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Abstract 
Wetlands are crucial in environmental sustainability, supporting biodiversity, water 
purification, flood control, and climate regulation. However, these ecosystems are 
increasingly threatened by anthropogenic activities and urban expansion. This study 
explores using remote sensing and GIS tools to assess wetland changes over time for 
conservation planning. Landsat imagery from 1990, 2000, 2013, and 2024 was 
processed in ENVI 6.0 using supervised classification with Maximum Likelihood 
Classification (MLC). Accuracy assessment was conducted through confusion 
matrices, while thematic change detection identified areas of wetland loss. Ancillary 
datasets, the Digital Elevation Model (DEM) and WorldPop population density layers, 
were analyzed using ArcGIS Pro. The results revealed a consistent decline in wetland 
coverage, with a corresponding rise in population density and encroachment in low-
lying areas. Wetland zones at lower elevations showed greater susceptibility to 
conversion, often replaced by built-up or agricultural land. The integration of ancillary 
data proved critical for understanding the spatial drivers behind wetland degradation. 
The findings contribute to the growing body of knowledge on sustainable land use and 
emphasize the relevance of spatial tools in conserving ecologically sensitive areas. 
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1. Introduction 
Wetlands are important natural areas that support the environment, economy, and communities. However, human activities 
damage these areas, causing them to shrink and lose their benefits. (EPA, 2018; UN-Habitat, 2010). The modification and 
conversion of large natural, or agricultural, areas to built-up areas, can lead to loss of forests and wetlands, air quality impairment, 
increase in impervious surfaces, reduced aquifer recharge, flooding, ecosystem, and landscape fragmentation, as well as 
biodiversity loss (Fasona et al., 2007; Seifolddini & Mansourian, 2014) [16, 29]. Globally, wetland conservation has gained 
increased attention due to the alarming rate at which these ecosystems are being degraded by anthropogenic activities, 
particularly urbanization, land reclamation, and infrastructure development (Oyedepo & Oluyege, 2024; Peng et al., 2024) [25, 

26]. In Nigeria, they are declining due to rapid urbanization, land reclamation, and climate change (Ogunlade & Oluwole, 2022)  

[22]. Fadipe et al., (2024) [8] observed that Lagos State is a prime example of this problem since significant wetland degradation 
has been brought on by the growth of real estate, people, and infrastructure. Over the past three decades, sand-filling, 
uncontrolled housing projects, and industrialization have significantly reduced the amount of wetland in Ikorodu, a rapidly 
urbanizing district inside Lagos State (Idowu et al., 2020; Ubaekwe & Engwoh, 2020; Fadipe et al, 2024) [11, 32, 8]. Remote sensing 
(RS) and Geographic Information Systems (GIS) are essential tools in environmental monitoring and wetland conservation, 
enabling researchers to detect, classify, and analyze land use and land cover (LULC) changes over time. (Fasona et al., 2007; 
Klemas, 2011; Obiefuna et al., 2013; Tochukwu, 2024) [16, 14, 31]. However, geospatial analysis alone is insufficient to explain 
the drivers of environmental change (Oseni et al., 2020; Ju & Bohrer, 2022) [24, 12].  
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Integrating ancillary datasets like census records, land tenure 

information, and hydrological datasets offers a more 

comprehensive understanding of wetland degradation (Dong 

et al., 2014; Kaplan & Avdan, 2017) [6, 13]. Prior research 

focusing on wetlands that includes ancillary data is limited in 

the study area (Gilbert & Shi, 2023; Fadipe et al., 2024; 

Oyedepo & Oluyege, 2024) [10, 25, 8]. This study employs 

Landsat-based remote sensing techniques to analyze wetland 

degradation in Ikorodu over 34-year intervals from 1990 to 

2024, alongside elevation and population density (ancillary 

dataset). It offers data-driven insights for wetland 

conservation and ecosystem sustainability. 

