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Abstract 

IBM has been the market leader for enterprise computing for decades, with its 

mainframe systems serving as the backbone of mission-critical applications across 

industries such as banking, healthcare, and government. A key component of this 

ecosystem is the z/OS operating system, which provides robustness, scalability, and 

unparalleled security. At the core of z/OS is the ability to operate at a low level when 

required—an ability largely made possible through assembly language. IBM's High-

Level Assembler (HLASM) allows developers to write system-level code with 

precision, performance, and efficiency.  

This paper explores HLASM's historical roots, technical components, comparative 

advantages, and practical usage in the z/OS environment, illustrating why it remains 

indispensable even in modern computing. 
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Introduction 

Mainframes rely on low-level languages for control, performance, and close-to-the-metal efficiency. While higher-level 

languages such as COBOL and PL/I have become standard for business logic, the bedrock of mainframe programming lies in 

languages like Assembly and Metal C [2]. 

IBM Assembly language has evolved significantly since the days of Basic Assembler (BAL). The introduction of HLASM marks 

a great leap in capability; it offers structured syntax, macro facilities, and compatibility across multiple platforms [2]. IBM later 

introduced Metal C to bridge the gap between C and assembler by enabling developers to write low-level code with the syntax 

of C while still achieving assembly-like performance [5]. Nevertheless, for the most granular control, especially in system exits, 

I/O handlers, and performance-critical routines, HLASM remains prominent. 

HLASM has continued to evolve over the decades, with notable updates in macro processing, conditional assembly, and 

debugging capabilities. Its versatility and enduring compatibility with system interfaces like the Supervisor Call (SVC) 

instruction, access registers, and control blocks make it an essential tool for systems programmers and low-latency mission-

critical applications [3]. 

 

What is HLASM? 

HLASM, or High-Level Assembler, is IBM's advanced assembler for its System Z architecture. Unlike its predecessors (such as 

Basic Assembler or the now-obsolete IEUASM), HLASM provides a much more structured environment for development. It 

supports conditional assembly, complex macro generation, structured programming constructs, and traditional and newer 

addressing modes [2]. 

HLASM has been designed to work seamlessly with different OSes like z/OS, z/VSE, and z/VM, making it adaptable across the 

IBM mainframe family. HLASM allows programmers to directly manipulate hardware registers, manage memory explicitly, 

and interact with operating system services using macros and system control blocks [3].

https://doi.org/10.54660/.IJMRGE.2022.3.1.1155-1162
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Use cases for HLASM range from writing dump analysis 

tools, system exits, channel programs, and real-time I/O 

handlers to bootstrapping other languages [4].  

 

Core components of HLASM 

HLASM consists of a rich set of foundational components 

that form the basis of systems-level programming on z/OS. 

These components can be categorized into several logical 

areas to help understand their roles and interactions more 

clearly. 

 

Processor Resources 
 General-Purpose Registers (GPRs): The 

z/Architecture includes 16 GPRs (R0–R15). These are 

used for arithmetic operations, logical computation, 

address resolution, and branching control. For instance, 

R1 is commonly used for parameter passing, and R13 

typically holds the save area pointer [2]. 

 Floating-point registers: These registers are used for 

scientific or complex arithmetic, mostly in advanced 

applications, such as high-precision calculations or 

financial modeling where floating-point accuracy is 

critical. These registers enable efficient manipulation of 

non-integer data types and large numerical ranges. 

 Access Registers: For the programs in access-register 

mode (as opposed to standard base-register mode), 

access registers provide access to additional address 

spaces, enabling data sharing across multiple regions. 

Access registers support programs that need to address 

multiple memory spaces without constant swapping, 

which is particularly beneficial in high-concurrency 

transaction environments [2]. 

 Condition code register: The condition code register is 

a 2-bit field inside the Program Status Word (PSW) that 

holds the current Condition Code (CC). Condition codes 

(CC0 to CC3) are set by certain comparison, arithmetic, 

or branch instructions. These condition codes are then 

used by conditional branching instructions (like BC, 

BNE, BE) to decide the execution path based on the 

result from the previous operation. 

a) 00 -> CC0 - Equal 

b) 01 -> CC1 - Low/Less than 

c) 10 -> CC2 - High/Greater than 

d) 11 -> CC3 - Reserved for special cases or errors 

 

Memory and addressing mechanisms 

a) Base and displacement addressing: 
The most common form of addressing in HLASM is base 

displacement addressing. The effective address (EA) is 

computed as: 

 
EA = Contents of Base Register + Displacement 

 

The base register holds a starting address, and the 12-bit 

displacement field (0–4095) allows direct addressing of up to 

4KB of memory from that base. This model enables compact, 

efficient instruction encoding while maintaining flexible 

memory access [2]. 

