
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1155 | P a g e

Technical Insights into IBM High-Level Assembler (HLASM) in z/OS Systems

Chandra Mouli Yalamanchili

Independent Researcher, USA

* Corresponding Author: Chandra Mouli Yalamanchili

Article Info

ISSN (online): 2582-7138

Volume: 03

Issue: 01

January-February 2022

Received: 04-12-2021

Accepted: 06-01-2022

Page No: 1155-1162

Abstract

IBM has been the market leader for enterprise computing for decades, with its

mainframe systems serving as the backbone of mission-critical applications across

industries such as banking, healthcare, and government. A key component of this

ecosystem is the z/OS operating system, which provides robustness, scalability, and

unparalleled security. At the core of z/OS is the ability to operate at a low level when

required—an ability largely made possible through assembly language. IBM's High-

Level Assembler (HLASM) allows developers to write system-level code with

precision, performance, and efficiency.

This paper explores HLASM's historical roots, technical components, comparative

advantages, and practical usage in the z/OS environment, illustrating why it remains

indispensable even in modern computing.

DOI: https://doi.org/10.54660/.IJMRGE.2022.3.1.1155-1162

Keywords: HLASM; z/OS, IBM Mainframe, Assembly Language, Low-Level Programming, System Programming, Relative

Addressing, JCL

Introduction

Mainframes rely on low-level languages for control, performance, and close-to-the-metal efficiency. While higher-level

languages such as COBOL and PL/I have become standard for business logic, the bedrock of mainframe programming lies in

languages like Assembly and Metal C [2].

IBM Assembly language has evolved significantly since the days of Basic Assembler (BAL). The introduction of HLASM marks

a great leap in capability; it offers structured syntax, macro facilities, and compatibility across multiple platforms [2]. IBM later

introduced Metal C to bridge the gap between C and assembler by enabling developers to write low-level code with the syntax

of C while still achieving assembly-like performance [5]. Nevertheless, for the most granular control, especially in system exits,

I/O handlers, and performance-critical routines, HLASM remains prominent.

HLASM has continued to evolve over the decades, with notable updates in macro processing, conditional assembly, and

debugging capabilities. Its versatility and enduring compatibility with system interfaces like the Supervisor Call (SVC)

instruction, access registers, and control blocks make it an essential tool for systems programmers and low-latency mission-

critical applications [3].

What is HLASM?

HLASM, or High-Level Assembler, is IBM's advanced assembler for its System Z architecture. Unlike its predecessors (such as

Basic Assembler or the now-obsolete IEUASM), HLASM provides a much more structured environment for development. It

supports conditional assembly, complex macro generation, structured programming constructs, and traditional and newer

addressing modes [2].

HLASM has been designed to work seamlessly with different OSes like z/OS, z/VSE, and z/VM, making it adaptable across the

IBM mainframe family. HLASM allows programmers to directly manipulate hardware registers, manage memory explicitly,

and interact with operating system services using macros and system control blocks [3].

https://doi.org/10.54660/.IJMRGE.2022.3.1.1155-1162

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1156 | P a g e

Use cases for HLASM range from writing dump analysis

tools, system exits, channel programs, and real-time I/O

handlers to bootstrapping other languages [4].

Core components of HLASM

HLASM consists of a rich set of foundational components

that form the basis of systems-level programming on z/OS.

These components can be categorized into several logical

areas to help understand their roles and interactions more

clearly.

Processor Resources
 General-Purpose Registers (GPRs): The

z/Architecture includes 16 GPRs (R0–R15). These are

used for arithmetic operations, logical computation,

address resolution, and branching control. For instance,

R1 is commonly used for parameter passing, and R13

typically holds the save area pointer [2].

 Floating-point registers: These registers are used for

scientific or complex arithmetic, mostly in advanced

applications, such as high-precision calculations or

financial modeling where floating-point accuracy is

critical. These registers enable efficient manipulation of

non-integer data types and large numerical ranges.

 Access Registers: For the programs in access-register

mode (as opposed to standard base-register mode),

access registers provide access to additional address

spaces, enabling data sharing across multiple regions.

Access registers support programs that need to address

multiple memory spaces without constant swapping,

which is particularly beneficial in high-concurrency

transaction environments [2].

