businesses' capacity to address new ethical conundrums, such those involving automation-related job displacement or the environmental effects of AI-driven decisions (Truby, 2020; Yigitcanlar, Mehmood & Corchado, 2021).

A multifaceted strategy is needed to properly reap the benefits of AI in oil and gas supply chains. To guarantee the responsible and efficient use of AI technology, governments, oil companies, and international organizations must collaborate to develop AI adoption frameworks. Building the infrastructure and knowledge required for AI integration requires investment in AI research and talent development (Djeffal, Siewert & Wurster, 2022; Yigitcanlar, et al., 2021). Lastly, international cooperation on AI standards will aid in the development of uniform data privacy policies, ethical standards, and regulatory procedures that can direct the application of AI in the global supply chain for oil and gas. In a technology environment that is changing quickly, the oil and gas sector can increase sustainability, increase efficiency, and optimize supply chain operations by implementing these strategic recommendations (Elijah et al., 2021; Francis Onotole, et al., 2022).

# Conclusion

With its many advantages in areas including demand forecasting, logistics optimization, predictive maintenance, and real-time data analysis, artificial intelligence (AI) is revolutionizing the optimization of oil and gas supply chains. The oil and gas sector has improved safety and environmental sustainability while lowering costs, increasing operating efficiency, and reducing risks by utilizing AI's capabilities. Businesses are increasing the robustness of their supply chains, optimizing their operations, and enhancing asset management with AI-driven technology.

There are several advantages to AI. Improved logistics, predictive maintenance, and effective inventory management have all helped to reduce costs, which has increased business profitability. Automation and improved decision-making have increased efficiency by lowering operational errors and manual labor. Additionally, with AI systems anticipating equipment faults and other safety concerns before they worsen, safety and risk mitigation are greatly enhanced.

Regarding sustainability, the oil and gas industry is in line with international sustainability targets thanks to AI's capacity to optimize energy use and lower carbon emissions. However, challenges remain, particularly around data privacy and security, the integration of AI with legacy systems, and the need for regulatory frameworks to ensure responsible AI deployment. The industry must navigate these obstacles while ensuring that AI technologies are deployed ethically and transparently.

AI has enormous potential for the oil and gas sector going forward. The industry will see even more optimization as deep learning, reinforcement learning, and IoT integration technologies develop further, allowing for more sustainable practices and intelligent decision-making. Long-term benefits of AI's continuous development include increased productivity, more cost savings, and a more robust and sustainable supply chain. AI will therefore be essential to the oil and gas industry's future, guaranteeing its transition towards increased sustainability and efficiency, in addition to being a major enabler for operations now.

#### References

- Achumie GO, Oyegbade IK, Igwe AN, Ofodile OC, Azubuike C. AI-driven predictive analytics model for strategic business development and market growth in competitive industries. Journal of Business Innovation and Technology Research. 2022.
- 2. Affognon H, Mutungi C, Sanginga P, Borgemeister C. Unpacking postharvest losses in sub-Saharan Africa: a meta-analysis. World Development. 2015;66:49-68.
- 3. Ahiaba UV. The Role of Grain Storage Systems in Food Safety, Food Security and Rural Development in Northcentral Nigeria [dissertation]. Gloucestershire: University of Gloucestershire; 2019.
- 4. Ajibola KA, Olanipekun BA. Effect of access to finance on entrepreneurial growth and development in Nigeria among "YOU WIN" beneficiaries in SouthWest, Nigeria. Ife Journal of Entrepreneurship and Business Management. 2019;3(1):134-149.
- 5. Akande B, Diei-Ouadi Y. Post-harvest losses in small-scale fisheries. Rome: Food and Agriculture Organization of the United Nations; 2010.
- Akang VI, Afolayan MO, Iorpenda MJ, Akang JV. Industrialization Of The Nigerian Economy: The Imperatives Of Imbibing Artificial Intelligence And Robotics For National Growth And Development. Proceedings of: 2nd International Conference of the IEEE Nigeria. 2019:265.
- 7. Alam MA, Ahad A, Zafar S, Tripathi G. A neoteric smart and sustainable farming environment incorporating blockchain-based artificial intelligence approach. Cryptocurrencies and Blockchain Technology Applications. 2020:197-213.
- 8. Al-Besher A, Kumar K. Use of artificial intelligence to enhance e-government services. Measurement: Sensors. 2022;24:100484.
- 9. Aminzadeh F, Temizel C, Hajizadeh Y. Artificial Intelligence and Data Analytics for Energy Exploration and Production. Hoboken: John Wiley & Sons; 2022.
- 10. An H, Wilhelm WE, Searcy SW. Biofuel and petroleum-based fuel supply chain research: a literature review. Biomass and Bioenergy. 2011;35(9):3763-3774.
- 11. Androutsopoulou A, Karacapilidis N, Loukis E, Charalabidis Y. Transforming the communication