 

Example 
 

LA R3,VAR1(R5) * Load address of VAR1 using R5 as base 

VAR1 DC F'1234' 

 

For example, if R5 holds X'1000', and VAR1 is offset by 

X'0030'; then the effective address loaded into R3 becomes: 

EA = X'1000' + X'0030' = X'1030' 

 

b) Index Registers 
An index register adds another level of flexibility for 

accessing tables or variable memory structures. In indexed 

addressing, the effective address becomes: 

 
EA = Contents of Base Register + Displacement + Contents of 

Index Register 

 

Indexing enables efficient iteration through arrays or 

dynamic lists without modifying base addresses [2]. 

 

Example 
 

L R4,0(R2,R1) * Load from address = R2 + R1 

 

c) Immediate Values: 

Immediate values are constants embedded directly into the 

instruction format, making simple arithmetic and control 

operations very fast [2]. 

 

Example 
 

LHI R6,10 * Load halfword immediate value 10 into R6 

 

d) Relative Addressing: 

HLASM supports relative addressing for instructions like 

BC, B, BRCL, BRAS, BRASL, and LARL. 

In relative addressing, the displacement encoded in the 

instruction is expressed in halfwords (2 bytes each) [2]. 

The assembler calculates the difference between the target 

address and the current instruction address, divides it by 2 (to 

convert to halfwords), and stores this displacement into the 

instruction. 

This method provides efficient and compact relocatable code 
[2]. 

 

Relative effective address computation: 
 

Target Address = Current Instruction Address + (Displacement * 

2) 

 

Example - Branching 
 

BC 8,MYLABEL * Branch if equal 

... 

MYLABEL DS 0H 

 

Suppose 

a) Current Instruction = X'1000' 

b) Target Label (MYLABEL) = X'1008' 

 

The assembler encodes 
 

(X'1008' - X'1000') / 2 = 4 halfwords 

 

Example - Loading Address 
 

LARL R3,MYDATA 

MVC 0(10,R3),=C'HELLO' 

MYDATA DC CL10' ' 

 
If MYDATA is located 64 bytes forward from the current 

instruction, the assembler encodes displacement as 32 (64 / 2). 

These addressing techniques form the backbone of efficient 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1157 | P a g e  

 

memory manipulation in HLASM programs. HLASM 
provides developers with the flexibility needed for high-
performance application design and intricate system-level 
programming on z/OS by offering high control through base 
registers, index registers, immediate constants, and relative 
displacements. Mastery of these mechanisms is fundamental 
to unlocking the full power of assembler programming in 
enterprise computing and mission-critical environments [2]. 
 
Data definition and storage control 
A. Declarative Statements: 

Declarative statements in HLASM allow programmers 
to define constants, allocate storage, and organize 
memory layout efficiently. These declarations are 
essential for establishing structured data areas, buffers, 
and control blocks needed in low-level programs [2]. 

 DC (Define Constant): DC defines initialized storage 
areas with specified values. For example, DC F'100' 
reserves a fullword (4 bytes) and initializes it with the 
decimal value 100. DC statement is critical for setting up 
constants or static data that a program will reference 
during execution [2]. 

 DS (Define Storage): DS reserves uninitialized storage 
areas without providing specific initial values. For 
instance, DS F reserves one fullword of uninitialized 
storage. DS statement is typically used for working 
areas, scratch space, or dynamically updated fields 
during program execution [2]. 

 EQU, ORG 
a) EQU (Equate) allows symbolic naming of constant 

values. For example, MAXLEN EQU 256 lets the 
programmer refer to 256 symbolically throughout the 
program, improving readability and maintainability [2]. 

b) ORG (Origin) repositions the assembler's location 
counter, enabling precise control over data placement 
within a CSECT or DSECT. ORG statement can be used 
to overlay structures or to create specific memory layouts 
needed for hardware interfaces [2]. 

