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Wetlands are crucial in environmental sustainability, supporting biodiversity, water
purification, flood control, and climate regulation. However, these ecosystems are
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datasets, the Digital Elevation Model (DEM) and WorldPop population density layers,
were analyzed using ArcGIS Pro. The results revealed a consistent decline in wetland
coverage, with a corresponding rise in population density and encroachment in low-
lying areas. Wetland zones at lower elevations showed greater susceptibility to
conversion, often replaced by built-up or agricultural land. The integration of ancillary
data proved critical for understanding the spatial drivers behind wetland degradation.
The findings contribute to the growing body of knowledge on sustainable land use and
emphasize the relevance of spatial tools in conserving ecologically sensitive areas.
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1. Introduction

Wetlands are important natural areas that support the environment, economy, and communities. However, human activities
damage these areas, causing them to shrink and lose their benefits. (EPA, 2018; UN-Habitat, 2010). The modification and
conversion of large natural, or agricultural, areas to built-up areas, can lead to loss of forests and wetlands, air quality impairment,
increase in impervious surfaces, reduced aquifer recharge, flooding, ecosystem, and landscape fragmentation, as well as
biodiversity loss (Fasona et al., 2007; Seifolddini & Mansourian, 2014) 16 29 Globally, wetland conservation has gained
increased attention due to the alarming rate at which these ecosystems are being degraded by anthropogenic activities,
particularly urbanization, land reclamation, and infrastructure development (Oyedepo & Oluyege, 2024; Peng et al., 2024) 2
%1, In Nigeria, they are declining due to rapid urbanization, land reclamation, and climate change (Ogunlade & Oluwole, 2022)
22 Fadipe et al., (2024) ¥ observed that Lagos State is a prime example of this problem since significant wetland degradation
has been brought on by the growth of real estate, people, and infrastructure. Over the past three decades, sand-filling,
uncontrolled housing projects, and industrialization have significantly reduced the amount of wetland in Ikorodu, a rapidly
urbanizing district inside Lagos State (Idowu et al., 2020; Ubaekwe & Engwoh, 2020; Fadipe et al, 2024) 1. 32.8], Remote sensing
(RS) and Geographic Information Systems (GIS) are essential tools in environmental monitoring and wetland conservation,
enabling researchers to detect, classify, and analyze land use and land cover (LULC) changes over time. (Fasona et al., 2007;
Klemas, 2011; Obiefuna et al., 2013; Tochukwu, 2024) [16. 1431 However, geospatial analysis alone is insufficient to explain
the drivers of environmental change (Oseni et al., 2020; Ju & Bohrer, 2022) 24 12],
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Integrating ancillary datasets like census records, land tenure
information, and hydrological datasets offers a more
comprehensive understanding of wetland degradation (Dong
et al., 2014; Kaplan & Avdan, 2017) [& 13, Prior research
focusing on wetlands that includes ancillary data is limited in
the study area (Gilbert & Shi, 2023; Fadipe et al., 2024;
Oyedepo & Oluyege, 2024) [0 25 8 This study employs
Landsat-based remote sensing techniques to analyze wetland
degradation in Ikorodu over 34-year intervals from 1990 to
2024, alongside elevation and population density (ancillary
dataset). It offers data-driven insights for wetland
conservation and ecosystem sustainability.

2. Study Area

This study was conducted for the Ikorodu Local Government
Area (LGA). It is located in the southwest part of Lagos state,
Nigeria (Figure 1) at latitude 6.6194° N and longitude
3.5105° E. Nigeria generally experiences two main seasons:
adry season and a rainy season. The dry season, characterized
by lower rainfall and humidity, typically lasts from
November to April. The rainy season, with more rainfall,
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usually begins in May and continues through October
(Climate Change Knowledge Portal, 2021). Lagos is the most
urbanized city in Nigeria, Africa's most populous country
(Gilbert & Shi, 2023) I, According to UN World
Urbanization Prospects, Ikorodu had a population of 8,645 in
1950, and current estimates place lkorodu's population at
1,145,220 in 2024 with a 4.75% annual change from the
previous year (WPR, 2024). Ikorodu LGA shares borders
with Ogun State to the north, the Lagos Lagoon to the south,
and the town of Agbowa-1kosi in Lagos State's Epe Division
to the east (Onuoha et al., 2025) %1, Due to social, economic,
and environmental effects, Ikorodu is Lagos State‘s most
peri-urbanized community (Mokunfayo & Babatunde, 2018)
[17], These characteristics make the study area an interesting
location for land cover analysis. In Ikorodu, vegetation
(primarily forests, grasslands, and other plant life) is a
significant landscape component, particularly in the rural
areas and along the lagoon. Wetlands, like swamps and
mangroves, also play a crucial role, especially along the