 

2. Study Area 

This study was conducted for the Ikorodu Local Government 

Area (LGA). It is located in the southwest part of Lagos state, 

Nigeria (Figure 1) at latitude 6.6194° N and longitude 

3.5105° E. Nigeria generally experiences two main seasons: 

a dry season and a rainy season. The dry season, characterized 

by lower rainfall and humidity, typically lasts from 

November to April. The rainy season, with more rainfall, 

usually begins in May and continues through October 

(Climate Change Knowledge Portal, 2021). Lagos is the most 

urbanized city in Nigeria, Africa's most populous country 

(Gilbert & Shi, 2023) [10]. According to UN World 

Urbanization Prospects, Ikorodu had a population of 8,645 in 

1950, and current estimates place Ikorodu's population at 

1,145,220 in 2024 with a 4.75% annual change from the 

previous year (WPR, 2024). Ikorodu LGA shares borders 

with Ogun State to the north, the Lagos Lagoon to the south, 

and the town of Agbowa-Ikosi in Lagos State's Epe Division 

to the east (Onuoha et al., 2025) [23]. Due to social, economic, 

and environmental effects, Ikorodu is Lagos State‘s most 

peri-urbanized community (Mokunfayo & Babatunde, 2018) 
[17]. These characteristics make the study area an interesting 

location for land cover analysis. In Ikorodu, vegetation 

(primarily forests, grasslands, and other plant life) is a 

significant landscape component, particularly in the rural 

areas and along the lagoon. Wetlands, like swamps and 

mangroves, also play a crucial role, especially along the 

Lagos Lagoon and surrounding areas (Odunuga et al., 2018) 

[21]. 

 

 
 

Fig 1: The locations of both Lagos State and Ikorodu Local Government Area (LGA) on the map of Nigeria. 

 

3. Materials and Methods 

This study utilized four Landsat scenes corresponding to the 

years 1990, 2000, 2013, and 2024 (Table 1) to examine 

spatiotemporal changes in wetland cover. Specifically, 

Landsat 4 Multispectral Scanner (MSS) data were used for 

1990, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

for 2000, Landsat 8 Operational Land Imager (OLI) for 2013, 

and Landsat 9 Operational Land Imager 2 (OLI-2) for 2024. 

All imagery was acquired from the United States Geological 

Survey (USGS) Earth Explorer platform as Level 2 surface 

reflectance products, which are atmospherically corrected 

and georeferenced to ensure spatial consistency (USGS, 

2023). The boundary shapefile (publicly available) was 

acquired from the Nigeria Office of Surveyor General of the 

Federation (OSGOF). The near-global digital elevation 

model (DEM) of Earth's land surface, providing detailed 
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elevation data, was collected by the Shuttle Radar 

Topography Mission (SRTM). Population density, defined as 

the number of people per square kilometer based on country 

totals, was adjusted to match the corresponding official 

United Nations population estimates. It represents the 

estimated population density per grid cell and is supplied by 

Woldpop. Information on the ancillary data, population 

density, and SRTM is also presented in Table 1. The SRTM 

data is designed to have a vertical accuracy of approximately 

16 meters (90% confidence). This means that at 90% 

confidence, you can expect the SRTM elevation data to be 

within 16 meters of the true ground elevation (Mukul et al., 

2017) [18]. 

 
Table 1: Showing the date and spatial resolutions of the dataset. It includes both satellite imagery and ancillary data 

 

NAME Date Spatial resolution 

Landsat 4 1990/12/27 30 m (16% cloud cover) 

Landsat 7 2000/02/06 30 m (7% cloud cover) 

Landsat 8 2013/12/18 30 m (0.01% cloud cover) 

Landsat 9 2024/12/08 30 m (0% cloud cover) 

SRTM (DEM) 2005/02/01 3-Arc (Non-void filled) ~90m 

SRTM (DEM) 2012/10/01 3-Arc (Void filled) ~90m 

SRTM (DEM) 2014/09/23 1-Arc (Second Global) ~30m 

Population density (UN Adjusted) 2000 1 km 

Population density (UN Adjusted) 2013 1 km 

Population density (UN Adjusted) 2020 1 km 

 

