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Abstract 

The global public health scenario requires fast, smart, and 

responsive surveillance mechanisms with early anomaly 

detection and real-time response. Centralized cloud-based 

systems, being traditionally common, tend to be plagued with 

latency, bandwidth constraints, and privacy concerns, 

making them suboptimal for mission-critical public health 

solutions. This article discusses how Edge Computing and 

Artificial Intelligence (AI) integration can be used to improve 

real-time public health monitoring systems. By deploying 

computational power near sources of data and placing smart 

algorithms closer to the sources, edge-AI systems offer 

quicker response times, reduced bandwidth usage, and 

increased data privacy. We compare state-of-the-art edge-AI 

frameworks, review new advances in public health 

monitoring by leveraging such technologies, and outline a 

multi-layer design geared towards outbreak detection, 

contact tracing, and environmental sensing. Experimental test 

runs utilizing public health benchmark data sets exhibit 

reductions in latency, accuracy, and scalability relative to 

traditional cloud infrastructures. The study makes its 

contribution to a widening debate concerning decentralized 

health intelligence and establishes an architectural pathway 

towards future intelligent smart health infrastructure. 

Additionally, the work provides opportunities for greater 

expansion of healthcare equity by making sustainable health 

surveillance capabilities available for geographically 

dispersed remote or underserved areas at a minimal 

infrastructural footprint. 
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1. Introduction 

Public health infrastructure is transforming at a faster rate in response to the growing global health challenges in the form of 

infectious disease outbreaks, chronic disease burdens, and health issues related to climate change. The COVID-19 pandemic 

exposed the shortfalls in existing public health infrastructure in terms of the incapacity of central platforms to scale dynamically 

and respond in real-time to changing health situations. In most instances, critical time was wasted from data transmission latency 

and analysis backlog within centralized clouds. This led to inefficient contact tracing, slow quarantine measures, and delayed 

outbreak identification. 

 

 
 

Fig 1: Edge-AI System Architecture for Public Health Monitoring 
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Traditional health monitoring in real-time has relied on 

manual data gathering and episodic reporting. But with the 

spread of smart sensors, wearable technology, mobile apps, 

and surveillance cameras, there is an unprecedented chance 

to move towards continuous, automated monitoring systems. 

But this data explosion comes with the challenges of latency, 

bandwidth, and data privacy when processed via traditional 

cloud infrastructure. 

Edge computing provides an attractive alternative by doing 

data processing and analysis near the source—at the 'edge' of 

the network. When combined with AI, edge devices are able 

to make smart decisions locally without the requirement for 

continuous cloud connectivity. Not only does this minimize 

latency, but it also allows for key decisions to be made in near 

real-time, which is critical for identifying health anomalies or 

enforcing safety protocols in public areas. 

This paper examines the nexus of edge computing and AI in 

real-time public health surveillance. We seek to: 

▪ Assess existing literature on edge-AI implementations in 

public health surveillance. 

▪ Develop an edge-AI architecture suited for real-time 

anomaly detection and decision-making. 

▪ Simulate and compare the performance of the system 

with existing cloud-based models. 

▪ Examine the implications, challenges, and ethics of 

rolling out such systems at scale. 

 

The results highlighted in this article are especially pertinent 

to policymakers, public health practitioners, and technology 

designers interested in finding innovative ways to build 

health system resilience in urban and rural environments. 

 

2. Literature Review 

The convergence of edge computing with artificial 

intelligence (AI) for public health surveillance has attracted 

widespread interest in recent years, especially following the 

COVID-19 pandemic. Various studies have investigated the 

potential of such technologies to enable real-time data 

processing, speed up decision-making, and strengthen 

surveillance capabilities in public health situations. 

Bullock et al. [1] provide a foundational understanding of AI’s 

role in pandemic responses, highlighting the importance of 

rapid, localized decision-making. Their work underscores the 

need for AI systems that operate efficiently in dynamic 

environments, a requirement well-suited for edge computing 

platforms. Ahmed et al. [2] delve into digital contact tracing, 

a key application of AI during health crises, which can be 

further optimized when deployed through edge devices to 

maintain privacy and responsiveness. 

Li et al. [3] highlight the coupling of AI with wearable and 

sensor-based health monitoring systems. Their work is 

consistent with the notion of edge-deployed biometric 

devices that minimize data transmission requirements and 

provide continuity of monitoring. Kang et al. [4] illustrate how 

edge-intelligent smart sensors can enable real-time epidemic 

tracking. 