Lagos Lagoon and surrounding areas (Odunuga et al., 2018)
[21]
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Fig 1: The locations of both Lagos State and Ikorodu Local Government Area (LGA) on the map of Nigeria.

3. Materials and Methods

This study utilized four Landsat scenes corresponding to the
years 1990, 2000, 2013, and 2024 (Table 1) to examine
spatiotemporal changes in wetland cover. Specifically,
Landsat 4 Multispectral Scanner (MSS) data were used for
1990, Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
for 2000, Landsat 8 Operational Land Imager (OLI) for 2013,
and Landsat 9 Operational Land Imager 2 (OLI-2) for 2024.

All imagery was acquired from the United States Geological
Survey (USGS) Earth Explorer platform as Level 2 surface
reflectance products, which are atmospherically corrected
and georeferenced to ensure spatial consistency (USGS,
2023). The boundary shapefile (publicly available) was
acquired from the Nigeria Office of Surveyor General of the
Federation (OSGOF). The near-global digital elevation
model (DEM) of Earth's land surface, providing detailed
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elevation data, was collected by the Shuttle Radar
Topography Mission (SRTM). Population density, defined as
the number of people per square kilometer based on country
totals, was adjusted to match the corresponding official
United Nations population estimates. It represents the
estimated population density per grid cell and is supplied by
Woldpop. Information on the ancillary data, population
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density, and SRTM is also presented in Table 1. The SRTM
data is designed to have a vertical accuracy of approximately
16 meters (90% confidence). This means that at 90%
confidence, you can expect the SRTM elevation data to be
within 16 meters of the true ground elevation (Mukul et al.,
2017) 1281,

Table 1: Showing the date and spatial resolutions of the dataset. It includes both satellite imagery and ancillary data

NAME Date Spatial resolution
Landsat 4 1990/12/27 30 m (16% cloud cover)
Landsat 7 2000/02/06 30 m (7% cloud cover)
Landsat 8 2013/12/18 30 m (0.01% cloud cover)
Landsat 9 2024/12/08 30 m (0% cloud cover)
SRTM (DEM) 2005/02/01 3-Arc (Non-void filled) ~90m
SRTM (DEM) 2012/10/01 3-Arc (Void filled) ~90m
SRTM (DEM) 2014/09/23 1-Arc (Second Global) ~30m
Population density (UN Adjusted) 2000 1 km
Population density (UN Adjusted) 2013 1 km
Population density (UN Adjusted) 2020 1 km

3.1 Land Cover Classification

The land cover classification was carried out using the
Maximum Likelihood Classifier (MLC) in ENVI 6.0 (Figure
2). Before classification, preprocessing was conducted to
prepare all datasets for classification and analysis. Landsat
images were subset to the study area using the Ikorodu
boundary shapefile. Training and validation data were
derived from visually interpreted regions of interest (ROIs),
representing key land cover types, including wetlands, urban
vegetation, and water. Google Earth Pro imagery was used to
identify the ROIs in the Landsat imagery. Each Landsat
image was classified independently, using spectral bands 1-
7 for Landsat 4 and 7 and bands 2—7 for Landsat 8 and 9 to
exclude the coastal band (USGS, 2023). The MLC algorithm
assumes a normal distribution of class signatures and assigns
each pixel to the class with the highest probability. Classified
maps were validated using reference points and confusion
matrices. The specific years for the 34-year interval period
were 1990, 2000, 2013, and 2024. The year 2013 was
substituted for 2010 because of the scan line error in 2010,
and using 2024 was to depict the most recent development as
of the time of this analysis.