3.1 Land Cover Classification 

The land cover classification was carried out using the 

Maximum Likelihood Classifier (MLC) in ENVI 6.0 (Figure 

2). Before classification, preprocessing was conducted to 

prepare all datasets for classification and analysis. Landsat 

images were subset to the study area using the Ikorodu 

boundary shapefile. Training and validation data were 

derived from visually interpreted regions of interest (ROIs), 

representing key land cover types, including wetlands, urban 

vegetation, and water. Google Earth Pro imagery was used to 

identify the ROIs in the Landsat imagery. Each Landsat 

image was classified independently, using spectral bands 1–

7 for Landsat 4 and 7 and bands 2–7 for Landsat 8 and 9 to 

exclude the coastal band (USGS, 2023). The MLC algorithm 

assumes a normal distribution of class signatures and assigns 

each pixel to the class with the highest probability. Classified 

maps were validated using reference points and confusion 

matrices. The specific years for the 34-year interval period 

were 1990, 2000, 2013, and 2024. The year 2013 was 

substituted for 2010 because of the scan line error in 2010, 

and using 2024 was to depict the most recent development as 

of the time of this analysis. 

 

3.2 Accuracy Assessment 

An accuracy assessment (Figure 2) was conducted to validate 

the classification results of each Landsat scene. A confusion 

matrix was generated in ENVI using independently collected 

ground truth samples from the Landsat imagery as validation 

datasets for the four years. Google Earth Pro imagery was 

used to identify ground truth samples in the Landsat imagery. 

The samples were randomly stratified across all land cover 

classes, ensuring adequate representation. All pixels for both 

the training and validation datasets for each feature across the 

four years were above 700 pixels. Metrics, including overall 

accuracy, users' and producers' accuracy, and the Kappa 

coefficient, were computed to evaluate classification 

performance. An overall accuracy threshold of at least 85% 

was targeted, in line with standard remote sensing protocols 

(Congalton & Green, 2009) [4]. Discrepancies in class 

assignments were analyzed to refine training data for future 

iterations. Accuracy assessment ensured the reliability of the 

change detection and spatial analysis results. 

 

3.3 Change Detection Analysis 

Change detection (Figure 2) was performed to quantify land 

cover transformations over three decades (1990–2024). The 

classified Landsat images from each year (1990, 2000, 2013, 

and 2024) were compared using ENVI's Thematic Change 

Detection tool, which computes pixel-by-pixel transitions 

between defined classes. This enabled the identification of 

spatiotemporal dynamics in wetland cover, including 

degradation, expansion, or conversion to other land uses. A 

change matrix was generated for each decadal interval to 

quantify gains, losses, and persistence of land cover types. 

These outputs were crucial for understanding the patterns and 

drivers of wetland loss. The analysis was restricted to 

consistently classified pixels, and ambiguous or mixed 

classes were excluded to improve accuracy. This method 

supports multi-date comparisons and provides robust 

statistics for land management and policy formulation (Lu et 

al., 2004). 

 

3.4. Impact analysis 

Population density data provided a proxy for human pressure, 

while DEM helped identify elevation-related constraints to 

wetland distribution. Zonal Statistics as a Table was 

employed in ArcGIS Pro to quantify the relationship between 

DEM and population density. This process served as the 

impact analysis (Figure 2) in this study. After ensuring the 

alignment of all datasets through the Project Raster tool, 

Zonal Statistics was applied using the classified map as the 

zone raster. This method calculated statistical measures such 

as mean, sum, and standard deviation of the value raster 

within each land cover class. Only the mean was used for 

comparison in this study. The resulting table provided a 

detailed comparison of environmental and demographic 

attributes across classes. 
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Fig 2: Showing the methodology flowchart for this study. 

 

4. Results 

4.1. Supervised classification 
A supervised classification using the Maximum Likelihood 

Classifier (MLC) was performed in ENVI to categorize the 

study area into distinct land cover classes, including 

wetlands, vegetation, built-up areas, and water bodies. 