 

These declarative tools are foundational to developing 

complex data structures and ensuring optimal memory 

organization, both of which are key to the efficiency and 

clarity of HLASM programs [2]. 

 

B. Data Types in HLASM 
HLASM supports a variety of fundamental data types 

that allow programmers to accurately define how 

information is represented and manipulated at the 

storage level. Proper selection of data types is essential 

for efficiency, interoperability, and system integrity on 

z/OS platforms [2]. 

1) Textual data types 

a) Character (C): 

Defines text data stored as EBCDIC characters. 

Commonly used for labels, messages, and symbolic text 
[2]. 

 

Example 
 

DC C'HELLO' * Defines 5 bytes containing 'HELLO' 

 

b) Hexadecimal (X): 

Represents data explicitly in hexadecimal format. Useful for 

flags, bit masks, and low-level binary fields [2]. 

 

 

Example: 
 

DC X'F1F2F3' * Stores bytes F1, F2, F3 

 

2) Numeric data types 

a) Packed Decimal (P): Stores decimal numbers with two 

digits per byte, ending with a sign nibble. Optimized for 

precise arithmetic operations, especially in financial 

applications [2]. 

 

Example 
 

DC P'123456' * Occupies 4 bytes in packed decimal 

format 

 

b) Halfword Integer (H): Represents signed 16-bit 

integers (2 bytes). Commonly used for short numeric 

fields, counters, and flags [2]. 

 

Example 
 

DC H'100' * Defines a halfword containing 100 

 

c) Fullword Integer (F) 
Represents signed 32-bit integers (4 bytes). Used for 

larger counters, control fields, and simple address 

representations [2]. 

 

Example 
 

DC F'9999' * Fullword containing the value 9999 

 

d) Doubleword Integer (D): Represents signed 64-bit 

integers (8 bytes). Suitable for very large integers and 

64-bit addressing [2]. 

 

Example 
 

DC D'123456789' * Doubleword (8 bytes) integer 

 

e) Floating-Point (E, G, H formats): Represents fractional 

numbers in short (E, 4 bytes), long (G, 8 bytes), or 

extended (H, 16 bytes) precision formats. Primarily used 

for scientific, mathematical, or engineering 

computations [2]. 

 

Example 
 

DC E'1.23' * Short floating-point constant 

 

3) Addressing Data Types 

a) Address Constant (A): Defines a 4-byte fullword 

containing the address of a label or storage location. 

Used for building control blocks, address tables, and 

indirect referencing [2]. 

 

Example 
 

DC A(MYDATA) * Defines a fullword containing the 

address of MYDATA 

 

b) Variable Address (V): Defines a computed address 

value during assembly time, allowing symbolic address 

arithmetic. This is useful when building complex 

structures where offsets need to be adjusted dynamically 
[2]. 
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Example 
 

DC V(MYDATA+4) * Address 4 bytes past 

MYDATA 

 

C. Data alignment considerations 
In HLASM, proper data alignment is critical to ensure 

optimal performance and prevent storage access errors. 

Data types must align on natural boundaries: halfword 

types (H) on 2-byte boundaries, fullword types (F, A) on 

4-byte boundaries, and doubleword types (D) on 8-byte 

boundaries [2]. 

 

Control Structures 
 CSECT (Control Section): Declares a logically distinct, 

relocatable section of code or data. It allows 

modularization and easier linking [2]. 

 
MYCODE CSECT 

 USING *,15 

 

 DSECT (Dummy Section): Defines a memory layout 

without allocating physical space. Commonly used to 

define reusable control block formats [2]. 

 
MYBLOCK DSECT 

FIELD1 DS F 

 

 LTORG, ENTRY, EXTERNAL: Handle literal pools 

and inter-module references. 

 

Code structuring aids 
 Macros: Parameterized blocks of assembler code that 

can be conditionally assembled using statements like 

AIF, AGO, and ANOP. This modularity aids reuse and 

readability [2]. 

 
MYMACRO &REG 

 L &REG,=F'0' 

 BR R14 

MEND 

 

 Copybooks (COPY, INCLUDE): Allow external 

insertion of standardized declarations or macro 

templates. 

 

Together, these components provide the programmer with 

powerful, granular control over data, flow, and system 

interaction—capabilities essential in high-performance, 

secure, and resource-constrained environments like IBM 

z/OS [1, 2, 3]. 

