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Abstract 

Controlling high-order nonlinear systems in the presence of disturbances—especially 

unmatched disturbances (those acting at channels different from the control input)—

is a challenging problem. For third-order systems, the system structure itself creates 

additional difficulties in designing controllers that guarantee both performance and 

stability. Dynamic Surface Control (DSC) is a recursive backstepping-based technique 

that circumvents the derivative-explosion problem of traditional backstepping by 

introducing first-order filters. When nonlinear (exponential) terms are used inside 

these filters, they form finite-time systems without incurring the computational burden 

of high-order derivatives. Such finite-time DSC (FT-DSC) not only preserves the 

advantages of standard DSC but also enhances its rejection of mismatched 

disturbances compared with conventional finite-time sliding controllers. 
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Introduction 

Dynamic Surface Control (DSC), first introduced by Wang & Sun (1999), addresses the explosion of complexity inherent in 

backstepping by employing low-order filters rather than repeated differentiation [1]. This idea has become the cornerstone of 

many subsequent extensions, particularly for systems with strong nonlinearities or large disturbances. 

Recent studies have applied DSC to relatively simple actuators such as DC motors—ubiquitous in experimental practice. 

Shiledar & Malwatkar (2025) combined DSC with a discrete sliding reach law to control DC-motor speed in a disturbed 

environment and demonstrated superior stability and reduced oscillation over classical SMC [2]. Aydın & Yakut (2024) (though 

not using DSC directly) modeled and controlled a rotary inverted pendulum driven by a DC motor, providing a solid baseline 

for integrating DSC [3]. Kurczak et al. (2024) presented a laboratory hardware platform based on a DC motor that is ideal for 

testing DSC algorithms [4]. 

Beyond these fundamentals, many DSC variants have been proposed, including adaptive and finite-time versions. Li et al. (2025) 

integrated DSC with adaptive neural networks for stochastic pure-feedback systems with incomplete measurements [5]. Han & 

Feng (2025) incorporated Barrier Lyapunov Functions to handle state constraints [6]. Yu et al. (2025) [7] and Shi et al. (2025) [8] 

promoted predefined-time / prescribed-performance DSC, eliminating dependency on initial conditions. Other work—for 

example Agrawal & Misra (2025) [9] and Kang et al. (2025) [10]—extended DSC to systems under faults or cyber-attacks (FDI), 

underscoring its flexibility under complex uncertainties. 

However, the inherent disturbance-rejection capability of DSC—especially finite-time DSC employing exponential terms—

against mismatched disturbances has not been systematically evaluated. This paper therefore investigates and directly compares 

the robustness of finite-time DSC (FT-DSC) with that of second-order Terminal Sliding Mode (TSM), proposed by Huspeka 

(2009) [11], on a third-order system subjected to both matched and mismatched disturbances.  

 

https://doi.org/10.54660/.IJMRGE.2025.6.3.712-721


International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    713 | P a g e  

 

Methodology 

A. Conventional Second-Order TSM for a DC Motor 

1. DC- Motor model 
The electrical and mechanical dynamics are described by equation (1). 

 

𝒙̇ = [
𝛿̇𝑖
𝜔̇𝑖
𝑖̇𝑖

] = 𝑨𝒙 + 𝑩𝑢 + 𝑫 = [
0
0
0

1

−
𝑏

𝐽

−
𝑘𝑒

𝐿

0
𝑘𝑚

𝐽

−
𝑅

𝐿

] [
𝛿𝑖
𝜔𝑖
𝑖𝑖

] + [

0
0
1

𝐿

] 𝑢 + [

0
𝑑2
𝑑3

]  (1) 

 

Where 𝛿𝑖 is the rotor angle, 𝜔𝑖 is the angular velocity, 𝑖𝑖 is the armature current, and the input u is the armature voltage. 

Parameters R, L are the armature resistance and inductance, 𝑘𝑒 is the back-EMF constant, 𝑏 the viscous friction coefficient, J 

the rotor inertia, and km the torque constant.  

 𝑑2: represents unmatched disturbance 

 𝑑3: is matched disturbance. 