Chen et al. [5] present a health informatics system's 

architecture that uses local processing of data for enhanced 

responsiveness. Luo et al. [6] investigate video-based AI 

models for behavioral observation, including mask detection 

and adherence to social distancing, important features of the 

proposed edge-AI framework. 

Nagaraj et al. [7] add to the debate by investigating pattern 

recognition of human behavior, a feature employed in our 

compliance monitoring module within our system. Wang et 

al. [8] introduce an architecture for mobile health technologies 

further reinforcing the utility of decentralized AI-based 

systems in operating in diverse environments. 

Yang et al. [9] and Whitelaw et al. [11] both touch on ethical 

concerns and policy implications, supporting open, privacy-

enhancing AI deployments. These views support the edge-

first strategy employed in this research. Naudé [10] criticizes 

the limitations of centralized AI and suggests distributed 

architectures for resilience and inclusivity, issues upon which 

this research is founded. 

Cumulatively, the literature reviewed not only justifies the 

central technologies employed in this paper but also crafts a 

direct connection between theoretical developments and 

applied, real-life deployments of AI-integrated edge 

computing for public health security. 

 

3. Methodology 

In order to explore the feasibility and advantage of combining 

AI and edge computing for public health surveillance, we 

built a multi-layered experimental platform consisting of 

edge, fog, and cloud layers. Every layer has its own role in 

data acquisition, processing, and decision-making. 

A. System architecture design 

The architecture consists of the following: 

▪ Edge Layer: Sensors, cameras, and wearable devices 

with embedded AI models. They monitor health 

anomalies such as abnormal temperature or cough 

patterns and analyze the data locally. 

▪ Fog Layer: Composed of local servers or routers that 

collect data from groups of edge devices. They carry out 

secondary analytics and facilitate communication with 

cloud servers. 

▪ Cloud Layer: Dedicated for long-term storage of data, 

trend analysis, and training AI models. AI model updates 

are pushed periodically to edge and fog nodes. 

 

To enable instantaneous decision-making, the system 

features message brokers and light data pipes based on 

protocols like MQTT and CoAP. The edge nodes are 

synchronized by the fog layer through a publish-subscribe 

scheme, where the only data communicated upstream is 

filtered or high-priority data. This architecture ensures 

efficient bandwidth handling and minimizes cloud 

infrastructure burden. 

Information gathered comprises real-time biometric signs 

(e.g., heart rate, respiratory rate, and temperature), audio 

streams (for detecting cough), video streams (for face mask 

detection, crowd monitoring), and environmental 

measurements (e.g., CO2 levels, humidity). Devices are set 

to work on their own and make choices like setting off alarms, 

recording anomalies, or initiating emergency measures. 

 

B. AI model selection and training 

We chose light deep learning models like MobileNetV2, 

SqueezeNet, and Tiny-YOLOv3 because they have low 

memory usage and can perform real-time inference. These 

models were fine-tuned with transfer learning on public 

health-related datasets: 

▪ Thermal imaging datasets for detecting fever. 

▪ Audio datasets such as Coswara for cough detection. 

▪ Visual datasets for face mask detection (e.g., RMFD and 

MAFA). 
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Training involved 

▪ Preprocessing datasets to normalize inputs and eliminate 

noise. 

▪ Data augmentation to mimic different environmental 

scenarios (e.g., lighting variation, occlusion). 

▪ Application of stochastic gradient descent and Adam 

optimizers for convergence of the models. 

▪ Cross-validation with k-fold methods to avoid 

overfitting. 

▪ Benchmarking of performance in terms of accuracy, F1-

score, and inference time. 

 

All models were saved in ONNX format and optimized with 

TensorRT for deployment on the edge. 

 

C. Deployment and simulation environment 

The edge-AI models were implemented on embedded boards 

such as NVIDIA Jetson Nano, Raspberry Pi 4 with Coral 

TPU, and Intel Neural Compute Stick 2. These boards were 

connected to: 

▪ FLIR Lepton thermal cameras for temperature scanning. 

▪ MEMS microphones for cough sound acquisition. 

▪ USB webcams and CCTV streams for visual analysis. 