 Condition code register: The condition code register is

a 2-bit field inside the Program Status Word (PSW) that

holds the current Condition Code (CC). Condition codes

(CC0 to CC3) are set by certain comparison, arithmetic,

or branch instructions. These condition codes are then

used by conditional branching instructions (like BC,

BNE, BE) to decide the execution path based on the

result from the previous operation.

a) 00 -> CC0 - Equal

b) 01 -> CC1 - Low/Less than

c) 10 -> CC2 - High/Greater than

d) 11 -> CC3 - Reserved for special cases or errors

Memory and addressing mechanisms

a) Base and displacement addressing:
The most common form of addressing in HLASM is base

displacement addressing. The effective address (EA) is

computed as:

EA = Contents of Base Register + Displacement

The base register holds a starting address, and the 12-bit

displacement field (0–4095) allows direct addressing of up to

4KB of memory from that base. This model enables compact,

efficient instruction encoding while maintaining flexible

memory access [2].

Example

LA R3,VAR1(R5) * Load address of VAR1 using R5 as base

VAR1 DC F'1234'

For example, if R5 holds X'1000', and VAR1 is offset by

X'0030'; then the effective address loaded into R3 becomes:

EA = X'1000' + X'0030' = X'1030'

b) Index Registers
An index register adds another level of flexibility for

accessing tables or variable memory structures. In indexed

addressing, the effective address becomes:

EA = Contents of Base Register + Displacement + Contents of

Index Register

Indexing enables efficient iteration through arrays or

dynamic lists without modifying base addresses [2].

Example

L R4,0(R2,R1) * Load from address = R2 + R1

c) Immediate Values:

Immediate values are constants embedded directly into the

instruction format, making simple arithmetic and control

operations very fast [2].

Example

LHI R6,10 * Load halfword immediate value 10 into R6

d) Relative Addressing:

HLASM supports relative addressing for instructions like

BC, B, BRCL, BRAS, BRASL, and LARL.

In relative addressing, the displacement encoded in the

instruction is expressed in halfwords (2 bytes each) [2].

The assembler calculates the difference between the target

address and the current instruction address, divides it by 2 (to

convert to halfwords), and stores this displacement into the

instruction.

This method provides efficient and compact relocatable code
[2].

Relative effective address computation:

Target Address = Current Instruction Address + (Displacement *

2)

Example - Branching

BC 8,MYLABEL * Branch if equal

...

MYLABEL DS 0H

Suppose

a) Current Instruction = X'1000'

b) Target Label (MYLABEL) = X'1008'

The assembler encodes

(X'1008' - X'1000') / 2 = 4 halfwords

Example - Loading Address

LARL R3,MYDATA

MVC 0(10,R3),=C'HELLO'

MYDATA DC CL10' '

If MYDATA is located 64 bytes forward from the current

instruction, the assembler encodes displacement as 32 (64 / 2).

These addressing techniques form the backbone of efficient

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1157 | P a g e

memory manipulation in HLASM programs. HLASM
provides developers with the flexibility needed for high-
performance application design and intricate system-level
programming on z/OS by offering high control through base
registers, index registers, immediate constants, and relative
displacements. Mastery of these mechanisms is fundamental
to unlocking the full power of assembler programming in
enterprise computing and mission-critical environments [2].

Data definition and storage control
A. Declarative Statements:

Declarative statements in HLASM allow programmers
to define constants, allocate storage, and organize
memory layout efficiently. These declarations are
essential for establishing structured data areas, buffers,
and control blocks needed in low-level programs [2].

 DC (Define Constant): DC defines initialized storage
areas with specified values. For example, DC F'100'
reserves a fullword (4 bytes) and initializes it with the
decimal value 100. DC statement is critical for setting up
constants or static data that a program will reference
during execution [2].

 DS (Define Storage): DS reserves uninitialized storage
areas without providing specific initial values. For
instance, DS F reserves one fullword of uninitialized
storage. DS statement is typically used for working
areas, scratch space, or dynamically updated fields
during program execution [2].