 

2. TSM bậc 2 
The coordinate transformation, error definitions, sliding variables, and control law formulation follow Huspeka [11]. Then, 

equation (1) is needed to be transformed by matrix T: 

 

𝒙𝒇 = 𝑻𝒙 = [
1
0
0

0
1

−
𝑏

𝐽

0
0
𝑘𝑚

𝐽

] 𝒙  (2) 

 

Then (1) becomes:  

 

𝒙̇𝒇 = [
0
0
0

1
0

−
𝑘𝑚𝑘𝑒+𝑏𝑅

𝐽𝐿

0
1

−
𝐽𝑅+𝑏𝐿

𝐽𝐿

] [

𝑥1,𝑓
𝑥2,𝑓
𝑥3,𝑓

] + [

0
0
𝑘𝑚

𝐽𝐿

] 𝑢 + [

0
𝑑2
𝑑3

]  (3) 

 

System (3) is in nominal form. This is the dynamic model for DC Motor. Set: 

 

{
 
 

 
 𝑎2 =

𝑘𝑚𝑘𝑒+𝑏𝑅

𝐽𝐿

𝑎3 =
𝐽𝑅+𝑏𝐿

𝐽𝐿

𝑏3 =
𝑘𝑚

𝐽𝐿

  (4)  

 

When the DC Motor follows a reference value, system (3) is needed to transform to error form.  

 

Set: 𝑒1 = 𝑥1,𝑓 − 𝑥1𝑑  (5) 

 

Then by (3), we have: 

 

{

𝑒2 = 𝑥2,𝑓 − 𝑥2𝑑 = 𝑥̇1,𝑓 − 𝑥̇1𝑑 = 𝑒̇1

𝑒3 = 𝑥3,𝑓 − 𝑥3𝑑 = 𝑥̇2,𝑓 − 𝑥̇2𝑑 +
𝑇𝐿

𝐽
= 𝑒̇2 +

𝑇𝐿

𝐽

𝑒̇3 = −𝑎2𝑒2 − 𝑎3𝑒3 + 𝑏3𝑢 + 𝑎2𝑥2𝑑 + 𝑎3𝑥3𝑑 − 𝑥̇3𝑑

  (6) 

 

 Set: 𝐷𝑀 = 𝑎2𝑥2𝑑 + 𝑎3𝑥3𝑑 − 𝑥̇3𝑑  (7) 

 

Then the error form of dynamic equation is: 

 

𝒆̇ = [
0
0
0

1
0
−𝑎2

0
1
−𝑎3

] [

𝑒1
𝑒2
𝑒3
] + [

0
0
𝑏3

] 𝑢 + [

0
𝑑2

𝐷𝑀 + 𝑑3

]  (8) 

 

To apply Cascaded TSM for (8), a secondary sliding 

 

𝜎 = 𝑐1𝑒1 + 𝑐2𝑒2  (9) 

 

Where 𝑐1, 𝑐2 >0 are predefined parameters.  
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Then its derivatives 

 

𝜎̇ = 𝑐1𝑒̇1 + 𝑐2𝑒̇2 = 𝑐1𝑒2 + 𝑐2𝑒3 − 𝑐2𝑑2  (10) 

 

𝜎̈ = 𝑐1𝑒̇2 + 𝑐2𝑒̇3 = 𝑐1𝑒3 − 𝑐1𝑑2 + 𝑐2(−𝑎2𝑒2 − 𝑎3𝑒3 + 𝑏3𝑢 + 𝐷𝑀 + 𝑑3)  (11) 

 

Then the primary sliding variable is 

 

𝑆 = 𝑐𝜎
𝑝

𝑞 + 𝜎̇ , 𝑐>0  (12) 

 

Where 𝑝, 𝑞 are odd numbers, such that 
𝑝

𝑞
 is close to 0.5 (the chosen values are 𝑝 =1001 and 𝑞 = 2001). 

Then 𝑆’s derivative:  

 

 𝑆̇ = 𝑐
𝑝

𝑞
𝜎 

𝑝−𝑞

𝑞 𝜎̇ + 𝜎̈ (13) 

 

Then the conventional TSM sliding controller has two components: a discrete component that pulls the sliding variable to the 

sliding surface and a continuous component that keeps the sliding variable on the sliding surface:  

 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑑  (14) 

 

Then with the control input value 𝑢𝑒𝑞  applied to (11) and (13) we will have: 

 

 𝑆̇ = 0  (15) 

 

From here we can find 𝑢𝑒𝑞  

 

𝑢𝑒𝑞 =
−1

𝑐2𝑏3
(𝑐

𝑝

𝑞
𝜎
𝑝−𝑞

𝑞 𝜎̇ + [𝑐1𝑒3 − 𝑐2(𝑎2𝑒2 + 𝑎3𝑒3 − 𝐷𝑀 − 𝑑3)] − 𝑐1𝑑2)  (16) 

 

Where, the values 𝑑2, 𝑑3 may not be determinable and are replaced by 0. 