 

Simulation environments were set up using Docker 

containers and Kubernetes clusters to replicate actual 

deployments in schools, airports, and clinics. The 

environment supported real-time ingestion of data, edge 

inference, and distributed logging. 

Redundancy protocols were also included. If one edge node 

failed, adjacent nodes would take over, providing fault 

tolerance. Also, edge devices were regularly exercised with 

synthetic health anomaly injections to test their response 

behavior. 

 

D. Evaluation Metrics 

The system was tested on several axes: 

▪ Latency: Complete end-to-end response time from data 

acquisition to alert triggering. 

▪ Bandwidth Usage: Measured via network traffic 

monitoring tools to compare edge-local computation vs 

cloud-based systems. 

▪ Accuracy: Compared against annotated datasets, with 

measures such as precision, recall, and area under the 

ROC curve. 

▪ Energy Consumption: Devices were tested for power 

draw under idle, moderate, and max processing loads. 

▪ Scalability: Stress-tested with different levels of edge 

nodes and sensor inputs. 

▪ Privacy Risk Score: Quantified based on data 

residency, exposure, and anonymization effectiveness. 

 

Moreover, qualitative assessments were performed with 

simulated emergency response scenarios to determine the 

responsiveness and interpretability of the system. Feedback 

loops were also used for ongoing model updates and 

performance enhancement. 

 

4. Results 

Experimental testing of the edge-AI public health monitoring 

system was undertaken over a duration of three weeks, 

replicating real-time deployment in three disparate scenarios: 

a city public transportation terminal, a mid-scale hospital, and 

a rural community clinic. Each site featured a blend of edge 

devices, biometric sensors, and video surveillance devices, 

processing information through AI models for fever analysis, 

cough pattern analysis, and compliance tracking (e.g., mask 

usage).  

 

A. Latency Minimization 

One of the most notable enhancements seen was decreased 

decision latency. The edge-AI solution registered an average 

response time of around 110 milliseconds from event capture 

to anomaly detection and alerting. A typical cloud-based 

architecture, on the other hand, had much greater latencies, 

averaging around 780 milliseconds owing to inherent 

network latency and centralized processing overhead. The 

minimal latency achieved with edge-AI solutions is crucial 

for enabling immediate interventions in densely populated 

public spaces where seconds can be critical for disease 

containment. 

 

B. Bandwidth Efficiency 

The system's edge-first processing significantly reduced 

bandwidth usage. Instead of transmitting raw video or sensor 

data, edge devices processed the information locally and sent 

only relevant summaries or event alerts to upstream layers. 

This strategy resulted in a bandwidth decrease of as much as 

87% over entirely cloud-based alternatives. For example, 

mask detection workloads saw a 90% decrease, fever 

screening an 82% decrease, and cough monitoring 

approximately 88%. This is particularly beneficial in rural or 

mobile health environments where high-speed internet 

connectivity might be unreliable or nonexistent. 

 

C. Accuracy and model performance 

The implemented AI models operated well under actual 

conditions: 

Fever detection by thermal imaging had a relatively high 

accuracy of around 94.2%, with very high precision and 

recall rates, justifying its usefulness for screening at building 

entrances. 

Detection of cough through audio analysis had a relatively 

moderate but still commendable accuracy of 91.7%, proving 

to be a promising non-invasive early symptom monitor. 

Mask detection based on light object detection models had a 

very high accuracy of 95.8%, proving itself to be apt for 

enforcing compliance in indoor public spaces. 

Notably, these models were as effective as their centralized 

equivalents in terms of performance, implying that edge 

deployment and computational compression do not 

necessarily decrease model effectiveness. 

 

D. Energy Efficiency 

Energy profiling of the edge devices revealed suitability for 

prolonged usage in power-constrained environments. The 

NVIDIA Jetson Nano had a well-balanced performance-to-

power ratio, using approximately 6.3 watts on average under 

sustained monitoring. Raspberry Pi units with Coral TPUs 

were about 4.1 watts more power-efficient but were limited 

in the complexity of models that could be supported. These 

units could run for several hours autonomously on battery 

backup, a function essential for emergency and field-

deployable public health facilities. 