 EQU, ORG
a) EQU (Equate) allows symbolic naming of constant

values. For example, MAXLEN EQU 256 lets the
programmer refer to 256 symbolically throughout the
program, improving readability and maintainability [2].

b) ORG (Origin) repositions the assembler's location
counter, enabling precise control over data placement
within a CSECT or DSECT. ORG statement can be used
to overlay structures or to create specific memory layouts
needed for hardware interfaces [2].

These declarative tools are foundational to developing

complex data structures and ensuring optimal memory

organization, both of which are key to the efficiency and

clarity of HLASM programs [2].

B. Data Types in HLASM
HLASM supports a variety of fundamental data types

that allow programmers to accurately define how

information is represented and manipulated at the

storage level. Proper selection of data types is essential

for efficiency, interoperability, and system integrity on

z/OS platforms [2].

1) Textual data types

a) Character (C):

Defines text data stored as EBCDIC characters.

Commonly used for labels, messages, and symbolic text
[2].

Example

DC C'HELLO' * Defines 5 bytes containing 'HELLO'

b) Hexadecimal (X):

Represents data explicitly in hexadecimal format. Useful for

flags, bit masks, and low-level binary fields [2].

Example:

DC X'F1F2F3' * Stores bytes F1, F2, F3

2) Numeric data types

a) Packed Decimal (P): Stores decimal numbers with two

digits per byte, ending with a sign nibble. Optimized for

precise arithmetic operations, especially in financial

applications [2].

Example

DC P'123456' * Occupies 4 bytes in packed decimal

format

b) Halfword Integer (H): Represents signed 16-bit

integers (2 bytes). Commonly used for short numeric

fields, counters, and flags [2].

Example

DC H'100' * Defines a halfword containing 100

c) Fullword Integer (F)
Represents signed 32-bit integers (4 bytes). Used for

larger counters, control fields, and simple address

representations [2].

Example

DC F'9999' * Fullword containing the value 9999

d) Doubleword Integer (D): Represents signed 64-bit

integers (8 bytes). Suitable for very large integers and

64-bit addressing [2].

Example

DC D'123456789' * Doubleword (8 bytes) integer

e) Floating-Point (E, G, H formats): Represents fractional

numbers in short (E, 4 bytes), long (G, 8 bytes), or

extended (H, 16 bytes) precision formats. Primarily used

for scientific, mathematical, or engineering

computations [2].

Example

DC E'1.23' * Short floating-point constant

3) Addressing Data Types

a) Address Constant (A): Defines a 4-byte fullword

containing the address of a label or storage location.

Used for building control blocks, address tables, and

indirect referencing [2].

Example

DC A(MYDATA) * Defines a fullword containing the

address of MYDATA

b) Variable Address (V): Defines a computed address

value during assembly time, allowing symbolic address

arithmetic. This is useful when building complex

structures where offsets need to be adjusted dynamically
[2].

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1158 | P a g e

Example

DC V(MYDATA+4) * Address 4 bytes past

MYDATA

C. Data alignment considerations
In HLASM, proper data alignment is critical to ensure

optimal performance and prevent storage access errors.

Data types must align on natural boundaries: halfword

types (H) on 2-byte boundaries, fullword types (F, A) on

4-byte boundaries, and doubleword types (D) on 8-byte

boundaries [2].

Control Structures
 CSECT (Control Section): Declares a logically distinct,

relocatable section of code or data. It allows

modularization and easier linking [2].

MYCODE CSECT

 USING *,15

 DSECT (Dummy Section): Defines a memory layout

without allocating physical space. Commonly used to

define reusable control block formats [2].

MYBLOCK DSECT

FIELD1 DS F

 LTORG, ENTRY, EXTERNAL: Handle literal pools

and inter-module references.

Code structuring aids
 Macros: Parameterized blocks of assembler code that

can be conditionally assembled using statements like

AIF, AGO, and ANOP. This modularity aids reuse and

readability [2].

MYMACRO ®

 L ®,=F'0'

 BR R14

MEND

 Copybooks (COPY, INCLUDE): Allow external

insertion of standardized declarations or macro

templates.

Together, these components provide the programmer with

powerful, granular control over data, flow, and system

interaction—capabilities essential in high-performance,

secure, and resource-constrained environments like IBM

z/OS [1, 2, 3].

HLASM Instructions

HLASM instructions are composed of several fundamental

components that define how the CPU processes data, controls

flow, and accesses memory. Understanding these building

blocks is essential for writing efficient and correct assembly

programs [2].