- between citizens and government through AI-guided chatbots. Government Information Quarterly. 2019;36(2):358-367.
- 12. Aryai V, Abbassi R, Abdussamie N, Salehi F, Garaniya V, Asadnia M, *et al.* Reliability of multi-purpose offshore-facilities: Present status and future direction in Australia. Process Safety and Environmental Protection. 2021;148:437-461.
- 13. Asha P, Natrayan LB, Geetha BT, Beulah JR, Sumathy R, Varalakshmi G, *et al.* IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environmental Research. 2022;205:112574.
- 14. Babatunde AI. Impact of supply chain in reducing fruit post-harvest waste in agric value chain in Nigeria. Electronic Research Journal of Social Sciences and Humanities. 2019;1:150-163.
- 15. Badgujar P. Streamlining Data Integration for Organizational Agility: Overcoming Challenges and Harnessing Technology. Journal of Technological Innovations. 2022;3(4).
- Balana BB, Aghadi CN, Ogunniyi AI. Improving livelihoods through postharvest loss management: evidence from Nigeria. Food Security. 2022;14(1):249-265.
- 17. Belot ST. The state and impact of the Fourth Industrial Revolution on economic development [dissertation]. 2020.
- Chan A, Okolo CT, Terner Z, Wang A. The limits of global inclusion in AI development. arXiv preprint arXiv:2102.01265. 2021.
- 19. Chaudhuri A, Dukovska-Popovska I, Subramanian N, Chan HK, Bai R. Decision-making in cold chain logistics using data analytics: a literature review. The International Journal of Logistics Management. 2018;29(3):839-861.
- 20. Choubey S, Karmakar GP. Artificial intelligence techniques and their application in oil and gas industry. Artificial Intelligence Review. 2021;54(5):3665-3683.
- 21. Danese P, Romano P, Formentini M. The impact of supply chain integration on responsiveness: The moderating effect of using an international supplier network. Transportation Research Part E: Logistics and Transportation Review. 2013;49(1):125-140.
- Das Nair R, Landani N. Making agricultural value chains more inclusive through technology and innovation. WIDER working paper 2020/38. Helsinki: UNU-WIDER; 2020.
- 23. Dauvergne P. Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Review of International Political Economy. 2022;29(3):696-718.
- 24. Davenport D, Alvarez AA, Natesan S, Caldwell MT, Gallegos M, Landry A, *et al.* Faculty recruitment, retention, and representation in leadership: An evidence-based guide to best practices for diversity, equity, and inclusion from the Council of Residency Directors in Emergency Medicine. Western Journal of Emergency Medicine. 2022;23(1):62.
- De Almeida PGR, dos Santos CD, Farias JS. Artificial intelligence regulation: a framework for governance. Ethics and Information Technology. 2021;23(3):505-525.
- 26. Djeffal C, Siewert MB, Wurster S. Role of the state and responsibility in governing artificial intelligence: a

