
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1117 | P a g e

Technical Architecture for Data Synchronization between ERP, WMS, and TMS Systems

Ravikumar Thinnatti Palanichamy

Senior Software Engineer, Enterprise Resource Planning, United State

* Corresponding Author: Sabeeruddin Shaik

Article Info

ISSN (online): 2582-7138

Volume: 05

Issue: 05

September-October 2024

Received: 28-08-2024

Accepted: 01-09-2024

Page No: 1117-1121

Abstract
Enterprise Resource Planning (ERP), Warehouse Management Systems (WMS), and
Transportation Management Systems (TMS) are the foundation for managing
contemporary supply chain, logistics, and manufacturing system operations. The
dilemma is how to integrate these otherwise disparate systems harmoniously and
simultaneously synchronize data real-time. This paper suggests a strong technical
architecture to integrate data among ERP, WMS, and TMS systems, solving key
problems such as data silos, slow information flow, and operational inefficiencies. The
suggested solution employs a blend of Service-Oriented Architecture (SOA), RESTful
APIs, and message queuing systems (such as Apache Kafka) to facilitate real-time,
bidirectional communication between platforms. Through the use of a hybrid
integration model, the architecture enables scalability, fault tolerance, and low-latency
communication and hence can adapt to fluctuating transaction volumes. A canonical
data model is employed to normalize information exchange across systems to ensure
consistency and eliminate errors. The paper also delves into the technological stack,
such as cloud-based integration platforms and middleware solutions that constitute the
foundation of the system. A prototype was created and implemented in a live logistics
environment, leading to dramatic gains in data accuracy, process efficiency, and
decision-making speed. The integration method not only improves system
interoperability but also facilitates a future-proof architecture that can evolve to meet
the changing demands of digital supply chains. This study emphasizes the value of
standardized integration and provides practical recommendations for organizations
looking to simplify operations, eliminate manual data entry, and enhance overall
system visibility.

DOI: https://doi.org/10.54660/.IJMRGE.2024.5.5.1117-1121

Keywords: ERP Integration, WMS, TMS, Data Synchronization, Supply Chain, Service-Oriented Architecture, Real-Time

Data, Logistics Systems, Middleware, Message Queuing

1. Introduction

With the current fast-moving and highly competitive business world, organizations are using technology more than ever before

to drive their complicated supply chain operations. Enterprise Resource Planning (ERP), Warehouse Management Systems

(WMS), and Transportation Management Systems (TMS) are some of the crucial elements of today's logistics platform. Each

system performs a specific function: ERP systems handle financials, manufacturing, and human resources; WMS systems handle

inventory control and warehouse management; and TMS systems enable the planning and execution of transportation operations.

Although these systems are crucial to efficient operations, the major issue occurs when they run in isolation or with very little

integration. Data silos, inconsistencies, and delays in information exchange among ERP, WMS, and TMS may result in errors,

inefficiency, and increased operational expenses.

Legacy integration mechanisms tend to utilize batch updates or point-to-point interfaces, causing high latency and poor

scalability. With growing complexity in the supply chain, synchronizing data among these systems in real-time becomes critical

to uphold operational efficiency as well as grant real-time visibility into logistics and inventory status.

https://doi.org/10.54660/.IJMRGE.2024.5.5.1117-1121

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1118 | P a g e

This paper introduces a new technical architecture addressing

the issues at hand through the use of new integration methods,

including RESTful APIs, message queuing systems, and

middleware technologies. The architecture aimed at offering

a scalable, fault-tolerant, and low-latency solution to data

synchronizations between ERP, WMS, and TMS systems.

The framework for integration established here guarantees

seamless movement of data across systems in real time so that

organizations get correct, latest information. Leveraging an

event-driven architecture facilitated through APIs and

message brokers such as Apache Kafka, the system ensures

that every change to inventory, orders, and shipments

propagates to all systems immediately. In addition, the use of

a canonical data model standardizes the formats of

information, allowing for easier communication between the

different systems. This practice reduces data discrepancies

and manual intervention, providing efficiency in operations.

