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Introduction

Dynamic Surface Control (DSC), first introduced by Wang & Sun (1999), addresses the explosion of complexity inherent in
backstepping by employing low-order filters rather than repeated differentiation [, This idea has become the cornerstone of
many subsequent extensions, particularly for systems with strong nonlinearities or large disturbances.

Recent studies have applied DSC to relatively simple actuators such as DC motors—ubiquitous in experimental practice.
Shiledar & Malwatkar (2025) combined DSC with a discrete sliding reach law to control DC-motor speed in a disturbed
environment and demonstrated superior stability and reduced oscillation over classical SMC &, Aydin & Yakut (2024) (though
not using DSC directly) modeled and controlled a rotary inverted pendulum driven by a DC motor, providing a solid baseline
for integrating DSC [, Kurczak et al. (2024) presented a laboratory hardware platform based on a DC motor that is ideal for
testing DSC algorithms 1.

Beyond these fundamentals, many DSC variants have been proposed, including adaptive and finite-time versions. Li et al. (2025)
integrated DSC with adaptive neural networks for stochastic pure-feedback systems with incomplete measurements 1. Han &
Feng (2025) incorporated Barrier Lyapunov Functions to handle state constraints [, Yu et al. (2025) [l and Shi et al. (2025) [
promoted predefined-time / prescribed-performance DSC, eliminating dependency on initial conditions. Other work—for
example Agrawal & Misra (2025) ! and Kang et al. (2025) 29l —extended DSC to systems under faults or cyber-attacks (FDI),
underscoring its flexibility under complex uncertainties.

However, the inherent disturbance-rejection capability of DSC—especially finite-time DSC employing exponential terms—
against mismatched disturbances has not been systematically evaluated. This paper therefore investigates and directly compares
the robustness of finite-time DSC (FT-DSC) with that of second-order Terminal Sliding Mode (TSM), proposed by Huspeka
(2009) [, on a third-order system subjected to both matched and mismatched disturbances.
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Methodology

A. Conventional Second-Order TSM for a DC Motor

1. DC- Motor model

The electrical and mechanical dynamics are described by equation (1).

5; 0 b km|[G 0 0
x=|w;|=Ax+Bu+D=|0 ; J ||w|+ (1) u+|d, 1)
ii 0 _k_e _5 ii Z d3

L

Where §; is the rotor angle, w; is the angular velocity, i; is the armature current, and the input u is the armature voltage.
Parameters R, L are the armature resistance and inductance, k. is the back-EMF constant, b the viscous friction coefficient, J
the rotor inertia, and kn the torque constant.

e d,: represents unmatched disturbance

e d,:is matched disturbance.

2. TSM biac 2
The coordinate transformation, error definitions, sliding variables, and control law formulation follow Huspeka [11]. Then,
equation (1) is needed to be transformed by matrix T:

1 0 0
xp=Tx =0 1b k?nx (2)
0 77 T
Then (1) becomes:
ST N
xp =0 _ kmke+bR  JR+DL kz.f + km ut|de ®)
0 JL JL 3.f JL ds
System (3) is in nominal form. This is the dynamic model for DC Motor. Set:
Kmke+bR
(@2 =75
JR+bL
as = 7 4)
k
\ bs=7p
When the DC Motor follows a reference value, system (3) is needed to transform to error form.
Setie; = X r — X1q (5)
Then by (3), we have:
€y =Xof —Xpq = 5‘1,f — X1 =&
. . T . T
93:x3,f_x3d=x2,f_x2d+7L:ez +7L (6)
é3 = _azez - a3€3 + b3u + azxzd + a3x3d - X3d
Set DM = azde + a3X3d - Xéd (7)
Then the error form of dynamic equation is:
0 1 0 1r1e€1 0 0
é=[0 0 1 [[e2[+]|0|u+ d, (8)
O _az _a3 e3 b3 DM + d3
To apply Cascaded TSM for (8), a secondary sliding
o = cie; + ce, ©)

Where ¢y, ¢, >0 are predefined parameters.
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Then its derivatives

0 =16 + 6, =cre; + Cre3 — Cpd, (10)

0 =16y +C63 = cre3 — 1dy + cy(—aye; — azes + bsu + Dy + d3) (11)

Then the primary sliding variable is

2]
S=coi+7,c>0 (12)

Where p, q are odd numbers, such that Z is close to 0.5 (the chosen values are p =1001 and g = 2001).
Then S’s derivative:
r-4q