3.2 Accuracy Assessment

An accuracy assessment (Figure 2) was conducted to validate
the classification results of each Landsat scene. A confusion
matrix was generated in ENVI using independently collected
ground truth samples from the Landsat imagery as validation
datasets for the four years. Google Earth Pro imagery was
used to identify ground truth samples in the Landsat imagery.
The samples were randomly stratified across all land cover
classes, ensuring adequate representation. All pixels for both
the training and validation datasets for each feature across the
four years were above 700 pixels. Metrics, including overall
accuracy, users' and producers' accuracy, and the Kappa
coefficient, were computed to evaluate classification
performance. An overall accuracy threshold of at least 85%
was targeted, in line with standard remote sensing protocols
(Congalton & Green, 2009) ™. Discrepancies in class

assignments were analyzed to refine training data for future
iterations. Accuracy assessment ensured the reliability of the
change detection and spatial analysis results.

3.3 Change Detection Analysis

Change detection (Figure 2) was performed to quantify land
cover transformations over three decades (1990-2024). The
classified Landsat images from each year (1990, 2000, 2013,
and 2024) were compared using ENVI's Thematic Change
Detection tool, which computes pixel-by-pixel transitions
between defined classes. This enabled the identification of
spatiotemporal dynamics in wetland cover, including
degradation, expansion, or conversion to other land uses. A
change matrix was generated for each decadal interval to
quantify gains, losses, and persistence of land cover types.
These outputs were crucial for understanding the patterns and
drivers of wetland loss. The analysis was restricted to
consistently classified pixels, and ambiguous or mixed
classes were excluded to improve accuracy. This method
supports multi-date comparisons and provides robust
statistics for land management and policy formulation (Lu et
al., 2004).

3.4. Impact analysis

Population density data provided a proxy for human pressure,
while DEM helped identify elevation-related constraints to
wetland distribution. Zonal Statistics as a Table was
employed in ArcGIS Pro to quantify the relationship between
DEM and population density. This process served as the
impact analysis (Figure 2) in this study. After ensuring the
alignment of all datasets through the Project Raster tool,
Zonal Statistics was applied using the classified map as the
zone raster. This method calculated statistical measures such
as mean, sum, and standard deviation of the value raster
within each land cover class. Only the mean was used for
comparison in this study. The resulting table provided a
detailed comparison of environmental and demographic
attributes across classes.
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Fig 2: Showing the methodology flowchart for this study.

4. Results

4.1. Supervised classification

A supervised classification using the Maximum Likelihood
Classifier (MLC) was performed in ENVI to categorize the
study area into distinct land cover classes, including
wetlands, vegetation, built-up areas, and water bodies.
Regions of Interest (ROIs) were manually digitized based on
expert knowledge and visual interpretation of the Landsat
imagery. ROl separability was assessed using the
Transformed Divergence (TD) metric, with all class pairs
yielding values above 1.9 (Table 3), indicating excellent
spectral separability and minimal overlap between land cover
categories. However, the discrepancy in the hundredths place

in the values in Table 3 stems from the manual digitization
process. For example, the low values recorded (training and
validation) in the hundredths place in 2000 were due to the
imagery being more pixelated than others. Likewise, the low
values in the validation dataset for both 2013 and 2024 were
due to the inability to obtain additional fine pixels for ROIs,
especially for wetlands and vegetation. Overall, this high
separability (above 1.9) supported the reliability of the
classification results. The output classified map provided a
detailed spatial representation of land cover distribution and
formed the basis for subsequent change detection and zonal
statistical analysis.