When the control input is u for equation (14), the continuous control component 𝑢𝑒𝑞  will neutralize most of the components in 

the expression of 𝑆̇:  

 

𝑆̇ = 𝑐2𝑏3𝑢𝑑  (17) 

 

Then with the chosen Lyapunov candidate function: 

 

𝑉 =
1

2
𝑆2  (18) 

 

Then the derivative of 𝑉 

 

𝑉̇ = 𝑆𝑆̇ = 𝑐2𝑏3𝑢𝑑𝑆  (19) 

 

Since we always have 𝑐𝑐2𝑏3 > 0, 𝑢𝑑 can be chosen so that 𝑉̇ ≤ 0 

 

𝑢𝑑 = −𝐾sign(𝑆)  (20) 

 

Then with the control input chosen according to (14), (16), and (20), the system is Lyapunov stable. 

 

B. Constructing the Finite-Time Dynamic Sliding Surface Controller (FTDSC): 

1. FTDSC Control: The DSC controller is designed to avoid the "explosion of complexity" problem of traditional 

backstepping by using finite-time filters. The surface errors are defined as follows:  

 

{

𝑠1 = 𝑥1 − 𝑦𝑑
𝑠2 = 𝑥2 − 𝑧1
𝑠3 = 𝑥3 − 𝑧2

  (21) 

 

Where, 𝑧1, 𝑧2 are the states of the filter, approximating the virtual control functions 𝛼1 and 𝛼2. 

Virtual control function 𝛼1  

 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    715 | P a g e  

 

𝛼1 = −𝑘1𝑠1

𝑝

𝑞 − 𝑘2𝑠1 + 𝑦̇𝑑  (22) 

 

Finite-time filter for 𝑧1 

 

𝑧̇1 = −
1

𝜏1
(𝑧1 − 𝛼1) − 𝑘𝑓(𝑧1 − 𝛼1)

𝑝

𝑞  (23) 

 

Virtual control function 𝛼2 

 

𝛼2 =
𝐽

𝑘𝑚
(−𝑘3𝑠2

𝑝

𝑞 − 𝑘4𝑠2 +
𝑏

𝐽
𝑥2 + 𝑧̇1)  (24) 

 

Finite-time filter for 𝑧2 

 

𝑧̇2 = −
1

𝜏2
(𝑧2 − 𝛼2) − 𝑘𝑓(𝑧2 − 𝛼2)

𝑝

𝑞  (25) 

 

 Control law u 

 

𝑢 = 𝐿(−𝑘5𝑠3

𝑝

𝑞 − 𝑘6𝑠3 +
𝑅

𝐿
𝑥3 +

𝑘𝑒

𝐿
𝑥2 + 𝑧̇2) 

 (26) 

 

2. Stability and Finite-Time Convergence Analysis:  

Finite-time means that the tracking error 𝑠1 = 𝑥1 − 𝑦𝑑 converges to 0 or a small neighborhood within a finite time, despite 

disturbances 𝑑2, 𝑑3. We will analyze each surface error 𝑠1, 𝑠2, 𝑠3 and the filters 𝑧1, 𝑧2 sing Lyapunov functions. 

 

Error 𝒔𝟏 

Lyapunov function with 𝑠1  

 

𝑉1 =
1

2
𝑠1
2  (27) 

 

Derivative: 𝑉̇1 = 𝑠1𝑠̇1 = 𝑠1(𝑥̇1 − 𝑦̇𝑑) = 𝑠1(𝑥2 − 𝑦̇𝑑) (28) 

 

Since 𝑥2 = 𝑠2 + 𝑧1 then:  

 

𝑉̇1 = 𝑠1(𝑠2 + 𝑧1 − 𝑦̇𝑑)  (29) 

 

With the filter 𝑧1 defined by (23), we can define the filter error:  

 

𝑒𝑧1 = 𝑧1 − 𝛼1, 𝑒𝑧2 = 𝑧2 − 𝛼2  (30) 

 

Then combining (29) with (30) and (22) we have: 

 

𝑉̇1 = 𝑠1 (𝑠2 + 𝑒𝑧1 − 𝑘1𝑠1

𝑝
𝑞 − 𝑘2𝑠1) = 𝑠1𝑠2 + 𝑠1𝑒𝑧1 − 𝑘1𝑠1

𝑝
𝑞
+1
− 𝑘2𝑠1

2 

 
Lyapunov function for 𝑒𝑧1 

 

𝑉𝑧1 =
1

2
𝑒𝑧1
2   (31) 

 

Derivative:  

 