Basic Components of HLASM Instructions

HLASM instructions are composed of several fundamental

components that define how the CPU processes data, controls

program flow, and accesses memory structures. A solid

understanding of these basic building blocks is essential for

creating efficient and reliable assembler programs [2].

 Register: A general-purpose register (R0–R15) typically

serves as the source or destination for data manipulation,

arithmetic operations, and address calculations.

Registers provide high-speed access to temporary values

and are critical for controlling program execution [2].

 Base Register: A base register holds the starting

memory address for accessing operands. Combined with

displacement, it enables structured memory access. Base

registers allow for modular program designs by

referencing data relative to dynamic locations in storage
[2].

 Displacement: A 12-bit signed field added to the base

register to compute an effective address. The maximum

range for displacement addressing is 4096 bytes (2^12),

allowing efficient referencing of data structures located

near the base register [2].

 Index Register: An optional general-purpose register

that provides an additional offset to the base and

displacement. Indexing is essential for looping through

arrays or variable-length structures without modifying

the base address [2].

 Immediate Value: An embedded constant value

encoded directly within the instruction. Immediate

operands eliminate the need for memory fetches when

performing simple arithmetic, comparisons, or control

operations [2].

 Length Field: Some instruction formats, especially

those involving storage-to-storage (SS) operations,

include a length field that specifies the number of bytes

or elements to be processed. Properly setting the length

field ensures that operations such as block copying or

clearing memory are performed correctly [2].

 Operation Code (Opcode): Each instruction contains

an operation code that identifies the action to be

performed (such as LR for Load Register or MVC for

Move Characters). Understanding the opcode is crucial

for interpreting machine instructions and for optimizing

performance [2].

 Condition code updates: Many instructions implicitly

set or update the Condition Code (CC) field in the

Program Status Word (PSW), enabling conditional

program flow based on comparison results, arithmetic

outcomes, or logical evaluations. Branch instructions use

these updated condition codes to decide program control

paths [2].

Instruction Types in HLASM

HLASM instructions can be categorized into several

functional groups based on their operational behavior. Each

type of instruction plays a critical role in performing essential

computing tasks, from arithmetic operations to system

control and I/O communication. Understanding these

categories helps programmers select the most appropriate

instruction for specific tasks [2].

1) General Instructions

General instructions perform fundamental operations such as

data movement, comparison, logical operations, and

branching. These instructions form the core building blocks

for most programs [2].

Examples include
 LR (Load Register)

 CR (Compare Registers)

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1159 | P a g e

 AR (Add Registers)

 BC (Branch on Condition)

These instructions manipulate registers, memory contents, or

control flow based on program logic.

2) Decimal Instructions

Decimal instructions are specialized for performing

arithmetic operations on packed or zoned decimal numbers.

They are especially useful in financial and business

applications where precision decimal arithmetic is necessary
[2].

Examples include
 AP (Add Packed)

 SP (Subtract Packed)

 MP (Multiply Packed)

 DP (Divide Packed)

These instructions operate on data formatted with packed

decimal representations, ensuring accuracy in decimal

calculations.

3) Floating-point instructions

Floating-point instructions allow operations on floating-point

numbers, supporting scientific and engineering calculations

that require fractional precision [2].

Examples include
 AE (Add Short Floating Point)

 SE (Subtract Short Floating Point)

 MDE (Multiply Divide Short Floating Point)

 CE (Compare Short Floating Point)

Floating-point formats (E, G, H) define the precision level of

these operations.

4) Control Instructions

Control instructions manage program flow, system state, and

execution context. They are crucial for handling subroutines,

saving and restoring contexts, and managing branches and

returns [2].

Examples include
 BAS (Branch and Save)

 BASR (Branch and Save Register)

 SVC (Supervisor Call)

 PR (Program Return)

Control instructions enable sophisticated program structures

and system interaction mechanisms.

5) Input/Output Operations

I/O operations in assembler manage communication between

programs and external devices such as disks, tapes, and

printers. HLASM uses specialized macros and low-level

instructions to initiate and control I/O activities [2].