- comparative analysis of AI strategies. Journal of European Public Policy. 2022;29(11):1799-1821.
- 27. Dlamini T, Vilakati S. Remote and rural connectivity: Infrastructure and resource sharing principles. Wireless Communications and Mobile Computing. 2021;2021(1):6065119.
- 28. Dong Y, Hou J, Zhang N, Zhang M. Research on how human intelligence, consciousness, and cognitive computing affect the development of artificial intelligence. Complexity. 2020;2020(1):1680845.
- 29. Duan Y, Edwards JS, Dwivedi YK. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management. 2019;48:63-71.
- 30. Ebrahimi SB, Bagheri E. Optimizing profit and reliability using a bi-objective mathematical model for oil and gas supply chain under disruption risks. Computers & Industrial Engineering. 2022;163:107849.
- 31. Elijah O, Ling PA, Rahim SKA, Geok TK, Arsad A, Kadir EA, *et al.* A survey on industry 4.0 for the oil and gas industry: upstream sector. IEEE Access. 2021;9:144438-144468.
- 32. Ezenwa AE. Smart logistics diffusion strategies amongst supply chain networks in emerging markets: a case of Nigeria's micro/SMEs 3PLs [dissertation]. Leeds: University of Leeds; 2019.
- 33. Falco G, Shneiderman B, Badger J, Carrier R, Dahbura A, Danks D, *et al.* Governing AI safety through independent audits. Nature Machine Intelligence. 2021;3(7):566-571.
- 34. Francis Onotole E, Ogunyankinnu T, Adeoye Y, Osunkanmibi AA, Aipoh G, Egbemhenghe J. The Role of Generative AI in developing new Supply Chain Strategies-Future Trends and Innovations. 2022.
- 35. Gianni R, Lehtinen S, Nieminen M. Governance of responsible AI: From ethical guidelines to cooperative policies. Frontiers in Computer Science. 2022;4:873437.
- 36. Guerin T. How to work with petroleum hydrocarbon suppliers to reduce and eliminate contaminated site management and cleanup requirements. Remediation Journal. 2021;31(2):47-59.
- 37. Helo P, Hao Y. Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control. 2022;33(16):1573-1590.
- 38. Hodges RJ, Buzby JC, Bennett B. Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. The Journal of Agricultural Science. 2011;149(S1):37-45.
- 39. Ijeomah S. Challenges of supply chain management in the oil & gas production in Nigeria (Shell Petroleum Development Company of Nigeria) [dissertation]. Dublin: National College of Ireland; 2020.
- 40. Ilori MO, Olanipekun SA. Effects of government policies and extent of its implementations on the foundry industry in Nigeria. IOSR Journal of Business Management. 2020;12(11):52-59.
- 41. Jagtap S, Bader F, Garcia-Garcia G, Trollman H, Fadiji T, Salonitis K. Food logistics 4.0: Opportunities and challenges. Logistics. 2020;5(1):2.
- 42. Jarrahi MH. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons. 2018;61(4):577-586.
- 43. Javaid M, Haleem A, Singh RP, Suman R. Artificial

- intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management. 2022;7(01):83-111.
- 44. Kandziora C. Applying artificial intelligence to optimize oil and gas production. Offshore Technology Conference. 2019:D021S016R002.
- 45. Kankanhalli A, Charalabidis Y, Mellouli S. IoT and AI for smart government: A research agenda. Government Information Quarterly. 2019;36(2):304-309.
- 46. Khalifa N, Abd Elghany M, Abd Elghany M. Exploratory research on digitalization transformation practices within supply chain management context in developing countries specifically Egypt in the MENA region. Cogent Business & Management. 2021;8(1):1965459.
- 47. Kolade O, Osabuohien E, Aremu A, Olanipekun KA, Osabohien R, Tunji-Olayeni P. Co-creation of entrepreneurship education: challenges and opportunities for university, industry and public sector collaboration in Nigeria. The Palgrave Handbook of African Entrepreneurship. 2021:239-265.
- 48. Kolade O, Rae D, Obembe D, Woldesenbet K, editors. The Palgrave handbook of African entrepreneurship. Cham: Palgrave Macmillan; 2022.
- 49. Koroteev D, Tekic Z. Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future. Energy and AI. 2021;3:100041.
- 50. Korteling JH, van de Boer-Visschedijk GC, Blankendaal RA, Boonekamp RC, Eikelboom AR. Human-versus artificial intelligence. Frontiers in Artificial Intelligence. 2021;4:622364.
- 51. Krishnan A, Banga K, Mendez-Parra M. Disruptive technologies in agricultural value chains. Insights from East Africa. Working paper. 2020;576.
- 52. Kuang L, Liu H, Ren Y, Luo K, Shi M, Su J, *et al.* Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development. 2021;48(1):1-14.
- 53. Kumar D, Singh RK, Mishra R, Wamba SF. Applications of the internet of things for optimizing warehousing and logistics operations: A systematic literature review and future research directions. Computers & Industrial Engineering. 2022;171:108455.
- 54. Lin H, Lin J, Wang F. An innovative machine learning model for supply chain management. Journal of Innovation & Knowledge. 2022;7(4):100276.
- 55. Lu Y. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics. 2019;6(1):1-29.
- 56. Misra NN, Dixit Y, Al-Mallahi A, Bhullar MS, Upadhyay R, Martynenko A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal. 2020;9(9):6305-6324.
- 57. Modgil S, Singh RK, Hannibal C. Artificial intelligence for supply chain resilience: learning from Covid-19. The International Journal of Logistics Management. 2022;33(4):1246-1268.
- 58. Mökander J, Axente M, Casolari F, Floridi L. Conformity assessments and post-market monitoring: a guide to the role of auditing in the proposed European AI regulation. Minds and Machines. 2022;32(2):241-268.
- 59. Morris KJ, Kamarulzaman NH, Morris KI. Small-scale postharvest practices among plantain farmers and