~

Classified map of Ikorodu in 1990 using MLC A

Classified map of Ikorodu in 2013 using MLC A

3(a): MLC classification result for Ikorodu in 1990

3(b): MLC classification result for Ikorodu in 2000
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Classified map of Ikorodu in 2000 using MLC

Classified map of Ikorodu in 2024 using MLC A

3(c): MLC classification result for Ikorodu in 2013

3(d): MLC classification result for Ikorodu in 2024

Fig 3: Showing the MLC classification result for Ikorodu from 1990 to 2024 (a-d). The four classes in the classification are identified with
various colors in the legend

Table 3: Showing the ROI separability results for the training and validation datasets for the four years.

ROI Separability Result
Classes 1990 2000 2013 2024
Training Data Validation Data Training Data Validation Data
Vegetation and Wetlands 1.999 1.999 1.970 1.940
Urban and Vegetation 1.997 1.993 1.997 1.996
Water and Urban 1.998 1.999 1.999 2
Urban and Wetlands 1.999 1.999 2 1.999
Water and Wetlands 2 2 2 2
Water and Vegetation 2 2 2 2

The classified maps for the four years were highlighted in
Figure 3.

The panel signifies the Land Use Land Cover (LULC)
dynamics over the 34-year interval. The four classes are
Vegetation, Wetland, Urban, and Water. Panel (a) shows the
distribution of the LULC across four classes in 1990. Panel
(b) shows the distribution of the LULC across four classes in
2000. Panel (c) shows the distribution of the LULC across
four classes in 2013, and Panel (d) shows the distribution of
the LULC across four classes in 2024.

4.2 Accuracy assessment (confusion matrix)

Classification accuracy was further verified using a
validation dataset and a confusion matrix, confirming that the
method produced dependable thematic maps for temporal
comparison and environmental analysis. The result is
presented in Table 4(a—d) representing the years 1990, 2000,
2013, and 2024, respectively. The overall accuracy across the
four years exceeded 88%, while the Kappa coefficient was
0.80, indicating strong agreement beyond chance. While
most of the overall accuracy was above 90%, the lowest
overall accuracy of 88.962% was recorded in 2000 (Table 4b)
and is attributed to the pixelated image as explained by the
ROI separability result (Table 3). Furthermore, the kappa
coefficients in 1990 (Table 4a) and 2013 (Table 4c) was in
there in the 0.90 range, but the kappa coefficients in 2000
(Table 4b) and 2024 (Table 4d) were 0.82 and 0.88,
respectively. The producers’ accuracy for Urban and Water
was above 90% across the four years, but it wasn’t the same
for Wetland and Vegetation. In 2020, the producer accuracy
for Wetlands was 56% while vegetation was 99%, which
explains why about 44% of the Wetland pixels were

classified as Vegetation. A similar trend was observed in
2013 (Table 4c), where Wetland pixels (81%) were classified
as Vegetation (14.8%) and Urban (4%). Despite this, the
classification results were deemed robust and suitable for
spatiotemporal analysis through the overall accuracy and
kappa coefficients.

Table 4 a-d: The confusion matrix table panel for the classified
image from 1990 to 2024 (a-d).

4(a): 1990 confusion matrix

Overall Accuracy = 99.8248%
Kappa Coefficient = 0.9966
Reference (Percent)

Class Water Urban  Vegetation Wetland  Total

Unclassified 0 0 0 0 0

Water 99.95 0 0 0 66.32

Urban 0.05 99.87 0.5 0.08 5.87

Vegetation 0 0.13 99.17 0.24 9.14

Wetland 0 0 033 99.67 18.67

Total 100 100 100 100 100
4(b): 2000 confusion matrix

Overall Accuracy = 88.9622%
Kappa Coefficient = 0.8249

Reference (Percent)

Class Vegetation Wetlands Urban Water Total
Unclassified (1] 0 0 0 0

Vegetation 99.19 43.18 0.59 0 2295
Wetlands 0 56.82 0 0 14.29
Urban 0.81 0 99.41 0.06 8.06
Water 0 0 0 99.94 54.7
Total 100 100 100 100 100
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4(c): 2013 confusion matrix

Overall Accuracy =97.2709%
Kappa Coefficient = 0.9435
Reference (Percent)