𝑉̇𝑧1 = 𝑒𝑧1𝑒̇𝑧1 = 𝑒𝑧1(𝑧̇1 − 𝛼̇1)  (32) 

 

Combining with (23), we have: 

 

𝑉̇𝑧1 = 𝑒𝑧1 (−
1

𝜏1
𝑒𝑧1 − 𝑘𝑓𝑒𝑧1

𝑝

𝑞 − 𝛼̇1) = −
1

𝜏1
𝑒𝑧1
2 − 𝑘𝑓𝑒𝑧1

𝑝

𝑞
+1
− 𝑒𝑧1𝛼̇1  (33) 
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Error 𝒔𝟐 

Lyapunov function with 𝑠2  

 

𝑉2 =
1

2
𝑠2
2  (34) 

 

Derivative: 𝑉̇2 = 𝑠2𝑠̇2 = 𝑠2(𝑥̇2 − 𝑧̇1) (35) 

 

Combining with equation (1), we have 

 

𝑉̇2 = 𝑠2 (−
𝑏

𝐽
𝑥2 +

𝑘𝑚

𝐽
𝑥3 + 𝑑2 − 𝑧̇1)  (36) 

 

Combining with equations (21), (24), and (30), and assuming 𝑧2 → 𝛼2, we have:  

 

𝑘𝑚

𝐽
𝑥3 =

𝑘𝑚

𝐽
(𝑠3 + 𝑧2) ≈

𝑘𝑚

𝐽
𝑠3 − 𝑘3𝑠2

𝑝

𝑞 − 𝑘4𝑠2 +
𝑏

𝐽
𝑥2 + 𝑧̇1  (37) 

 

Then (36) becomes 

 

𝑉̇2 =
𝑘𝑚

𝐽
𝑠2𝑠3 − 𝑘3𝑠2

𝑝

𝑞
+1
− 𝑘4𝑠2

2 + 𝑠2𝑑2  (38) 

 

Similarly if 

 

𝑉3 =
1

2
𝑠3
2  (39) 

 

Then its derivative is calculated by 

 

𝑉̇3 = −𝑘5𝑠3

𝑝

𝑞
+1
− 𝑘6𝑠3

2 + 𝑠3𝑑3  (40) 

 

Lyapunov function for 𝑒𝑧2 

 

𝑉𝑧2 =
1

2
𝑒𝑧2
2   (41) 

 

Derivative 

𝑉̇𝑧2 = 𝑒𝑧2𝑒̇𝑧2 = −
1

𝜏2
𝑒𝑧2
2 − 𝑘𝑓𝑒𝑧2

𝑝

𝑞
+1
− 𝑒𝑧2𝛼̇2  (42) 

 

Sum of their derivatives 

 

𝑉̇ = 𝑠1𝑠2 + 𝑠1𝑒𝑧1 − 𝑘1𝑠1

𝑝

𝑞
+1
− 𝑘2𝑠1

2 +
𝑘𝑚

𝐽
𝑠2𝑠3 − 𝑘3𝑠2

𝑝

𝑞
+1
− 𝑘4𝑠2

2 + 𝑠2𝑑2 − 𝑘5𝑠3

𝑝

𝑞
+1
− 𝑘6𝑠3

2 + 𝑠3𝑑3 −
1

𝜏1
𝑒𝑧1
2 − 𝑘𝑓𝑒𝑧1

𝑝

𝑞
+1
−

𝑒𝑧1𝛼̇1 −
1

𝜏2
𝑒𝑧2
2 − 𝑘𝑓𝑒𝑧2

𝑝

𝑞
+1
− 𝑒𝑧2𝛼̇2  (43) 

 

Applying Cauchy-Schwarz inequality for cross terms 

 

𝑠1𝑠2 ≤
1

2
𝑠1
2 +

1

2
𝑠2
2  (44) 

 

𝑠1𝑒1 ≤
1

2
𝑠1
2 +

1

2
𝑒1
2  (45) 

 
𝑘𝑚

𝐽
𝑠2𝑠3 ≤

1

2
(
𝑘𝑚

𝐽
)2𝑠2

2 +
1

2
𝑠3
2  (46) 

 

Bounded disturbance terms 

 
|𝑠2𝑑2| ≤ |𝑠2||𝑑2| ≤ |𝑠2||𝐷2|  (47) 

 

|𝑠3𝑑3| ≤ |𝑠3||𝑑3| ≤ |𝑠3||𝐷3|  (48) 

 

Usually 𝛼̇1, 𝛼̇2 are also bounded because the required values and states are usually bounded, assume |𝛼̇1| ≤ 𝑀1 và |𝛼̇2| ≤ 𝑀2, 
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then: 