 

HLASM Instructions 

HLASM instructions are composed of several fundamental 

components that define how the CPU processes data, controls 

flow, and accesses memory. Understanding these building 

blocks is essential for writing efficient and correct assembly 

programs [2]. 

 

Basic Components of HLASM Instructions 

HLASM instructions are composed of several fundamental 

components that define how the CPU processes data, controls 

program flow, and accesses memory structures. A solid 

understanding of these basic building blocks is essential for 

creating efficient and reliable assembler programs [2]. 

 Register: A general-purpose register (R0–R15) typically 

serves as the source or destination for data manipulation, 

arithmetic operations, and address calculations. 

Registers provide high-speed access to temporary values 

and are critical for controlling program execution [2]. 

 Base Register: A base register holds the starting 

memory address for accessing operands. Combined with 

displacement, it enables structured memory access. Base 

registers allow for modular program designs by 

referencing data relative to dynamic locations in storage 
[2]. 

 Displacement: A 12-bit signed field added to the base 

register to compute an effective address. The maximum 

range for displacement addressing is 4096 bytes (2^12), 

allowing efficient referencing of data structures located 

near the base register [2]. 

 Index Register: An optional general-purpose register 

that provides an additional offset to the base and 

displacement. Indexing is essential for looping through 

arrays or variable-length structures without modifying 

the base address [2]. 

 Immediate Value: An embedded constant value 

encoded directly within the instruction. Immediate 

operands eliminate the need for memory fetches when 

performing simple arithmetic, comparisons, or control 

operations [2]. 

 Length Field: Some instruction formats, especially 

those involving storage-to-storage (SS) operations, 

include a length field that specifies the number of bytes 

or elements to be processed. Properly setting the length 

field ensures that operations such as block copying or 

clearing memory are performed correctly [2]. 

 Operation Code (Opcode): Each instruction contains 

an operation code that identifies the action to be 

performed (such as LR for Load Register or MVC for 

Move Characters). Understanding the opcode is crucial 

for interpreting machine instructions and for optimizing 

performance [2]. 

 Condition code updates: Many instructions implicitly 

set or update the Condition Code (CC) field in the 

Program Status Word (PSW), enabling conditional 

program flow based on comparison results, arithmetic 

outcomes, or logical evaluations. Branch instructions use 

these updated condition codes to decide program control 

paths [2]. 

 

Instruction Types in HLASM 

HLASM instructions can be categorized into several 

functional groups based on their operational behavior. Each 

type of instruction plays a critical role in performing essential 

computing tasks, from arithmetic operations to system 

control and I/O communication. Understanding these 

categories helps programmers select the most appropriate 

instruction for specific tasks [2]. 

 

1) General Instructions 

General instructions perform fundamental operations such as 

data movement, comparison, logical operations, and 

branching. These instructions form the core building blocks 

for most programs [2]. 

 

Examples include 
 LR (Load Register) 

 CR (Compare Registers) 
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 AR (Add Registers) 

 BC (Branch on Condition) 

 

These instructions manipulate registers, memory contents, or 

control flow based on program logic. 

 

2) Decimal Instructions 

Decimal instructions are specialized for performing 

arithmetic operations on packed or zoned decimal numbers. 

They are especially useful in financial and business 

applications where precision decimal arithmetic is necessary 
[2]. 

 

Examples include 
 AP (Add Packed) 

 SP (Subtract Packed) 

 MP (Multiply Packed) 

 DP (Divide Packed) 

 

These instructions operate on data formatted with packed 

decimal representations, ensuring accuracy in decimal 

calculations. 

 

3) Floating-point instructions 

Floating-point instructions allow operations on floating-point 

numbers, supporting scientific and engineering calculations 

that require fractional precision [2]. 

 

Examples include 
 AE (Add Short Floating Point) 

 SE (Subtract Short Floating Point) 

 MDE (Multiply Divide Short Floating Point) 

 CE (Compare Short Floating Point) 

 

Floating-point formats (E, G, H) define the precision level of 

these operations. 

 

4) Control Instructions 

Control instructions manage program flow, system state, and 

execution context. They are crucial for handling subroutines, 

saving and restoring contexts, and managing branches and 

returns [2]. 

 

Examples include 
 BAS (Branch and Save) 

 BASR (Branch and Save Register) 

 SVC (Supervisor Call) 

 PR (Program Return) 

 

Control instructions enable sophisticated program structures 

and system interaction mechanisms. 