Class Water Urban Vegetation  Wetlands  Total
Unclassified 0 0 0 0 0
Water 99.93 0 0 0 69.53
Urban 0.07 100 2.12 412 12.72
Vegetation 0 0 97.7 14.82 6.75
Wetlands 0 0 0.18 81.06 10.99
Total 100 100 100 100 100

4(d): 2024 confusion matrix

www.allmultidisciplinaryjournal.com

That were wetlands in the base year but changed to other
classes in subsequent years. Overall, the 34-year change in
Ikorodu (Table 5) revealed a consistent decline in wetland
coverage across the decades, with notable 15.93%
conversions to Vegetation (agricultural land) and 8.39% to
Urban (built areas). It is also important to note that the
Wetland conversion to vegetation was influenced by the
aggressive conversion of the latter to Urban areas
(Aigbokhan, 2019). Over 24% of Vegetation was turned into
Urban between 1990 and 2024 (Table 5).

Table 5: Showing the overall thematic change result from 1990 to
2024. 1t highlights the area and percentage of each feature change.

Overall Accuracy = 93.5652% 1990 2024 Area (m?) Percent (%)
Kappa Cosfficient =05813 Urban Urban 33,575,400 5.89
R Urban Water 3,141,900 0.55
Class Urban Water Vegetation Wetlands Total Urban VEQEtatiOH 13,386,600 2.35
Unclassified 0 0 0 0 0 Urban Wetland 10,754,100 1.89
;‘:: 59-8 252;7 g~79 8-13 333; Vegetation Urban 140,293,800 24.59
Vegetation 02 0 - 93 271 11:0; Vegetation Water 0 0.00
Wetlands 0 0 021 72.77 15.72 Vegetation | Vegetation 43,420,500 7.61
Total 100 100 100 100 100 Vegetation Wetland 1,284,300 0.23
Water Urban 8,091,000 1.42
4.3 Thematic change detection Water Water 134,564,400 23.59
Thematic change detection was carried out to evaluate land Water Vegetation | 5,565,600 0.98
cover transitions, specifically focusing on the conversion of Water Wetland 49,500 0.01
. Wetland Urban 47,861,100 8.39
wetlands to other land cover classes. Using the post- Wetland Water 111600 0.02
classification comparison method in ENVI, classified maps Wetland Vegetation | 90 87’6 600 15'_93
for 1990 to 2024 were prepared (Figure 4). The process also Wetland Wetland 37: 457:100 657

generated a detailed change detection matrix indicating areas
Overall changes in wetland from 1990 to 2024 l

Legend
Wetland
changes

Sllkorodu

Fig 4: The overall wetland changes between 1990 and 2024. The extent reveals areas that were identified as wetlands in 1990 but are no
more wetlands in 2024. This summarizes the changes across the entire 34-year interval.

4.4 Impact analysis

Zonal Statistics as a Table was employed in ArcGIS Pro to
quantify the relationship between land cover classes and
ancillary datasets, specifically DEM and population density.
The impact analysis in Table 6 reveals a consistent decline in
the average elevation of wetland areas alongside a notable
increase in population density from 2000 to 2013 (Oseni et
al.,2020; Ju & Bohrer, 2022; Yager et al., 2024) 2412, The
mean DEM value for wetlands decreased from 18.5m in 2005
to 9,9m in 2012 and 10m in 2014. This suggests either a
physical lowering of wetland terrain, potentially due to
erosion, subsidence, or drainage, or a spatial shift of wetlands

into slightly lower-lying areas over time. Simultaneously,
population density rose from 387 to 912 people per square
km, a 57.6% increase over a decade. Since the most recent
data for DEM was from 2014, comparing it with the classified
image of 2024 might be a bit of an overstretch, as shown by
the 9.2m result (Table 6). Similarly, the most recent
population density available was for 2020, and the reduction
could be attributed to COVID. However, the impact analysis
(Table 6) implies that the growing population pressure likely
intensified the demand for land and resources, contributing to
encroachment on wetland ecosystems.
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Table 6: Showing the impact analysis between the classified images and the ancillary data. The impact analysis shows the relationship
between the classified map each year and the corresponding ancillary data.