- traders: A potential for reducing losses in rivers state, Nigeria. Scientific African. 2019;4:e00086.
- 60. Mukhuty S, Upadhyay A, Rothwell H. Strategic sustainable development of Industry 4.0 through the lens of social responsibility: The role of human resource practices. Business Strategy and the Environment. 2022;31(5):2068-2081.
- 61. Mwangi NW. Influence of supply chain optimization on the performance of manufacturing firms in Kenya [dissertation]. Nairobi: JKUAT-COHRED; 2019.
- 62. Mysorewala MF, Cheded L, Aliyu A. Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks. Renewable and Sustainable Energy Reviews. 2022;157:112046.
- 63. Nahr JG, Nozari H, Sadeghi ME. Green supply chain based on artificial intelligence of things (AIoT). International Journal of Innovation in Management, Economics and Social Sciences. 2021;1(2):56-63.
- 64. Negi S. Supply chain efficiency framework to improve business performance in a competitive era. Management Research Review. 2021;44(3):477-508.
- Ochinanwata NH. Integrated business modelling for developing digital internationalising firms in Nigeria [dissertation]. Sheffield: Sheffield Hallam University; 2019.
- 66. Ogunyankinnu T, Onotole EF, Osunkanmibi AA, Adeoye Y, Aipoh G, Egbemhenghe J. Blockchain and AI synergies for effective supply chain management. 2022.
- 67. Olanipekun KA. Assessment of Factors Influencing the Development and Sustainability of Small Scale Foundry Enterprises in Nigeria: A Case Study of Lagos State. Asian Journal of Social Sciences and Management Studies. 2020;7(4):288-294.
- 68. Olanipekun KA, Ayotola A. Introduction to marketing. GES 301, Centre for General Studies (CGS), University of Ibadan; 2019.
- 69. Olanipekun KA, Ilori MO, Ibitoye SA. Effect of Government Policies and Extent of Its Implementation on the Foundry Industry in Nigeria. 2020.
- 70. Olayinka OH. Big data integration and real-time analytics for enhancing operational efficiency and market responsiveness. International Journal of Scientific Research in Archives. 2021;4(1):280-296.
- 71. Olukunle OT. Challenges and prospects of agriculture in Nigeria: the way forward. Journal of Economics and Sustainable Development. 2013;4(16):37-45.
- 72. Otokiti BO, Igwe AN, Ewim CP, Ibeh AI, Sikhakhane-Nwokediegwu Z. A framework for developing resilient business models for Nigerian SMEs in response to economic disruptions. International Journal of Multidisciplinary Research and Growth Evaluation. 2022;3(1):647-659.
- 73. Otuoze SH, Hunt DV, Jefferson I. Neural network approach to modelling transport system resilience for major cities: case studies of lagos and kano (Nigeria). Sustainability. 2021;13(3):1371.
- 74. Oyewola DO, Dada EG, Omotehinwa TO, Emebo O, Oluwagbemi OO. Application of deep learning techniques and bayesian optimization with tree parzen estimator in the classification of supply chain pricing datasets of health medications. Applied Sciences. 2022;12(19):10166.
- 75. Pentyala DK. Enhancing Supply Chain Management in The Oil and Gas Industry Through Digital