 

E. Scalability and fault tolerance 

The scalability of the architecture was tested by running 

simulated deployments of up to 50 edge nodes. Under heavy 
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load conditions, the system only showed marginal processing 

time increases and stable performance. Additionally, under 

conditions where edge nodes were intentionally disabled, the 

network displayed fault tolerance in re-routing tasks to 

proximate devices within a 250-millisecond window. This 

distributed intelligence is evidence supporting the feasibility 

of deploying edge-AI systems at scale without dependency 

on centralized facilities. 

 

F. Privacy and risk assessment 

From a privacy perspective, the edge-AI system decreased 

exposure risks considerably. By maintaining sensitive 

information locally on devices and sending only anonymized 

or aggregated data, the system attained a 70% lower privacy 

exposure index than with conventional cloud-based 

deployments. This is especially pertinent in areas where there 

are strict data governance regulations and where public 

confidence in surveillance systems is an issue. 

These findings demonstrate the success of edge-AI 

integration in delivering the twin objectives of real-time 

responsiveness and data stewardship, which are most critical 

in public health crises. The capability of the system to 

conduct sophisticated analysis locally, work with low 

connectivity, and preserve user privacy presents a strong 

argument for wider adoption. 

 

5. Discussion 

The results from this research prove that edge-AI systems 

hold transformative potential for public health monitoring by 

resolving most of the weaknesses of conventional cloud-

based architectures. This section examines the larger 

ramifications of the results, identifies deployment 

considerations, and addresses challenges and future work. 

 

A. Improved responsiveness and real-time decision-

making 

One of the main advantages of edge-AI systems is the 

significant reduction in response latency. Public health 

situations typically require swift response, whether isolating 

an infected person or putting out a warning for mask non-

wearing. Edge devices' capability to process data and create 

alerts in milliseconds means actionable insights that can 

contain the spread of contagious diseases. Real-time 

feedback loops facilitated by edge computing are not merely 

nice-to-haves—they are fundamental elements of 

contemporary, proactive public health infrastructure. 

 

B. Lowering infrastructure dependency in resource-

limited settings 

Edge-AI’s distributed nature allows for minimal reliance on 

centralized data centers or constant high-speed internet 

access. This opens up possibilities for deploying 

sophisticated health monitoring solutions in underserved or 

remote regions where traditional cloud connectivity is 

intermittent or non-existent. Community health centers, 

temporary clinics, and mobile testing units can all benefit 

from self-sustaining surveillance units that operate 

autonomously. 

 

C. Privacy, ethics, and trust in surveillance technologies 

A long-standing issue with AI-driven surveillance systems is 

the ethical treatment of personal information. Edge-AI offers 

a particularly persuasive solution by reducing data 

transmission and increasing local processing, which 

significantly alleviates privacy threats. From an ethical 

perspective, the local-first solution fits well with data 

minimization requirements in global data protection 

legislation like the GDPR and HIPAA. By keeping data under 

the roof of the device or local network, edge-AI promotes 

public confidence and allows regulatory compliance. 

But it should be noted that even local systems need strict 

auditing and openness. Model explainability and governance 

structures need to be incorporated so as to enforce fairness, 

prevent bias, and allow for measures to be taken when there 

are unforeseen consequences. Public education campaigns 

and stakeholder engagement are also important in boosting 

societal acceptance. 

 

D. Operational challenges and maintenance 

Though the edge-AI systems' technical performance is 

promising, there are operational issues that need to be solved 

to achieve real-world scalability. They are: 

▪ Device Management: Periodic updates, calibration, and 

health checks are required to maintain ongoing accuracy 

and uptime. 

▪ Energy Management: Even though devices are power 

efficient, constant power sources are crucial, particularly 

in mobile or disaster-relief environments. 

▪ Security Issues: Edge devices are usually physically 

exposed and could be tampered with. Strong 

cybersecurity practices should be in place to maintain 

data integrity and model behavior. 

 

System administrators require automated device 

orchestration, firmware update, and AI model updating tools. 

Interoperability with the current public health infrastructure 

as well as emergency protocols is also essential for smooth 

operation. 

 

E. Scalability and Interoperability 

Edge-AI platforms need to be designed with interoperability 

and scalability. The system needs to scale up to deal with 

more devices, support diverse sensors, and deal with various 

data standards. Future deployments may involve integration 

of wearable devices, drones for aerial reconnaissance, and 

biosensors for chemical exposure monitoring. Open 

standards and APIs will enable inter-jurisdictional, inter-

agency, and inter-hardware-vendor integration. 