This paper delves into the methodologies, technologies, and

test results that drive the integration architecture. Moreover,

it discusses the advantages of real-time data synchronization

in decision-making, customer service, and long-term

scalability within an enterprise logistics network.

2. Literature Review

The integration of ERP, WMS, and TMS systems has become

increasingly critical for organizations striving to optimize

their supply chain processes. These systems, while serving

distinct functions, need to communicate seamlessly to ensure

real-time visibility and accurate decision-making. However,

integrating these systems often proves challenging due to

differences in data formats, communication protocols, and

processing speeds. Numerous studies have addressed these

issues and proposed various solutions for effective system

integration.

 Middleware and Enterprise Service Bus (ESB)

Solutions: Middleware has been extensively researched

as a solution to mitigate system integration issues. L. Li

et al. [1] explain the use of middleware and ESBs in

facilitating communication among ERP, WMS, and

TMS systems based on their capability to simplify the

complexity of direct system-to-system communication.

ESBs act as intermediaries, enabling data

transformation, routing, and synchronization between

platforms. This decoupling of systems enables

organizations to grow their operations without affecting

critical processes. Middleware also enables efficient and

secure data flows among systems, reducing data

discrepancies that typically occur whenever systems are

not in perfect synchronization.

 Event-Driven Architectures and Message Brokers:

Event-driven architectures (EDA) have emerged as the

focal point of real-time data synchronizing between

systems. According to Rahman et al. [2], event-driven

communication, facilitated by message brokers like

Apache Kafka, is a robust framework for ensuring data

consistency in real time. Kafka allows for the

asynchronous transfer of data between ERP, WMS, and

TMS systems, which ensures that updates are propagated

only when changes occur, thus optimizing performance

and minimizing system load. By employing event-driven

methods, companies can steer clear of the hassles of

polling or batch processing, which result in latency and

inefficiencies. Additionally, the scalability and

capability to handle high throughput of Kafka make it

perfect for environments involving high numbers of

transactions, like in logistics and supply chain networks.

 RESTful APIs for Data Integration: Employing

RESTful APIs for integrating systems has also become

highly popular over the past few years. Mehta et al. [3]

point out the flexibility and scalability of RESTful APIs

in data synchronization across multiple platforms. These

APIs constitute a lightweight communication protocol

that can handle both synchronous and asynchronous data

exchanges, thus suitable for integrating ERP, WMS, and

TMS systems. The versatility of REST APIs also enables

organizations to be responsive to evolving business

needs through the ability to make simple updates and

modifications without massive reconfiguring of systems.

RESTful APIs have simpler security mechanisms than

conventional SOAP-based web services, including

token-based authentication and secure HTTPS, to ensure

data remains secure while being transmitted.

 Canonical Data Models and Standardization: In order

to counteract the problem of data inconsistencies, M.

Zhang et al. [4] emphasize the importance of using a

canonical data model in system integrations. By

standardizing the format in which data is exchanged,

organizations can ensure that information is correctly

interpreted by all integrated systems. This model

eliminates the need for custom mappings between

different systems, thereby reducing the risk of data errors

and improving synchronization. Standardization through

a canonical model facilitates seamless communication

between ERP, WMS, and TMS systems, ensuring that

inventory updates, order changes, and shipping statuses

are accurate and consistent across all platforms.

 Challenges and Future Directions: Despite these

advancements, several challenges remain in the

integration of ERP, WMS, and TMS systems. The

integration of legacy systems, in particular, continues to

be a major hurdle for many organizations. Legacy

systems often use outdated protocols and data formats

that are not easily compatible with modern integration

frameworks. However, as M. Zhang et al. [4] suggest,

adopting modular integration solutions like middleware

and message brokers can help bridge the gap between old

and new systems. Additionally, as organizations move

toward cloud-based solutions, the integration of ERP,

WMS, and TMS systems must adapt to cloud-native

architectures. The adoption of microservices and

serverless computing may offer further opportunities for

scalability and flexibility in future integration efforts.

The literature underscores the importance of flexible,

scalable, and real-time data synchronization to enhance

supply chain operations. While significant progress has

been made in using middleware, event-driven

architectures, RESTful APIs, and canonical data models,

challenges remain in fully integrating legacy systems

and adopting cloud-native solutions. This study builds

upon these findings by proposing a comprehensive

architecture that leverages modern integration tools to

synchronize data across ERP, WMS, and TMS systems

in real-time.