 

|𝑒𝑧1𝛼̇1| ≤ |𝑒𝑧1|𝑀1  (49) 

 

|𝑒𝑧2𝛼̇2| ≤ |𝑒𝑧2|𝑀2  (50) 

 

Then if |𝑠2| > (
𝐷2

𝑘3
)

𝑞

𝑞+𝑝
 we will have 

 

−𝑘3𝑠2

𝑝

𝑞
+1
+ |𝑠2|𝐷2 < 0  (51) 

 

Similarly with other component expressions we will have 

 

𝑉̇ < 0  (52) 

 

Thus, by choosing appropriate coefficients, it is always possible to bring the deviations 𝑠1, 𝑠2, 𝑠3 close to the neighborhood of 0 

or the system is stable in a neighborhood around the origin with a size proportional to the amplitudes 𝐷2, 𝐷3, 𝑀1, 𝑀2. 

 

C. Simulation 

The simulation process was performed in the Matlab Simulink environment with the parameters given in (53): 

 

{
 
 

 
 
𝐽 = 0.01
𝑏 = 0.1
𝑘𝑚 = 0.01
𝑘𝑒 = 0.01 
𝑅 = 1
𝐿 = 0.5

  (53) 

 

The desired value is considered a sinusoidal signal given by the following equations: 

 

{

𝑥𝑑 = sin (𝑡)
𝑥̇𝑑 = cos(𝑡)

𝑥̈𝑑 = −sin(𝑡)
  (54) 

 

The disturbance acting on the system is considered bounded with amplitudes 𝐷2, 𝐷3: 

 

{
𝐷2 = 0.5
𝐷3 = 0.75

  (55) 

 

To compare the two control methods DSC and 2nd order TSM, choose the control input constraint according to different values:  

5, 10, 15, 30. 

 

KẾT QUẢ VÀ THẢO LUẬN 

 

The simulation results are shown in Figure 1 for the case where the control input is limited by 5. 
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Fig 1: Simulation results when the control input is limited by 5. 

 

The simulation is shown in Figure 2 for the case where the control input is limited by 10. 
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Fig 2: Simulation results when the control input is limited by 10. 

 

The simulation is shown in Figure 3 for the case where the control input is limited by 15. 

 

 

 

 

 

 
 

Fig 3: Simulation results when the control input is limited by 15. 

 

The simulation is shown in Figure 4 for the case where the control input is limited by 30. 
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Fig 4: Simulation results when the control input is limited by 30. 

 

The results in Figure 1 and Figure 2 show cases where the control input is insufficient for the energy demand of DSC. In that 

case, the ability of DSC to track the desired value is worse than that of 2nd order TSM, especially the angular velocity deviation. 

When the cases in Figure 3 and Figure 4, the control input is increased, although not enough to ensure according to the 

requirements of the control command, the trajectory tracking deviation of DSC has increased significantly, in which the fast 

convergence time of the system compared to 2nd order TSM is prominent, especially in Figure 4 when the convergence time of 

the system using DSC is less than 1s while with 2nd order TSM it is 3s. In that case, the quality of the system in those cases is 

also different. In Figure 3, the disturbance rejection capability of the two methods is almost equivalent, while with the ability to 

resist both matched and mismatched disturbances, we see in Figure 4, the disturbance in the DSC system has been significantly 

reduced compared to 2nd order TSM.  

However, the effect of DSC in disturbance rejection for the velocity channel is not superior to 2nd order TSM when in all 4 

cases the velocity tracking deviation of DSC is not better than 2nd order TSM. 

 

Conclusion 

This article has compared the DSC method with 2nd order TSM. The simulation, comparison, and evaluation results have pointed 

out the advantages and disadvantages of the two methods, which are:  

 The DSC method has the advantage of minimizing the impact of disturbances on the system compared to 2nd order TSM.  

 The DSC method requires a larger control input than the 2nd order TSM method. However, even when the control input is 

not sufficient to best meet the DSC system, it still converges faster and its disturbance rejection capability is equivalent to 

2nd order TSM.  

 When increasing the control input to a certain limit close enough to meet the demand of DSC, the system quality improves 

significantly compared to 2nd order TSM. The superior disturbance rejection capability is accompanied by a significantly 
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shorter convergence time. Therefore, considered comprehensively, the DSC controller has diverse application potential and 

better tracking quality of the desired value in conditions requiring fast system response time as well as ensuring the ability 

to resist both matched and mismatched disturbances. 
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