 

5) Input/Output Operations 

I/O operations in assembler manage communication between 

programs and external devices such as disks, tapes, and 

printers. HLASM uses specialized macros and low-level 

instructions to initiate and control I/O activities [2]. 

 

Examples include 
 EXCP (Execute Channel Program — via macros like 

IEBGENER) 

 STARTIO (Start I/O Operation — privileged 

instruction) 

 

Typically, high-level macros like GET, PUT, and READ are 

used with I/O instructions to simplify complex device 

handling. 

 

Instruction Formats in HLASM  

 

 
 

Fig 1: Instruction Formats in HLASM [2] 
 

As illustrated in above picture, HLASM defines several 

standard instruction formats, each with a unique operand 

structure. Understanding these formats is essential to writing 

efficient, clear, and optimized assembler programs on z/OS 
[2]. 

 RR (Register-to-Register): In this format, both 

operands are registers. This format is typically used for 

fast operations that move or manipulate data between 

registers without accessing memory [2]. 
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Example 
 

LR R1, R2 * Copy contents of R2 into R1 

 

 RX (Register and Indexed Storage): This instruction 

format combines a register operand with a memory 

operand formed from a base register, an optional index 

register, and a displacement. It is commonly used for 

dynamically accessing fields or table entries [2]. 

 

Example 
 

L R1,100(R2,R3) * Load R1 from memory address = R2 + R3 + 

100 

 

 RS (Register and Storage): This instruction format 

involves a register, and a memory address formed from 

base and displacement but without an index. Often used 

for storing or loading values to/from memory locations 

that are relatively fixed [2]. 

 

Example 
 

ST R4,200(R5) * Store contents of R4 into address at R5+200 

 

 SI (Storage and Immediate): This instruction format 

contains a storage operand and an immediate (constant) 

operand. It is frequently used for comparisons or setting 

values directly in memory without loading them into a 

register [2]. 

 

Example 
 

CLI 10(R1),X'FF' * Compare byte at R1+10 with hex FF 

 

 SS (Storage to Storage): Operates entirely on storage 

operands, enabling block-level operations such as 

moving or clearing multiple bytes of data at once. Useful 

for initializing or copying areas in memory [2]. 

 

Example 
 

MVC 0(10,R2),0(R3) * Copy 10 bytes from R3 to R2 

 

 RI (Register and Immediate): This instruction format 

combines a register operand with an immediate constant 

embedded in the instruction. Typically used for loading 

or adjusting register values quickly [2]. 

 

Example 
 

LHI R1,=H'10' * Load halfword immediate value 10 into R1 

AHI R1,5 * Add 5 to R1 

 

Each instruction format is carefully optimized for a specific 

style of operation — whether working entirely within the 

register set, manipulating memory contents directly, or 

combining register and memory access patterns. Mastery of 

these formats is crucial for achieving both high performance 

and code maintainability in enterprise z/OS applications [1, 2]. 

 

Life cycle of an assembler program 

Having understood the various instruction formats available 

in HLASM, it is important to step back and view how these 

individual instructions fit into the broader life cycle of an 

assembler program. Each instruction type ultimately 

contributes to creating a complete executable module that 

runs on the system [2]. 

The diagram below illustrates the overall process from 

writing source code to producing a runnable program: 

 

 
 

Fig 2: Life cycle of a HLASM Program [2] 
 

The life cycle involves the following key stages 

 Source code development: 
The process begins with writing assembler language 

source statements, utilizing the different instruction 

formats and data structures we discussed earlier. These 

statements define both the logic and structure of the 

program [2]. 

 Assembly with High-Level Assembler (HLASM): 
The source code is fed into the HLASM, which translates 

it into machine language instructions. During this phase, 

the assembler also generates: 

a) A machine language version of the program (the object 

deck). 

b) Messages and listings that detail the assembly process, 

symbol resolutions, and any encountered errors or 

warnings [2]. 

 

 Linking and Binding  
The machine code is then processed by the linker (often 

the Binder utility, IEWL), which resolves external 

references, includes additional modules if necessary, and 

produces a loadable executable module [2]. 

 Executable Program 
Finally, the linked and bound module becomes an 

executable program ready for execution under the z/OS 

operating system. This executable can be run as a batch 

job, a started task, or invoked by higher-level 

applications. 