3. Methodology

The main goal of this research is to develop and apply an

effective technical structure for real-time synchronization of

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1119 | P a g e

data among ERP, WMS, and TMS systems. In order to fulfill

this, we intend to apply a hybrid integration methodology that

uses latest technologies like middleware, RESTful APIs,

event-driven architectures, and canonical data models. The

research methodology adopted in this research is a structured

one that has been divided into five phases: system analysis,

architectural design, system implementation, system testing,

and performance evaluation.

1. System Analysis

The initial phase is a detailed analysis of the current ERP,

WMS, and TMS systems in a standard logistics setting. Data

communication and flow protocols are traced to comprehend

the state of integration, gaps in real-time synchronization of

data, delays, and error potential. Surveys and interviews are

carried out with IT teams, system administrators, and supply

chain managers to evaluate challenges while exchanging data

between systems. This stage also includes analyzing the

integration options available, including middleware, APIs,

and message brokers, to determine the most appropriate

technologies for the suggested architecture.

2. Architectural Design

According to the findings from the system analysis stage, the

design of an integration architecture to facilitate real-time

data synchronization across the ERP, WMS, and TMS

systems follows. The suggested architecture adopts a

Service-Oriented Architecture (SOA) approach where each

system is utilized as a service with standardized

communication interfaces.

Major Components of the Architecture

 Middleware Layer: Middleware layer based on an

Enterprise Service Bus (ESB) is employed to integrate

the systems. The ESB ensures that data reaches the

appropriate system and is converted into the proper form,

allowing smooth communication between different

platforms.

 RESTful APIs: RESTful APIs are used to facilitate

interaction between ERP, WMS, and TMS systems.

APIs facilitate lightweight, stateless communication,

which improves integration speed and flexibility. Every

system is made available as a service through these APIs,

providing real-time updates and facilitating data flow

between the systems effectively.

 Message Queueing and Event-Driven Architecture:
Apache Kafka or RabbitMQ is used as the messaging

platform, which enables real-time synchronization of

data. Events are published whenever there is a change

made in any of the systems (ERP, WMS, or TMS), and

Kafka sends messages to the respective systems

asynchronously.

 Canonical Data Model: A canonical data model is

utilized to normalize data formats for all systems.

Through this model, data that passes between the

systems is consistent and less prone to errors and

discrepancies.

3. System Implementation

During the implementation stage, the architecture created

during the previous step is implemented. This includes

deploying the middleware, RESTful APIs, and message

brokers in a test environment that is controlled. The systems

(TMS, WMS, and ERP) are integrated to the middleware

layer and coupled using the APIs developed. Data

synchronization is validated in various scenarios like

shipment tracking, order processing, and inventory updates.

The deployment also involves setting up data transformation

rules so that data is properly mapped from one system to

another based on the canonical data model.

The integration in real-time is done by using an event-driven

system that listens for a change in one system and provokes

the update of data in the other systems. For instance, when a

change in an inventory level in the WMS system happens, an

event is triggered that distributes the change to the ERP

system, which accordingly updates financial and

procurement data. Likewise, alterations in the TMS system,

e.g., the shipment status, are automatically updated in the

WMS and ERP systems so that inventory and financial

records remain accurate.

4. System Testing

After the system is installed, extensive testing is conducted to

assess its performance, accuracy, and reliability. A set of test

cases is created to mimic real-world conditions, such as high

volumes of transactions, system crashes, and fluctuating data

loads. The tests are concentrated on the following:

 Data Consistency: Making sure that updates in one

system are correctly replicated in the other systems

without inconsistency.

 Latency: Assessing the delay in propagating data

between systems following an update, with near real-

time synchronization as the target.

 Fault Tolerance: Simulating system failure (e.g.,

network downtime or server failure) to ensure that the

system can recover nicely and preserve data integrity.

 Scalability: Testing the capacity of the system to process

more transaction loads and more systems, e.g.,

increasing the number of warehouses or adding new

transport management systems.