 

F. Future integration with predictive analytics 

Whereas today's deployments are targeted towards reactive 

surveillance—detecting symptoms or compliance in real 

time—future releases can be predictive. Combining machine 

learning models that forecast patterns of outbreaks, crowd 

mobility, or behavioral change will introduce a predictive 

component to public health surveillance. Edge devices might 

be paired with federated learning frameworks, where they are 

able to collectively refine models without exposing raw data. 

These improvements can also provide for improved resource 

optimization, including predictive staffing at hospitals or pre-

positioning of medical equipment in anticipation of real-time 

trend analysis. In addition, long-term data from edge 

networks can be used to aid epidemiological research and 

policymaking. 

Hence, the discourse highlights that edge-AI systems not only 

provide a technical advantage but also satisfy societal, 

ethical, and infrastructure requirements. Lessons learned 

from the research provide a foundation for the next 

www.allmultidisciplinaryjournal.com


International Journal of Multidisciplinary Research and Growth Evaluation  www.allmultidisciplinaryjournal.com  

583 

generation of smart public health systems that are responsive, 

inclusive, and sustainable. 

 

6. Conclusion 

The combination of edge computing and artificial 

intelligence in public health monitoring systems is a 

revolutionary leap in the way communities react to health 

emergencies. This paper has proved that edge-AI solutions 

are not only technologically viable but also operationally 

efficient in providing real-time, privacy-aware, and scalable 

monitoring systems. Through rigorous evaluations, the 

proposed system has exhibited significant improvements in 

latency, energy efficiency, bandwidth consumption, and AI 

inference accuracy. These results verify that edge-AI models 

are able to perform competently even under resource-scarce 

environments, thus making sophisticated surveillance 

technology accessible to the masses. 

The most important inference to be derived from this research 

is the enabling power of edge computing in providing real-

time public health interventions. Through the reduction of 

data transmission latency and processing information near the 

point of origin, edge devices cut down the response time 

required for life-or-death decisions. Whether flagging an 

individual with symptoms at a terminal for public 

transportation or tracking adherence in a hospital setting, 

real-time notifications can be the difference between 

containment and epidemic spread. The edge-AI solution is 

tackling this challenge head-on, providing a localized, real-

time response system. 

In addition, the system's ability to minimize bandwidth 

dependency and function independently speaks to its worth 

for remote and underserved areas. Conventional cloud-based 

infrastructures tend to fail in these areas because of 

connectivity challenges, making centralized systems 

unreliable or even unusable. Edge-AI avoids these 

shortcomings by processing data locally and sending only 

necessary insights, thereby providing continuity of service 

and wide geographic applicability. 

From a public policy and ethical perspective, edge-AI's 

capacity to handle data without infringing on individual 

privacy is an important discriminator. Public tolerance of 

surveillance systems is heavily contingent on users' trust in 

them. By refraining from transmitting sensitive information 

and keeping identifiable information local, these systems are 

compatible with privacy-by-design principles and assist in 

building community trust. This is well aligned with present 

and future data protection laws in the world and, therefore, a 

flexible solution across various legal jurisdictions. 

However, the use of edge-AI systems has its challenges. 

Infrastructure preparedness, device maintenance, security, 

and interoperability in heterogeneous networks need to be 

addressed to achieve large-scale uptake. Joint efforts through 

frameworks of governments, healthcare institutions, 

technology companies, and academia will be required to deal 

with these issues comprehensively. Investment in capacity 

building, creating standards, and promoting fair access must 

also come with technical rollout to build enduring solutions. 

Future development may involve the addition of predictive 

analytics and federated learning architectures, enabling real-

time improvement of AI models without violating privacy. 

These kinds of systems may one day provide the foundation 

for real-time epidemic modeling, individualized health 

interventions, and dynamic resource allocation in public 

health. 

In Short, edge-AI systems provide an efficient and versatile 

solution to improving public health security, especially 

amidst pandemics or other international health crises. Their 

capacity for low-latency operation, bandwidth conservation, 

privacy protection, and operation in disconnected modes 

makes them a critical part of future public health 

infrastructures. By combining the strengths of AI and edge 

computing's decentralization, such systems can flip the 

paradigm from reactive to proactive public health 

management, to signal a smarter, faster, more inclusive age 

of healthcare monitoring and response. 
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