Regions of Interest (ROIs) were manually digitized based on 

expert knowledge and visual interpretation of the Landsat 

imagery. ROI separability was assessed using the 

Transformed Divergence (TD) metric, with all class pairs 

yielding values above 1.9 (Table 3), indicating excellent 

spectral separability and minimal overlap between land cover 

categories. However, the discrepancy in the hundredths place 

in the values in Table 3 stems from the manual digitization 

process. For example, the low values recorded (training and 

validation) in the hundredths place in 2000 were due to the 

imagery being more pixelated than others. Likewise, the low 

values in the validation dataset for both 2013 and 2024 were 

due to the inability to obtain additional fine pixels for ROIs, 

especially for wetlands and vegetation. Overall, this high 

separability (above 1.9) supported the reliability of the 

classification results. The output classified map provided a 

detailed spatial representation of land cover distribution and 

formed the basis for subsequent change detection and zonal 

statistical analysis. 

 

 
3(a): MLC classification result for Ikorodu in 1990 3(b): MLC classification result for Ikorodu in 2000 
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3(c): MLC classification result for Ikorodu in 2013 3(d): MLC classification result for Ikorodu in 2024 

 

Fig 3: Showing the MLC classification result for Ikorodu from 1990 to 2024 (a-d). The four classes in the classification are identified with 

various colors in the legend 

 
Table 3: Showing the ROI separability results for the training and validation datasets for the four years. 

 

ROI Separability Result 

Classes 1990 2000 2013 2024 

 Training Data Validation Data Training Data Validation Data 

Vegetation and Wetlands 1.999 1.999 1.970 1.940 

Urban and Vegetation 1.997 1.993 1.997 1.996 

Water and Urban 1.998 1.999 1.999 2 

Urban and Wetlands 1.999 1.999 2 1.999 

Water and Wetlands 2 2 2 2 

Water and Vegetation 2 2 2 2 

The classified maps for the four years were highlighted in 

Figure 3. 

The panel signifies the Land Use Land Cover (LULC) 

dynamics over the 34-year interval. The four classes are 

Vegetation, Wetland, Urban, and Water. Panel (a) shows the 

distribution of the LULC across four classes in 1990. Panel 

(b) shows the distribution of the LULC across four classes in 

2000. Panel (c) shows the distribution of the LULC across 

four classes in 2013, and Panel (d) shows the distribution of 

the LULC across four classes in 2024. 

 

4.2 Accuracy assessment (confusion matrix) 
Classification accuracy was further verified using a 

validation dataset and a confusion matrix, confirming that the 

method produced dependable thematic maps for temporal 

comparison and environmental analysis. The result is 

presented in Table 4(a–d) representing the years 1990, 2000, 

2013, and 2024, respectively. The overall accuracy across the 

four years exceeded 88%, while the Kappa coefficient was 

0.80, indicating strong agreement beyond chance. While 

most of the overall accuracy was above 90%, the lowest 

overall accuracy of 88.962% was recorded in 2000 (Table 4b) 

and is attributed to the pixelated image as explained by the 

ROI separability result (Table 3). Furthermore, the kappa 

coefficients in 1990 (Table 4a) and 2013 (Table 4c) was in 

there in the 0.90 range, but the kappa coefficients in 2000 

(Table 4b) and 2024 (Table 4d) were 0.82 and 0.88, 

respectively. The producers’ accuracy for Urban and Water 

was above 90% across the four years, but it wasn’t the same 

for Wetland and Vegetation. In 2020, the producer accuracy 

for Wetlands was 56% while vegetation was 99%, which 

explains why about 44% of the Wetland pixels were 

classified as Vegetation. A similar trend was observed in 

2013 (Table 4c), where Wetland pixels (81%) were classified 

as Vegetation (14.8%) and Urban (4%). Despite this, the 

classification results were deemed robust and suitable for 

spatiotemporal analysis through the overall accuracy and 

kappa coefficients. 