Examples include
 EXCP (Execute Channel Program — via macros like

IEBGENER)

 STARTIO (Start I/O Operation — privileged

instruction)

Typically, high-level macros like GET, PUT, and READ are

used with I/O instructions to simplify complex device

handling.

Instruction Formats in HLASM

Fig 1: Instruction Formats in HLASM [2]

As illustrated in above picture, HLASM defines several

standard instruction formats, each with a unique operand

structure. Understanding these formats is essential to writing

efficient, clear, and optimized assembler programs on z/OS
[2].

 RR (Register-to-Register): In this format, both

operands are registers. This format is typically used for

fast operations that move or manipulate data between

registers without accessing memory [2].

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1160 | P a g e

Example

LR R1, R2 * Copy contents of R2 into R1

 RX (Register and Indexed Storage): This instruction

format combines a register operand with a memory

operand formed from a base register, an optional index

register, and a displacement. It is commonly used for

dynamically accessing fields or table entries [2].

Example

L R1,100(R2,R3) * Load R1 from memory address = R2 + R3 +

100

 RS (Register and Storage): This instruction format

involves a register, and a memory address formed from

base and displacement but without an index. Often used

for storing or loading values to/from memory locations

that are relatively fixed [2].

Example

ST R4,200(R5) * Store contents of R4 into address at R5+200

 SI (Storage and Immediate): This instruction format

contains a storage operand and an immediate (constant)

operand. It is frequently used for comparisons or setting

values directly in memory without loading them into a

register [2].

Example

CLI 10(R1),X'FF' * Compare byte at R1+10 with hex FF

 SS (Storage to Storage): Operates entirely on storage

operands, enabling block-level operations such as

moving or clearing multiple bytes of data at once. Useful

for initializing or copying areas in memory [2].

Example

MVC 0(10,R2),0(R3) * Copy 10 bytes from R3 to R2

 RI (Register and Immediate): This instruction format

combines a register operand with an immediate constant

embedded in the instruction. Typically used for loading

or adjusting register values quickly [2].

Example

LHI R1,=H'10' * Load halfword immediate value 10 into R1

AHI R1,5 * Add 5 to R1

Each instruction format is carefully optimized for a specific

style of operation — whether working entirely within the

register set, manipulating memory contents directly, or

combining register and memory access patterns. Mastery of

these formats is crucial for achieving both high performance

and code maintainability in enterprise z/OS applications [1, 2].

Life cycle of an assembler program

Having understood the various instruction formats available

in HLASM, it is important to step back and view how these

individual instructions fit into the broader life cycle of an

assembler program. Each instruction type ultimately

contributes to creating a complete executable module that

runs on the system [2].

The diagram below illustrates the overall process from

writing source code to producing a runnable program:

Fig 2: Life cycle of a HLASM Program [2]

The life cycle involves the following key stages

 Source code development:
The process begins with writing assembler language

source statements, utilizing the different instruction

formats and data structures we discussed earlier. These

statements define both the logic and structure of the

program [2].

 Assembly with High-Level Assembler (HLASM):
The source code is fed into the HLASM, which translates

it into machine language instructions. During this phase,

the assembler also generates:

a) A machine language version of the program (the object

deck).

b) Messages and listings that detail the assembly process,

symbol resolutions, and any encountered errors or

warnings [2].

 Linking and Binding
The machine code is then processed by the linker (often

the Binder utility, IEWL), which resolves external

references, includes additional modules if necessary, and

produces a loadable executable module [2].

 Executable Program
Finally, the linked and bound module becomes an

executable program ready for execution under the z/OS

operating system. This executable can be run as a batch

job, a started task, or invoked by higher-level

applications.

Each stage is crucial to ensuring that the instructions coded

at the beginning are faithfully transformed into a reliable,

efficient executable ready for production or testing.

Assembler listings and diagnostics

Once a HLASM program is assembled, a listing file is

generated that contains valuable diagnostic and reference

information [2]:

 Machine Instructions: The generated hexadecimal

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1161 | P a g e

opcodes for each source line, useful for verifying correct

translation.

 Line number and source code mapping: Helps

correlate source lines with object code.

 Symbol Table: Displays labels and their resolved

addresses.

 Errors and Warnings: Syntax or semantic issues, such

as undefined symbols or misaligned constants, will

appear with detailed message codes [3].