 

Each stage is crucial to ensuring that the instructions coded 

at the beginning are faithfully transformed into a reliable, 

efficient executable ready for production or testing. 

 

Assembler listings and diagnostics 

Once a HLASM program is assembled, a listing file is 

generated that contains valuable diagnostic and reference 

information [2]: 

 Machine Instructions: The generated hexadecimal 
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opcodes for each source line, useful for verifying correct 

translation. 

 Line number and source code mapping: Helps 

correlate source lines with object code. 

 Symbol Table: Displays labels and their resolved 

addresses. 

 Errors and Warnings: Syntax or semantic issues, such 

as undefined symbols or misaligned constants, will 

appear with detailed message codes [3]. 

 

An example snippet from a listing: 
 

000010 58F0 C010 L R15,16(R12) * Load base address 

000014 05EF BALR R14,R15 * Branch and link 

 

These listings are often the first place a systems programmer 

will turn when debugging assembler-level issues or 

unexpected runtime behaviors [3]. 

 

Program Linking: Static vs. Dynamic  

Assembler object decks must be linked into executable 

modules. Two approaches exist [2]: 

 Static Linking: All required modules are linked into one 

load module at bind time. 

a) Pros: Simpler deployment, faster runtime performance. 

b) Cons: Larger executables, less flexible to updates. 

c) JCL Example: 
 

//LINK EXEC PGM=IEWL,PARM='LET,MAP' 

//SYSLIN DD * 

 INCLUDE SYSLIB(MYROUT) 

 ENTRY MAINPGM 

 NAME HELLO(R) 

/* 

 

 Dynamic Linking: The program calls external modules 

at runtime. 

 

a) Pros: Smaller executables, allows versioning and 

updates. 

b) Cons: Runtime dependency management. 

c) Assembly Example 
 

CALLMOD CALL (MYUTIL),VL 

 

Need to ensure MYUTIL is available in the LPA (Link Pack 

Area) or a designated loadlib in the job [3]. 

 

Building and Testing an HLASM Program 

Creating and running a HLASM program involves three 

fundamental phases: writing the source code, assembling it 

into machine-readable form, and linking it to produce a load 

module that can be executed on z/OS. Each phase plays a vital 

role in ensuring the program behaves as intended and 

integrates correctly with system libraries or runtime 

environments [2]. 

 

1) Write the source code 
 

HELLO START 0 

 BALR R12,0 

 USING *,R12 

 WTO 'HELLO FROM HLASM' 

 BR R14 

 END HELLO 

 

This simple assembler program prints the message "HELLO 

FROM HLASM" using the WTO (Write To Operator) macro. 

The BALR and USING instructions establish addressability, 

while the BR returns control to the caller. This structure 

forms a minimal, but complete HLASM program that can be 

tested on a mainframe system [2]. 

 

2) Assemble the code 
 

//ASM EXEC PGM=ASMA90,PARM='OBJECT,NODECK' 

//SYSPRINT DD SYSOUT=A 

//SYSIN DD * 

... (Source code) ... 

/* 

 

This JCL snippet submits the program to the High-Level 

Assembler (ASMA90) to convert it into an object deck. The 

OBJECT parameter ensures that machine code is produced, 

while NODECK prevents printing of the object card deck. 

The listing file (SYSPRINT) will show symbol resolutions, 

opcodes, and any diagnostic messages [3]. 

 

3) Link and Execute 
 

//LINK EXEC PGM=IEWL,PARM='LET,MAP' 

//SYSLMOD DD DSN=MY.LOADLIB(HELLO),DISP=SHR 

//RUN EXEC PGM=HELLO 

//STEPLIB DD DSN=MY.LOADLIB,DISP=SHR 

 

The IEWL utility (Binder) links the assembled object into an 

executable load module stored in MY.LOADLIB. The LET 

parameter allows automatic name resolution, and MAP 

provides a memory layout map in the output. The RUN step 

executes the module, using STEPLIB to locate the load 

module in the specified dataset. This final phase validates that 

the code behaves correctly in a live z/OS environment [3]. 

 

4) Execute the load module 
 

//RUNSTEP EXEC PGM=HELLO 

//STEPLIB DD DSN=MY.LOADLIB,DISP=SHR 

//SYSOUT DD SYSOUT=* 

//SYSUDUMP DD SYSOUT=* 

//SYSPRINT DD SYSOUT=* 

 

This JCL step executes the assembled and linked program. 