Year Land Cover Mean DEM (m) Mean Population Density (people/km?)
2000 Wetlands 18.506 (2005) 387.151
2013 Wetlands 9.941 (2012), 10.067 (2014) 912.197
2024 Wetlands 9.228 (2014) 880.370 (2020)
2000 Vegetation 19.066 (2005) 1,179.576
2013 Vegetation 22.093 (2012), 21.537 (2014) 1,155.409
2024 Vegetation 16.462 (2014) 1,443.638 (2020)
2000 Urban 19.199 (2005) 2,358.845
2013 Urban 19.435 (2012), 19.294 (2014) 2,285.597
2024 Urban 22.144 (2014) 2,606.112 (2020)
2000 Water 0.005 (2005) 543.090
2013 Water 0.022 (2012), 0.004 (2014) 422.184
2024 Water 0.007 (2014) 616.808 (2020)
5. Discussion higher-resolution satellite imagery, such as Sentinel-2 or

The findings of this study align with several previous works
highlighting wetland decline due to anthropogenic pressures
(UN-Habitat, 2010; Seifolddini & Mansourian, 2014; Zhou
et al., 2018; Ogunlade & Oluwole, 2022) 12221, The classified
land cover maps (Figure 3) revealed a clear reduction in
wetland areas between 1990 and 2024, consistent with global
trends reported by Davidson (2014) Bl and Seto et al. (2010)
39 who documented widespread wetland loss driven by
urban expansion and agricultural encroachment. The
confusion matrix results (Table 4) demonstrated high
classification accuracy, with overall accuracies exceeding
85% and kappa coefficients indicating strong agreement
(Foody, 2020) I, This validates the effectiveness of the MLC
method applied in ENVI (Nv5, 2024; Richards & Jia, 1999)
28] Thematic change detection analysis (Table 5) further
confirmed that a significant proportion of wetlands were
converted into built-up and farmland classes over time
(Dekolo & Olayinka, 2015; Adedire & Adegbile, 2018;
Aigbokhan, 2019; Oyedepo & Oluyege, 2024) I 251, |t seems
that increasing demand from urbanization on wetlands led to
the detour of vegetation (Aigbokhan, 2019) M. Furthermore,
the Integration of DEM and population density (ancillary
datasets), provided insight into the topographical and
demographic drivers (Table 6) of these changes to wetland
conservation (Oseni et al., 2020; Ju & Bohrer, 2022) 24 12,
This was highlighted in the impact analysis from Zonal
statistics, which revealed that wetland areas with lower
elevation and increasing population densities experienced the
highest rates of conversion (Table 12), corroborating findings
by Asselen et al. (2013) 2 on wetland vulnerability in densely
populated lowland areas. The vulnerability also presents
natural disasters like flooding (Pricope & Shiver, 2022) 27,
This spatial correlation underscores the importance of
incorporating both physical and socioeconomic variables
when evaluating environmental change.

6. Limitations and Recommendations

This study faced several limitations, primarily stemming
from data resolution and availability. The use of Landsat
imagery with a 30-meter spatial resolution limited the ability
to detect fine-scale wetland features, especially in
heterogeneous landscapes. The 2000 image was particularly
pixelated despite having a cloud cover of 7%. This impeded
the accurate generation of ROIs and classification accuracy.
Additionally, the absence of recent DEM and population
density data constrained the analysis of topographic and
demographic impacts. Future studies should incorporate

commercial datasets, to improve classification detail. These
improvements would support more effective wetland
conservation strategies and monitoring frameworks for future
studies.

7. Conclusion

Urbanization in Ikorodu (as in most parts of the world) is
massive; this growing population pressure likely intensified
the demand for land and resources, contributing to
encroachment in  wetland ecosystems. The inverse
relationship between ancillary data implies that wetlands may
be increasingly confined to more marginal, lower-elevation
areas as urban and agricultural expansion takes precedence in
more accessible zones. These insights underscore the need for
integrated wetland management and policy interventions that
balance land use with priority conservation.
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