S=cloas+4 (13)
q

Then the conventional TSM sliding controller has two components: a discrete component that pulls the sliding variable to the
sliding surface and a continuous component that keeps the sliding variable on the sliding surface:

U= Ugg + Uy (14)
Then with the control input value u,, applied to (11) and (13) we will have:
$=0 (15)

From here we can find u,,

b—q

- a 6 + [cre3 — cx(aze; + aze; — Dy — d3)] — ¢1d,) (16)

14
u = c—0
q Czbs( q

Where, the values d,, d; may not be determinable and are replaced by 0.
When the control input is u for equation (14), the continuous control component w,, will neutralize most of the components in

the expression of S:

S = C2b3Ud (17)
Then with the chosen Lyapunov candidate function:
1c2
Then the derivative of V
Since we always have cc,b; > 0, u, can be chosen so that V < 0
uy = —Ksign(S) (20)
Then with the control input chosen according to (14), (16), and (20), the system is Lyapunov stable.
B. Constructing the Finite-Time Dynamic Sliding Surface Controller (FTDSC):
1. FTDSC Control: The DSC controller is designed to avoid the "explosion of complexity" problem of traditional
backstepping by using finite-time filters. The surface errors are defined as follows:
S1=%X1 = Ya
S2 =X =2 (21)
53 = X3 - Zz

Where, z,, z, are the states of the filter, approximating the virtual control functions a; and «a,.
Virtual control function a;
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Q3

al = _kls - kzsl + yd (22)

1

Finite-time filter for z;
. 1 E
Z; = —;(21 — ;) — kp(z; — ay)a (23)

Virtual control function «a,

P
q

a, = L (—k35

b .
km 2 - k452 + 7x2 + Zl) (24)

Finite-time filter for z,
. 1 P
Zy = _g(zz —ay) —kp(z; —ay)9 (25)

Control law u

)
u = L(—kss] — kess + §x3 + kL—exz + 7,)
(26)

2. Stability and Finite-Time Convergence Analysis:
Finite-time means that the tracking error s; = x; — y,; converges to 0 or a small neighborhood within a finite time, despite
disturbances d,, d;. We will analyze each surface error s;, s,, s3 and the filters z;, z, sing Lyapunov functions.

Error s,
Lyapunov function with s,

1

v, = 5512 (27)

Derivative: V; = 5,8, = s, (%; — V4) = 51(x, — ¥4) (28)
Since x, = s, + z; then:

Vi =5.(5, + 21 — y4) (29)
With the filter z; defined by (23), we can define the filter error:

€y =274 — Qq,€,0 = Zy — Oy (30)

Then combining (29) with (30) and (22) we have:

p

p
V1 =51 (Sz + e, — klsf - k251> = 515, + S1€;1 — klsf - k2512

Lyapunov function for e,

1

Vzl = Eezzl (31)
Derivative:
l./21 = e;1€5 = ey (2 — dy) (32)

Combining with (23), we have:

1 H 1 P
y q I 2 q .
Va1 =en (‘;en - kfezl - a1> = _;em - kfezl — €107 (33)
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Error s,
Lyapunov function with s,

1

V, = 5522 (34)
Derivative: V, = s,$, = 5, (%, — %) (35)

Combining with equation (1), we have

. b km .
Vz = SZ (_7.XZ + TX3 + dz - Zl) (36)

Combining with equations (21), (24), and (30), and assuming z, — a,, we have:

14
q

kme3 szm(S3 +Zz) szmS3 _k352 _k452 +§x2 +Zl (37)
Then (36) becomes

) kom §+1 X

V2 = 75253 - k352 - k4_Sz + Szdz (38)
Similarly if

1.2

V3 = 553 (39)
Then its derivative is calculated by

) Pi1

V3 = _kss?? - k65§ + S3d3 (40)
Lyapunov function for e,,

_1 .

VZZ - Eezz (41)
Derivative

, . 1, §+1 .