 
Table 4 a-d: The confusion matrix table panel for the classified 

image from 1990 to 2024 (a-d). 
 

4(a): 1990 confusion matrix 

 
 

 4(b): 2000 confusion matrix 
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 4(c): 2013 confusion matrix 
 

 
 

 4(d): 2024 confusion matrix 
 

 
  

4.3 Thematic change detection 
Thematic change detection was carried out to evaluate land 

cover transitions, specifically focusing on the conversion of 

wetlands to other land cover classes. Using the post-

classification comparison method in ENVI, classified maps 

for 1990 to 2024 were prepared (Figure 4). The process also 

generated a detailed change detection matrix indicating areas  

That were wetlands in the base year but changed to other 

classes in subsequent years. Overall, the 34-year change in 

Ikorodu (Table 5) revealed a consistent decline in wetland 

coverage across the decades, with notable 15.93% 

conversions to Vegetation (agricultural land) and 8.39% to 

Urban (built areas). It is also important to note that the 

Wetland conversion to vegetation was influenced by the 

aggressive conversion of the latter to Urban areas 

(Aigbokhan, 2019). Over 24% of Vegetation was turned into 

Urban between 1990 and 2024 (Table 5). 

 
Table 5: Showing the overall thematic change result from 1990 to 

2024. It highlights the area and percentage of each feature change. 
 

1990 2024 Area (m²) Percent (%) 

Urban Urban 33,575,400 5.89 

Urban Water 3,141,900 0.55 

Urban Vegetation 13,386,600 2.35 

Urban Wetland 10,754,100 1.89 

Vegetation Urban 140,293,800 24.59 

Vegetation Water 0 0.00 

Vegetation Vegetation 43,420,500 7.61 

Vegetation Wetland 1,284,300 0.23 

Water Urban 8,091,000 1.42 

Water Water 134,564,400 23.59 

Water Vegetation 5,565,600 0.98 

Water Wetland 49,500 0.01 

Wetland Urban 47,861,100 8.39 

Wetland Water 111,600 0.02 

Wetland Vegetation 90,876,600 15.93 

Wetland Wetland 37,457,100 6.57 

 
 

Fig 4: The overall wetland changes between 1990 and 2024. The extent reveals areas that were identified as wetlands in 1990 but are no 

more wetlands in 2024. This summarizes the changes across the entire 34-year interval. 

 

4.4 Impact analysis 

Zonal Statistics as a Table was employed in ArcGIS Pro to 

quantify the relationship between land cover classes and 

ancillary datasets, specifically DEM and population density. 

The impact analysis in Table 6 reveals a consistent decline in 

the average elevation of wetland areas alongside a notable 

increase in population density from 2000 to 2013 (Oseni et 

al.,2020; Ju & Bohrer, 2022; Yager et al., 2024) [24, 12]. The 

mean DEM value for wetlands decreased from 18.5m in 2005 

to 9,9m in 2012 and 10m in 2014. This suggests either a 

physical lowering of wetland terrain, potentially due to 

erosion, subsidence, or drainage, or a spatial shift of wetlands 

into slightly lower-lying areas over time. Simultaneously, 

population density rose from 387 to 912 people per square 

km, a 57.6% increase over a decade. Since the most recent 

data for DEM was from 2014, comparing it with the classified 

image of 2024 might be a bit of an overstretch, as shown by 

the 9.2m result (Table 6). Similarly, the most recent 

population density available was for 2020, and the reduction 

could be attributed to COVID. However, the impact analysis 

(Table 6) implies that the growing population pressure likely 

intensified the demand for land and resources, contributing to 

encroachment on wetland ecosystems. 
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Table 6: Showing the impact analysis between the classified images and the ancillary data. The impact analysis shows the relationship 

between the classified map each year and the corresponding ancillary data. 
 

