
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 738 | P a g e

Machine Learning-Based Test Case Generation Comparing: Reinforcement Learning

vs Genetic Algorithms

Ravikanth Konda

Senior Software Developer, Victoria, Melbourne, Australia

* Corresponding Author: Ravikanth Konda

Article Info

ISSN (online): 2582-7138

Volume: 03

Issue: 06

November- December 2022

Received: 09-10-2022

Accepted: 12-11-2022

Page No: 738-742

Abstract
Software testing is a pillar of high-quality software development, which guarantees that

software systems satisfy given requirements and behave correctly under various conditions.

With the growing complexity and dynamism of contemporary software, conventional testing

techniques, based on manual test case construction or rule-based heuristics, are not able to scale

properly. This has prompted the development of automated test case generation techniques, with

the goal of minimizing human effort and maximizing the reliability, efficiency, and coverage of

the testing process. Among the sophisticated methods under investigation, machine learning

(ML)-based techniques—specifically Reinforcement Learning (RL) and Genetic Algorithms

(GA)—have demonstrated strong potential in test case generation automation with high-quality

test cases. RL enables systems to learn test sequences autonomously by interacting with the

software environment and receiving feedback in terms of performance metrics like code

coverage or fault detection rates. Contrarily, GA is inspired by natural selection and undergoes

test case evolution across generations through operations like mutation, crossover, and selection

by a fitness function. A comparative study of RL and GA methods for test case generation has

been brought forth in this paper. The primary aim here is to realize the strengths, limitations,

and practical trade-offs involved with each method in actual software testing applications. We

analyze the theoretical underpinnings of both approaches, their design requirements, and how

they fit into contemporary software development workflows. Empirical research and available

benchmarks are examined to compare the performance of each method using quantitative

measures such as code coverage, mutation score, computational complexity, and scalability on

various software systems. We also discuss implementation issues like reward shaping in RL and

premature convergence in GA, and suggest mitigation strategies. The paper also delves into how

hybrid methods can potentially gain the strengths of both and suggests research directions for

the future, such as integration of deep learning architectures, transfer learning for test reuse, and

real-time test adaptation in continuous deployment environments. By pointing out both

algorithmic subtleties and real-world usability, this research offers suggestions to software

testing practitioners, quality assurance engineers, and ML researchers who want to use or extend

intelligent test generation tools. The outcome and findings presented here hope to guide the

creation of stronger, scalable, and smarter software testing frameworks appropriate for the needs

of contemporary software engineering.

DOI: https://doi.org/10.54660/.IJMRGE.2022.3.6.738-742

Keywords: Machine Learning, Test Case Generation, Reinforcement Learning, Genetic Algorithms, Software Testing,

Automated Testing, Code Coverage, Fault Detection, Evolutionary Computation, Continuous Integration, Quality Assurance,

Optimization, Search-Based Software Engineering, Policy Learning, Test Prioritization, Test Automation Tools, Fitness

Function, Reward Engineering, Mutation Testing, Test Effectiveness

1. Introduction

In software engineering, testing is a critical process that seeks to detect defects and validate that a software system operates as

expected. The test cases have a direct impact on the reliability, maintainability, and performance of software systems.

https://doi.org/10.54660/.IJMRGE.2022.3.6.738-742

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 739 | P a g e

As the size and complexity of software increase, with more

and more use of continuous integration and deployment

pipelines, the demand for sound, scalable, and automatic

testing practices has never been greater.

Historically, software test cases have been authored manually

by developers and quality assurance engineers or produced

with static, rule-based techniques like equivalence

partitioning, boundary value analysis, or decision table

testing. Though good enough for simple situations, these

techniques are typically not sufficient in dealing with the

dynamic behavior, varied inputs, and enormous execution

paths found in contemporary applications. Manual test case

generation is not only time consuming but also error-prone

and biased, leading to inadequate coverage and hidden bugs.

Over the past few years, the use of artificial intelligence (AI),

especially machine learning (ML), has transformed several

areas of software engineering. ML methods have been

applied to forecast software faults, minimize testing effort,

and automate test case generation and prioritization. Between

the numerous paradigms of ML, Reinforcement Learning

(RL) and Genetic Algorithms (GA) have been widely used in

the field of automated test case generation because of their

search-based and adaptive nature.

Reinforcement Learning, a subfield of ML rooted in

behavioral psychology, is naturally adapted to situations

where an agent learns by trial and error, receiving feedback

in the form of rewards or penalties. In test case generation,

RL models use the software under test (SUT) as an

environment and learn to generate input sequences that

maximize a specified reward—most often code coverage or

fault detection rate. RL is best in terms of adapting to

environment changes and learning to make better decisions

over time, hence being well-suited for regression testing and

testing within agile development cycles.

Genetic Algorithms are based on evolutionary computation.

They simulate the mechanism of natural selection, wherein

possible solutions—test cases here—evolve through the

operations of selection, crossover, and mutation. The fitness

of every test case is measured by factors like the amount of

code it testifies to or the number of distinct faults it exposes.