Vio = €526, = _;ezz - kfezz — €0 (42)
Sum of their derivatives

. 4 X E P11 1 Pi1

V =58, + 518, —kys] = kst + TEsy53 — ks —kys; 4 spdy — kss]  — ket 4 s3ds ——eZy — kel —

] 1 z1
. 1 5 %H .
€710 — ;ezz - kfezz — €220 (43)

Applying Cauchy-Schwarz inequality for cross terms

$18; < isf +§522 (44)
12,12

Slel SESl +Eel (45)

km Lkmyao2 4 1.2

]525332(])52"'253 (46)

Bounded disturbance terms
|52d2| < |52||d2| < |52||D2| (47)
[szds| < |ss]lds| < |s5]|Dsl (48)

Usually a4, ¢, are also bounded because the required values and states are usually bounded, assume |c¢,| < M; va |d,| < M,,
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then:
les1a | < legq M,y (49)

lesatz| < le|M, (50)

q
Then if |s,| > (22) we will have
3

Py

Similarly with other component expressions we will have
V<0 (52)

Thus, by choosing appropriate coefficients, it is always possible to bring the deviations s;, s,, 53 close to the neighborhood of 0
or the system is stable in a neighborhood around the origin with a size proportional to the amplitudes D,, D5, M;, M.

C. Simulation
The simulation process was performed in the Matlab Simulink environment with the parameters given in (53):

(] =001
| b=0.1
k,, = 0.01
{ke =0.01 (53)
l\ R=1
L=05

The desired value is considered a sinusoidal signal given by the following equations:

xq = sin(t)
X4 = cos(t) (54)
X4 = —sin(t)

The disturbance acting on the system is considered bounded with amplitudes D,, D5:

DZ =0.5

To compare the two control methods DSC and 2nd order TSM, choose the control input constraint according to different values:
5, 10, 15, 30.

KET QUA VA THAO LUAN

The simulation results are shown in Figure 1 for the case where the control input is limited by 5.
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Fig 1: Simulation results when the control input is limited by 5

The simulation is shown in Figure 2 for the case where the control input is limited by 10.

10
0
-10
0 1 2 3 4 5 6 7
Time [s]
1 [ [
=)
£
o0
[=)]
c
<
-1 | | i | \
0 1 2 3 4 5 6 7
Time [s]

Angle [rad]

Time [s]
) T
= 0.4 -—-TSM el
£
Wo.2
—
i
g’) 0 S ———— —
2 \ | \
5 6 7 8 9 10
Time [s]

718|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation

www.allmultidisciplinaryjournal.com

= T T T
5 B
w
=
38
(0]
g
E | | | |
> 0 1 2 3 4 5 6 7 8
Z Time [s]
Fig 2: Simulation results when the control input is limited by 10.
The simulation is shown in Figure 3 for the case where the control input is limited by 15.
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Fig 3: Simulation results when the control input is limited by 15.

The simulation is shown in Figure 4 for the case where the control input is limited by 30.
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The results in Figure 1 and Figure 2 show cases where the control input is insufficient for the energy demand of DSC. In that
case, the ability of DSC to track the desired value is worse than that of 2nd order TSM, especially the angular velocity deviation.
When the cases in Figure 3 and Figure 4, the control input is increased, although not enough to ensure according to the
requirements of the control command, the trajectory tracking deviation of DSC has increased significantly, in which the fast
convergence time of the system compared to 2nd order TSM is prominent, especially in Figure 4 when the convergence time of
the system using DSC is less than 1s while with 2nd order TSM it is 3s. In that case, the quality of the system in those cases is
also different. In Figure 3, the disturbance rejection capability of the two methods is almost equivalent, while with the ability to
resist both matched and mismatched disturbances, we see in Figure 4, the disturbance in the DSC system has been significantly
reduced compared to 2nd order TSM.

However, the effect of DSC in disturbance rejection for the velocity channel is not superior to 2nd order TSM when in all 4
cases the velocity tracking deviation of DSC is not better than 2nd order TSM.

Angular Velocity Error [i

Time [s]

Fig 4: Simulation results when the control input is limited by 30.

Conclusion

This article has compared the DSC method with 2nd order TSM. The simulation, comparison, and evaluation results have pointed

out the advantages and disadvantages of the two methods, which are:

e The DSC method has the advantage of minimizing the impact of disturbances on the system compared to 2nd order TSM.

e The DSC method requires a larger control input than the 2nd order TSM method. However, even when the control input is
not sufficient to best meet the DSC system, it still converges faster and its disturbance rejection capability is equivalent to
2nd order TSM.

e When increasing the control input to a certain limit close enough to meet the demand of DSC, the system quality improves
significantly compared to 2nd order TSM. The superior disturbance rejection capability is accompanied by a significantly
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shorter convergence time. Therefore, considered comprehensively, the DSC controller has diverse application potential and
better tracking quality of the desired value in conditions requiring fast system response time as well as ensuring the ability
to resist both matched and mismatched disturbances.
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