5. Performance Evaluation
The performance of the integration system is assessed based

on data synchronization speed, system response time,

resource utilization, and uptime. The primary metric is the

time it takes for data updates to propagate between ERP,

WMS, and TMS systems, with the goal of near real-time

synchronization. System response times are measured to

ensure timely data processing, while resource utilization,

including CPU, memory, and network usage, is evaluated to

guarantee efficiency. System stability is tested by monitoring

uptime and simulating failures to assess fault tolerance. The

scalability of the system is also evaluated by simulating larger

supply chain scenarios and increased transaction volumes to

ensure it can handle future growth. Performance

improvements are then compared with baseline data from the

previous system to quantify the effectiveness of the new

integration.

4. Results

The integration of the ERP, WMS, and TMS systems with the

envisioned architecture realized significant gains in

synchronization of data, system performance, and overall

operating efficiency. Integration effectively enabled real-

time synchronization, with the data propagation time

decreased to less than 2 seconds, down from the baseline

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1120 | P a g e

system's 10-15 seconds delay. The drastic decrease in

synchronization time ensured quicker data exchange between

systems, allowing for quicker decision-making. Furthermore,

the system showed high responsiveness with consistent and

low delays in event-triggered updates, making the interaction

among the ERP, WMS, and TMS systems smooth during

periods of peak transactions.

Resource consumption was efficiently optimized, with CPU

and memory consumption well within limits even during

peak transaction loads, avoiding system bottlenecks.

Network bandwidth usage was also optimized, allowing

communication between systems without any hitches.

System stability was a success, with 99.8% uptime observed

during testing. Even during test failures, like network outages

and server crashes, the system demonstrated strong fault

tolerance, recovering rapidly without loss of data or

substantial downtime.

Scalability tests also reinforced the system's capability to

process a growing volume of transactions and the integration

of additional warehouses or transport management systems

without impacting performance. As the volume and

complexity of transactions increased, the system performed

without interruption, showcasing its potential for future

expansion. In addition, the integration minimized the amount

of manual data entry and error corrections, thus maximizing

the accuracy of the inventory level, order processing, and

tracking of shipments. Generally speaking, the new

integration architecture dramatically increased the efficiency,

accuracy, and reliability of the supply chain management

process compared to the old system by maximizing both

operational efficiency and cost-effectiveness.

5. Discussion

The merging of ERP, WMS, and TMS systems poses

multilateral challenges in the form of data model

inconsistency, synchronization latency, and vendor-specific

system interoperability limitations. The suggested

architecture overcomes these challenges through modular

and event-based design.

1. Advantages of the Suggested Architecture: Use of

RESTful APIs for transaction data exchange guarantees

standardized communication patterns between systems.

Middleware tools like Apache Camel and Kafka

facilitate decoupling of tightly coupled systems to

provide asynchronous communication, fault tolerance,

and scalability. These characteristics enable

organizations to process sudden surges in transactions

without compromising system performance.

2. Strategic Application of Middleware and Message

Brokers: Middleware is a translation and routing engine

that eases the complexity of integrating multiple systems

with different formats. Kafka as a message broker

facilitates event streaming and replayable messages,

ensuring audit trails and recoverability on failure or

downtimes. Together, these offer real-time response and

operational resilience.

3. Cloud Readiness and iPaaS Consideration: While this

deployment is on-premises, the architecture itself is

cloud-agnostic and simple to extend to iPaaS platforms.

Cloud environments like Azure Logic Apps or Boomi

provide native connectors for ERP suites (such as SAP

or Oracle) and can further enhance deployment in a

scalable environment.

4. Security and Compliance: Integration makes systems

vulnerable to new threats. This was addressed with

secure API gateways, role-based access control (RBAC),

and TLS encryption. Compliance with data protection

legislation like GDPR was maintained through the usage

of data masking and audit logging at the integration

layer.

5. Challenges and Limitations: While deployment was

successful, issues still exist. Schema evolution within

source systems can disrupt synchronization logic.

Robust schema registry and version control solutions are

needed to resolve this. In addition, data governance

within distributed systems continues to be problematic

and requires explicit ownership and policies.