- Transformation of ERP Systems. International Journal of Acta Informatica. 2022;1(1):96-115.
- 76. Qi Y, Huo B, Wang Z, Yeung HYJ. The impact of operations and supply chain strategies on integration and performance. International Journal of Production Economics. 2017;185:162-174.
- 77. Qing W. Global practice of AI and big data in oil and gas industry. In: Machine learning and data science in the oil and gas industry. Gulf Professional Publishing; 2021. p. 181-210.
- 78. Qrunfleh S, Tarafdar M. Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics. 2014;147:340-350.
- 79. Raja Santhi A, Muthuswamy P. Pandemic, war, natural calamities, and sustainability: Industry 4.0 technologies to overcome traditional and contemporary supply chain challenges. Logistics. 2022;6(4):81.
- 80. Ramdoo I, Cosbey A, Geipel J, Toledano P. New Tech, New Deal: Mining policy options in the face of new technology. 2021.
- 81. Richey RG, Roath AS, Adams FG, Wieland A. A responsiveness view of logistics and supply chain management. Journal of Business Logistics. 2022;43(1):62-91.
- 82. Ripperger G, Peisker J, Oberschmidleitner P, Kucs RJW, Winkler D. Safer and Faster Drilling through AI Driven Permanent Cuttings Monitoring-An Operator's Approach. Abu Dhabi International Petroleum Exhibition and Conference. 2022:D041S116R004.
- 83. Sattari F, Macciotta R, Kurian D, Lefsrud L. Application of Bayesian network and artificial intelligence to reduce accident/incident rates in oil & gas companies. Safety Science. 2021;133:104981.
- 84. Shah NK, Li Z, Ierapetritou MG. Petroleum refining operations: key issues, advances, and opportunities. Industrial & Engineering Chemistry Research. 2011;50(3):1161-1170.
- 85. Sibanda S, Workneh TS. Potential causes of postharvest losses, low-cost cooling technology for fresh produce farmers in Sub-Sahara Africa. African Journal of Agricultural Research. 2020;16(5):553-566.
- 86. Simchi-Levi D, Wang H, Wei Y. Increasing supply chain robustness through process flexibility and inventory. Production and Operations Management. 2018;27(8):1476-1491.
- 87. Sircar A, Yadav K, Rayavarapu K, Bist N, Oza H. Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research. 2021;6(4):379-391.
- 88. Stathers T, Mvumi B. Challenges and initiatives in reducing postharvest food losses and food waste: sub-Saharan Africa. In: Preventing food losses and waste to achieve food security and sustainability. Burleigh Dodds Science Publishing; 2020. p. 729-786.
- 89. Taeihagh A. Governance of artificial intelligence. Policy and Society. 2021;40(2):137-157.
- 90. Talla RR. Integrating Blockchain and AI to Enhance Supply Chain Transparency in Energy Sectors. Asia Pacific Journal of Energy and Environment. 2022;9(2):109-118.
- 91. Taylor KJ, Ford L, Allen EH, Mitchell F, Eldridge M, Alvarez Caraveo C. Improving and Expanding Programs to Support a Diverse Health Care Workforce. 2022.

- 92. Terziyan V, Gryshko S, Golovianko M. Patented intelligence: Cloning human decision models for Industry 4.0. Journal of Manufacturing Systems. 2018;48:204-217.
- 93. Tien JM. Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science. 2017;4:149-178.
- 94. Tien NH, Anh DBH, Thuc TD. Global supply chain and logistics management. 2019.
- 95. Truby J. Governing artificial intelligence to benefit the UN sustainable development goals. Sustainable Development. 2020;28(4):946-959.
- 96. Urciuoli L, Mohanty S, Hintsa J, Gerine Boekesteijn E. The resilience of energy supply chains: a multiple case study approach on oil and gas supply chains to Europe. Supply Chain Management: An International Journal. 2014;19(1):46-63.
- 97. Volikatla H, Thomas J, Gondi K, Indugu VVR, Bandaru VKR. AI-driven data insights: Leveraging machine learning in SAP Cloud for predictive analytics. International Journal of Digital Innovation. 2022;3(1).
- 98. Wang G, Gunasekaran A, Ngai EW, Papadopoulos T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics. 2016;176:98-110.
- 99. Watts MJ. Hyper-extractivism and the global oil assemblage. In: Our extractive age: Expressions of violence and resistance. 2021. p. 207-248.
- 100. West M, Kraut R, Ei Chew H. I'd blush if I could: closing gender divides in digital skills through education. UNESCO: 2019.
- 101.Wong WY, Al-Ani AKI, Hasikin K, Khairuddin AS, Razak SA, Hizaddin HF, *et al.* Water, soil and air pollutants' interaction on mangrove ecosystem and corresponding artificial intelligence techniques used in decision support systems-a review. IEEE Access. 2021;9:105532-105563.
- 102. Yaseen A. Reducing industrial risk with AI and automation. International Journal of Intelligent Automation and Computing. 2021;4(1):60-80.
- 103. Yigitcanlar T, Corchado JM, Mehmood R, Li RYM, Mossberger K, Desouza K. Responsible urban innovation with local government artificial intelligence (AI): A conceptual framework and research agenda. Journal of Open Innovation: Technology, Market, and Complexity. 2021;7(1):71.
- 104. Yigitcanlar T, Mehmood R, Corchado JM. Green artificial intelligence: Towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability. 2021;13(16):8952.
- 105.Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering. 2014;66:36-56.
- 106.Zhang C, Lu Y. Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration. 2021;23:100224.
- 107.Zohuri B, Moghaddam M. From business intelligence to artificial intelligence. Journal of Material Sciences & Manufacturing Research. 2020;1(1):1-10.