Year Land Cover Mean DEM (m) Mean Population Density (people/km²) 

2000 Wetlands 18.506 (2005) 387.151 

2013 Wetlands 9.941 (2012), 10.067 (2014) 912.197 

2024 Wetlands 9.228 (2014) 880.370 (2020) 

2000 Vegetation 19.066 (2005) 1,179.576 

2013 Vegetation 22.093 (2012), 21.537 (2014) 1,155.409 

2024 Vegetation 16.462 (2014) 1,443.638 (2020) 

2000 Urban 19.199 (2005) 2,358.845 

2013 Urban 19.435 (2012), 19.294 (2014) 2,285.597 

2024 Urban 22.144 (2014) 2,606.112 (2020) 

2000 Water 0.005 (2005) 543.090 

2013 Water 0.022 (2012), 0.004 (2014) 422.184 

2024 Water 0.007 (2014) 616.808 (2020) 

 

5. Discussion 

The findings of this study align with several previous works 

highlighting wetland decline due to anthropogenic pressures 

(UN-Habitat, 2010; Seifolddini & Mansourian, 2014; Zhou 

et al., 2018; Ogunlade & Oluwole, 2022) [29, 22]. The classified 

land cover maps (Figure 3) revealed a clear reduction in 

wetland areas between 1990 and 2024, consistent with global 

trends reported by Davidson (2014) [5] and Seto et al. (2010) 

[30], who documented widespread wetland loss driven by 

urban expansion and agricultural encroachment. The 

confusion matrix results (Table 4) demonstrated high 

classification accuracy, with overall accuracies exceeding 

85% and kappa coefficients indicating strong agreement 

(Foody, 2020) [9]. This validates the effectiveness of the MLC 

method applied in ENVI (Nv5, 2024; Richards & Jia, 1999) 

[28]. Thematic change detection analysis (Table 5) further 

confirmed that a significant proportion of wetlands were 

converted into built-up and farmland classes over time 

(Dekolo & Olayinka, 2015; Adedire & Adegbile, 2018; 

Aigbokhan, 2019; Oyedepo & Oluyege, 2024) [1, 25]. It seems 

that increasing demand from urbanization on wetlands led to 

the detour of vegetation (Aigbokhan, 2019) [1]. Furthermore, 

the Integration of DEM and population density (ancillary 

datasets), provided insight into the topographical and 

demographic drivers (Table 6) of these changes to wetland 

conservation (Oseni et al., 2020; Ju & Bohrer, 2022) [24, 12]. 

This was highlighted in the impact analysis from Zonal 

statistics, which revealed that wetland areas with lower 

elevation and increasing population densities experienced the 

highest rates of conversion (Table 12), corroborating findings 

by Asselen et al. (2013) [2] on wetland vulnerability in densely 

populated lowland areas. The vulnerability also presents 

natural disasters like flooding (Pricope & Shiver, 2022) [27]. 

This spatial correlation underscores the importance of 

incorporating both physical and socioeconomic variables 

when evaluating environmental change. 

 

6. Limitations and Recommendations 

This study faced several limitations, primarily stemming 

from data resolution and availability. The use of Landsat 

imagery with a 30-meter spatial resolution limited the ability 

to detect fine-scale wetland features, especially in 

heterogeneous landscapes. The 2000 image was particularly 

pixelated despite having a cloud cover of 7%. This impeded 

the accurate generation of ROIs and classification accuracy. 

Additionally, the absence of recent DEM and population 

density data constrained the analysis of topographic and 

demographic impacts. Future studies should incorporate 

higher-resolution satellite imagery, such as Sentinel-2 or 

commercial datasets, to improve classification detail. These 

improvements would support more effective wetland 

conservation strategies and monitoring frameworks for future 

studies. 

 

7. Conclusion 

Urbanization in Ikorodu (as in most parts of the world) is 

massive; this growing population pressure likely intensified 

the demand for land and resources, contributing to 

encroachment in wetland ecosystems. The inverse 

relationship between ancillary data implies that wetlands may 

be increasingly confined to more marginal, lower-elevation 

areas as urban and agricultural expansion takes precedence in 

more accessible zones. These insights underscore the need for 

integrated wetland management and policy interventions that 

balance land use with priority conservation. 
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