An example snippet from a listing:

000010 58F0 C010 L R15,16(R12) * Load base address

000014 05EF BALR R14,R15 * Branch and link

These listings are often the first place a systems programmer

will turn when debugging assembler-level issues or

unexpected runtime behaviors [3].

Program Linking: Static vs. Dynamic

Assembler object decks must be linked into executable

modules. Two approaches exist [2]:

 Static Linking: All required modules are linked into one

load module at bind time.

a) Pros: Simpler deployment, faster runtime performance.

b) Cons: Larger executables, less flexible to updates.

c) JCL Example:

//LINK EXEC PGM=IEWL,PARM='LET,MAP'

//SYSLIN DD *

 INCLUDE SYSLIB(MYROUT)

 ENTRY MAINPGM

 NAME HELLO(R)

/*

 Dynamic Linking: The program calls external modules

at runtime.

a) Pros: Smaller executables, allows versioning and

updates.

b) Cons: Runtime dependency management.

c) Assembly Example

CALLMOD CALL (MYUTIL),VL

Need to ensure MYUTIL is available in the LPA (Link Pack

Area) or a designated loadlib in the job [3].

Building and Testing an HLASM Program

Creating and running a HLASM program involves three

fundamental phases: writing the source code, assembling it

into machine-readable form, and linking it to produce a load

module that can be executed on z/OS. Each phase plays a vital

role in ensuring the program behaves as intended and

integrates correctly with system libraries or runtime

environments [2].

1) Write the source code

HELLO START 0

 BALR R12,0

 USING *,R12

 WTO 'HELLO FROM HLASM'

 BR R14

 END HELLO

This simple assembler program prints the message "HELLO

FROM HLASM" using the WTO (Write To Operator) macro.

The BALR and USING instructions establish addressability,

while the BR returns control to the caller. This structure

forms a minimal, but complete HLASM program that can be

tested on a mainframe system [2].

2) Assemble the code

//ASM EXEC PGM=ASMA90,PARM='OBJECT,NODECK'

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

... (Source code) ...

/*

This JCL snippet submits the program to the High-Level

Assembler (ASMA90) to convert it into an object deck. The

OBJECT parameter ensures that machine code is produced,

while NODECK prevents printing of the object card deck.

The listing file (SYSPRINT) will show symbol resolutions,

opcodes, and any diagnostic messages [3].

3) Link and Execute

//LINK EXEC PGM=IEWL,PARM='LET,MAP'

//SYSLMOD DD DSN=MY.LOADLIB(HELLO),DISP=SHR

//RUN EXEC PGM=HELLO

//STEPLIB DD DSN=MY.LOADLIB,DISP=SHR

The IEWL utility (Binder) links the assembled object into an

executable load module stored in MY.LOADLIB. The LET

parameter allows automatic name resolution, and MAP

provides a memory layout map in the output. The RUN step

executes the module, using STEPLIB to locate the load

module in the specified dataset. This final phase validates that

the code behaves correctly in a live z/OS environment [3].

4) Execute the load module

//RUNSTEP EXEC PGM=HELLO

//STEPLIB DD DSN=MY.LOADLIB,DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

This JCL step executes the assembled and linked program.

The STEPLIB DD points to the library containing the newly

linked load module. SYSOUT, SYSUDUMP, and

SYSPRINT capture any output, dumps, or runtime

diagnostics for review [2].

5) Output
Upon successful execution, the following message would

appear on the system operator console (and possibly in the

job output SYSOUT):

IEF233I DISPLAY FROM JOBNAME - HELLO FROM

HLASM

Common assembler issues and troubleshooting

Even well-written HLASM programs may encounter issues

during the assembly, linkage, or execution phases.

Understanding common problems and having a structured

troubleshooting approach can significantly reduce debugging

time and improve program stability [2, 3].

 Assembly Errors: Syntax errors, unresolved symbols,

or invalid operand specifications are frequently

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1162 | P a g e

encountered during assembly. Carefully reviewing the

assembler listing (SYSPRINT) and using diagnostic

message codes provided by HLASM can help pinpoint

issues quickly [3].