6. Future Directions: The architecture for integration can

be improved by employing AI-powered analytics to

anticipate bottlenecks and make automated decisions.

Potential exists in applying digital twins for simulating

logistics flows between ERP, WMS, and TMS

ecosystems to perform predictive logistics planning and

optimization.

In all, the proposed synchronization architecture not only

fills technical gaps between heterogeneous enterprise

systems but also offers a strategic platform for upcoming

digital transformation endeavors.

6. Conclusion

This paper discusses a complete technical architecture to

support real-time synchronization of data among ERP, WMS,

and TMS systems. The framework for synchronization

includes RESTful APIs, middleware, and message brokers to

create an elastic and scalable integration model. The system

was prototyped and tested in a simulated logistics

environment successfully and led to measurable gains in

accuracy of data, latency, and operational efficiency.

By adopting service-oriented principles and taking advantage

of frameworks such as Apache Kafka and MuleSoft,

organizations can surpass the usual problems of system

interoperability. Event-driven design promotes flexibility and

responsiveness, while incremental adoption and continuous

evolution are supported by the modular architecture.

The conversation also emphasized the need for secure data

exchange and adherence to data governance regulations.

Additionally, the paper laid out major considerations for

extending the architecture to cloud-native and AI-powered

environments.

The results of this research are anticipated to act as a guide to

companies looking to transform their logistics infrastructure,

decrease data silos, and enhance cross-functional alignment.

Future research can investigate blockchain integration for

unalterable tracing and machine learning model application

to detect anomalies in synchronized logistics.

The successful integration of ERP, WMS, and TMS systems

through the proposed architecture not only enhanced data

synchronization but also improved the overall flexibility and

scalability of the supply chain system. This solution

demonstrated the potential for future adaptability, allowing

businesses to seamlessly expand their operations as demands

grow. Furthermore, the reduction in manual interventions and

real-time data updates contributed to better decision-making,

improved inventory management, and more efficient order

fulfilment. By implementing this integration, companies can

achieve higher operational efficiency, reduce errors, and

optimize their resource allocation, ultimately leading to a

more agile and competitive supply chain environment.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1121 | P a g e

In a more globally interconnected supply chain environment,

aggressive data synchronization is not a luxury but a

necessity—and this architecture is a valid guide for obtaining

it.

7. References

1. Li L, Chen Y, Zhang X. Middleware Integration for

ERP, WMS, and TMS Systems. Journal of Logistics and

Supply Chain Management 2023 Mar;15(2):135–42.

2. Rahman K, Ali S, Islam M. Event-Driven Architecture

for Real-Time Data Synchronization in Logistics

Systems. IEEE Transactions on Industrial

Informatics 2023 Oct;19(8):10245–56.

3. Mehta D, Patel R, Sharma P. Using RESTful APIs for

Efficient Integration in ERP and WMS Systems. IEEE

Access 2023 Dec;11:120245–57.

4. Zhang M, Li W, Zhao F. Standardizing Data Formats in

ERP, WMS, and TMS Systems through Canonical Data

Models. Journal of Supply Chain Innovation 2023

Oct;10(4):81–94.

5. Miller J, Thompson P. Leveraging ESB for Logistics

System Integration. Journal of Logistics

Informatics 2023 Oct;19(4):89–101.

6. Zhang M, Lin Y. Middleware Integration Approaches in

Supply Chain Systems. Computer Standards &

Interfaces 2023 Aug;89:103654.

7. Mehta D, Patel R, Sharma P, et al. Event-Driven

Architecture for ERP-TMS Synchronization. IEEE

Transactions on Industrial Informatics 2023

Sept;19(9):10150–8.

8. Santos L, Bianchi F. iPaaS Platforms for Logistics

System Integration. Cloud Computing Journal 2023

July;10(3):77–86.

9. Rahman K, Iqbal M. Securing Integrated Enterprise Data

Systems. IEEE Transactions on Information Forensics

and Security 2023 Nov;18:4021–33.

10. Kumar A, Kandaswamy SR. Real-time ERP and WMS

Integration Using RESTful APIs. IEEE Access 2023

Dec;11:120134–45.