The STEPLIB DD points to the library containing the newly 

linked load module. SYSOUT, SYSUDUMP, and 

SYSPRINT capture any output, dumps, or runtime 

diagnostics for review [2]. 

 

5) Output 
Upon successful execution, the following message would 

appear on the system operator console (and possibly in the 

job output SYSOUT): 
 

IEF233I DISPLAY FROM JOBNAME - HELLO FROM 

HLASM 

 

Common assembler issues and troubleshooting 

Even well-written HLASM programs may encounter issues 

during the assembly, linkage, or execution phases. 

Understanding common problems and having a structured 

troubleshooting approach can significantly reduce debugging 

time and improve program stability [2, 3]. 

 

 Assembly Errors: Syntax errors, unresolved symbols, 

or invalid operand specifications are frequently 
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encountered during assembly. Carefully reviewing the 

assembler listing (SYSPRINT) and using diagnostic 

message codes provided by HLASM can help pinpoint 

issues quickly [3]. 

 Linkage Errors: If external symbols are not properly 

resolved during the link-edit phase, errors such as 

"Unresolved External" or "Missing Entry Point" may 

occur. Verifying all ENTRY, EXPORT, and IMPORT 

statements, and ensuring correct inclusion of necessary 

modules during linking, are critical steps [2]. 

 Addressability Problems: Incorrect use of BALR, 

USING, or improper register setup can lead to 

addressing exceptions like S0C4 abends (protection 

exceptions). Ensuring that base registers are properly 

loaded, and addressability is established before 

accessing memory is essential for preventing runtime 

failures [2]. 

 Condition code misinterpretations: Instructions that 

update the Condition Code (CC) require careful 

handling. Misinterpreting the meaning of CC settings 

(e.g., low, high, equal) can cause incorrect branching 

logic and unpredictable program behavior [2]. 

 Data alignment issues: Misaligned halfword, fullword, 

or doubleword data accesses can lead to storage 

exceptions. Ensuring that data structures are naturally 

aligned according to their size (e.g., fullwords on 4-byte 

boundaries) avoids unnecessary system exceptions and 

improves execution efficiency [2]. 

 Incorrect program flow control: Missing BR (Branch) 

or improper save/restore of registers can cause a program 

to return incorrectly or fall through unintended code 

paths. Following proper linkage conventions, such as 

using R14/R15 properly for return addresses, is critical 

for maintaining program integrity. 

 Load module management problems: If load modules 

are not correctly cataloged or STEPLIB references are 

missing or incorrect, programs may fail at load time with 

"Module Not Found" errors. Ensuring correct dataset 

access and module names matching the PGM= 

invocation is crucial [3]. 

 

With a proper understanding of common errors and 

debugging techniques, HLASM programmers are better 

equipped to write high-performance, problem-free programs. 

By coupling a structured approach to problem-solving 

with a mastery of instruction formats, memory management, 

and program structure, programmers can take full advantage 

of the power and precision of assembler programming on the 

z/OS operating system. This foundation sets the stage for 

continued success in creating solid and optimized system-

level programs. 

 

Conclusion 

Despite the growing use of high-level languages, HLASM 

remains vital to z/OS environments due to its unmatched 

precision, flexibility, and efficiency. It empowers system 

programmers to directly access and manipulate memory, 

registers, and control blocks—capabilities that are either 

restricted or completely abstracted away in high-level 

languages like COBOL or PL/I. HLASM excels in 

performance-critical contexts where low overhead, 

predictability, and deep system integration are essential. It 

supports exacting control over instruction execution, register 

usage, and storage layout, making it the language of choice 

for writing system exits, debugging tools, I/O handlers, and 

real-time transaction support modules. 

In addition to low-level system code, HLASM also provides 

huge value for mission-critical, low-latency applications 

where even minimal inefficiencies in instruction cycles or 

memory access will result in quantifiable delays in 

throughput. At this level of accuracy, HLASM is invaluable 

within systems like payment authorization servers, 

telecommunication switch logic, and core banking hardware. 

While modern languages prioritize portability and developer 

productivity, HLASM continues offering the raw power 

needed for microcode-level tuning and ultra-efficient runtime 

performance [4]. 
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