 Linkage Errors: If external symbols are not properly

resolved during the link-edit phase, errors such as

"Unresolved External" or "Missing Entry Point" may

occur. Verifying all ENTRY, EXPORT, and IMPORT

statements, and ensuring correct inclusion of necessary

modules during linking, are critical steps [2].

 Addressability Problems: Incorrect use of BALR,

USING, or improper register setup can lead to

addressing exceptions like S0C4 abends (protection

exceptions). Ensuring that base registers are properly

loaded, and addressability is established before

accessing memory is essential for preventing runtime

failures [2].

 Condition code misinterpretations: Instructions that

update the Condition Code (CC) require careful

handling. Misinterpreting the meaning of CC settings

(e.g., low, high, equal) can cause incorrect branching

logic and unpredictable program behavior [2].

 Data alignment issues: Misaligned halfword, fullword,

or doubleword data accesses can lead to storage

exceptions. Ensuring that data structures are naturally

aligned according to their size (e.g., fullwords on 4-byte

boundaries) avoids unnecessary system exceptions and

improves execution efficiency [2].

 Incorrect program flow control: Missing BR (Branch)

or improper save/restore of registers can cause a program

to return incorrectly or fall through unintended code

paths. Following proper linkage conventions, such as

using R14/R15 properly for return addresses, is critical

for maintaining program integrity.

 Load module management problems: If load modules

are not correctly cataloged or STEPLIB references are

missing or incorrect, programs may fail at load time with

"Module Not Found" errors. Ensuring correct dataset

access and module names matching the PGM=

invocation is crucial [3].

With a proper understanding of common errors and

debugging techniques, HLASM programmers are better

equipped to write high-performance, problem-free programs.

By coupling a structured approach to problem-solving

with a mastery of instruction formats, memory management,

and program structure, programmers can take full advantage

of the power and precision of assembler programming on the

z/OS operating system. This foundation sets the stage for

continued success in creating solid and optimized system-

level programs.

Conclusion

Despite the growing use of high-level languages, HLASM

remains vital to z/OS environments due to its unmatched

precision, flexibility, and efficiency. It empowers system

programmers to directly access and manipulate memory,

registers, and control blocks—capabilities that are either

restricted or completely abstracted away in high-level

languages like COBOL or PL/I. HLASM excels in

performance-critical contexts where low overhead,

predictability, and deep system integration are essential. It

supports exacting control over instruction execution, register

usage, and storage layout, making it the language of choice

for writing system exits, debugging tools, I/O handlers, and

real-time transaction support modules.

In addition to low-level system code, HLASM also provides

huge value for mission-critical, low-latency applications

where even minimal inefficiencies in instruction cycles or

memory access will result in quantifiable delays in

throughput. At this level of accuracy, HLASM is invaluable

within systems like payment authorization servers,

telecommunication switch logic, and core banking hardware.

While modern languages prioritize portability and developer

productivity, HLASM continues offering the raw power

needed for microcode-level tuning and ultra-efficient runtime

performance [4].

References

1. IBM Corporation. IBM z/Architecture Principles of

Operation. SA22-7832-12, IBM Documentation;

September 2019. [Online]. Available:

https://publibfp.dhe.ibm.com/epubs/pdf/a227832c.pdf

2. IBM Corporation. High Level Assembler for z/OS &

z/VM & z/VSE: HLASM V1R6 Language Reference.

SC26-4940-09, IBM Documentation; 2021. [Online].

Available:

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asm

r1024_pdf.pdf

3. IBM Corporation. High Level Assembler for z/OS &

z/VM & z/VSE: HLASM V1R6 Programmer's Guide.

SC26-4941-07, IBM Documentation; 2021. [Online].

Available:

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asm

p1024_pdf.pdf

4. IBM Corporation. High Level Assembler for z/OS &

z/VM & z/VSE: HLASM V1R6 General Information.

GC26-4943-06, IBM Documentation; 2021. [Online].

Available:

https://www.ibm.com/docs/pt/SSENW6_1.6.0/pdf/asm

g1025_pdf.pdf

5. IBM Corporation. z/OS Metal C Programming Guide

and Reference. SC14-7313-40, IBM Documentation;

June 2021. [Online]. Available:

https://www.ibm.com/docs/en/SSLTBW_2.4.0/pdf/ccru

g00_v2r4.pdf