GAs are especially good at covering big search spaces and

are resistant to local optima, a prevalent problem in

conventional optimization methods.

Although they share a common objective, RL and GA are

based on fundamentally different philosophies and

mechanisms. RL is motivated by sequential decision-making

and experience-based learning, while GA is based on

population dynamics and survival of the fittest. It is necessary

for practitioners to understand the relative strengths,

weaknesses, and appropriate applications of these methods in

order to use intelligent automation in their testing.

This paper delves into these two ML-based approaches

extensively, providing a comparative analysis in terms of

their underlying theories, implementation paradigms, and

empirical behavior in different software testing contexts.

Through this, we seek to provide software engineers,

researchers, and QA professionals with the information they

need in order to make informed choices regarding the

inclusion of RL and GA in their testing pipeline.

2. Literature Review

The application of machine learning to software testing has

grown significantly in recent years, especially in the realm of

automated test case generation. Both Reinforcement Learning

(RL) and Genetic Algorithms (GA) have demonstrated

considerable promise in enhancing the effectiveness and

efficiency of testing processes. This section reviews notable

research contributions in this field, categorizing them into two

primary streams—RL-based and GA-based approaches.

Reinforcement Learning-Based Approaches

Reinforcement Learning models have been explored for their

capacity to learn optimal testing strategies by interacting

dynamically with the software environment. In 2020, Corradini

et al. introduced DeepREST, a deep RL model tailored for

generating test cases for RESTful APIs [1]. Their model used

curiosity-driven exploration to uncover undocumented

behaviors and constraints in APIs, resulting in significantly

higher path coverage compared to traditional test generators.

Similarly, Bagherzadeh et al. [2] tackled test case prioritization

within Continuous Integration (CI) environments using RL.

Their model framed prioritization as a Markov Decision Process,

where the RL agent learned to rank test cases based on past

execution results and coverage metrics. This dynamic

prioritization outperformed static heuristics, especially in

detecting regression faults early.

Steenhoek et al. [3] presented a framework called RLSQM

(Reinforcement Learning from Static Quality Metrics), which

integrates static code metrics such as cyclomatic complexity and

code churn into the reward function. Their use of Proximal

Policy Optimization (PPO) allowed the RL agent to generate

high-value unit tests that targeted risky or complex code regions

more effectively than baseline methods.

Despite these advances, RL faces several challenges in practice,

such as reward shaping, exploration-exploitation trade-offs, and

the computational cost of training agents in large software

systems.

Genetic Algorithm-Based Approaches

Genetic Algorithms have long been favored for search-based

software engineering tasks due to their ability to navigate large

and non-linear test spaces. One of the seminal works by Khan et

al. [4] proposed a hybrid GA-Cuckoo Search model, which

introduced a more diverse set of candidate solutions and

maintained population diversity. Their method achieved higher

mutation scores and branch coverage on standard Java

benchmark programs.

Mishra et al. [5] conducted an extensive survey on random test

case generation techniques using evolutionary algorithms. They

concluded that GAs are particularly effective in scenarios

requiring extensive structural coverage and can be tailored to

support both white-box and black-box testing strategies. The

paper emphasized the role of customized fitness functions in

aligning test generation with project-specific goals.

Kumar and Singh [6] demonstrated the effectiveness of GA in

object-oriented software testing, where test cases must account

for class hierarchies and inter-object interactions. Their

approach showed a notable improvement over random testing,

particularly in fault localization and error propagation.

However, GAs can suffer from premature convergence and may

require careful tuning of parameters such as population size,

crossover rate, and mutation probability. Researchers have

addressed these issues through adaptive mechanisms and hybrid

models.

Synthesis and Research Gaps

While both RL and GA have shown strong potential, they differ

significantly in their design philosophies and application

contexts. RL offers better adaptability and real-time decision-

making, making it suitable for dynamic systems. GA excels in

scenarios where comprehensive exploration of the test space is

critical. Despite these successes, limited studies have compared

both approaches under a unified framework. Furthermore,

integration of these techniques into real-world DevOps pipelines

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 740 | P a g e

remains a key challenge, opening avenues for future exploration.

3. Methodology

This research takes a thorough comparison between

Reinforcement Learning (RL) and Genetic Algorithms (GA)

for software test case generation using automated test case

generation. The approach followed for the comparison is to

test both methods under controlled and comparable

experimental settings in a variety of software systems. The

objective is to determine the performance of each method

regarding test effectiveness, scalability, and computational

efficiency. For this purpose, a common framework was set up

wherein every technique was utilized to produce test cases for

specific software under test (SUT), and their results were

compared using a list of well-established evaluation criteria.

The choice of target software systems was important so that

the experiments would represent a broad spectrum of real-

world testing issues. Three open-source Java applications

were selected for this reason. The first use, Triangle, is an

example decision program typically applied to research

studies on software testing because of the easily determined

input space and control flow. Apache Commons Lang, the

second example, offers a set of Java language utility classes

with high-medium complexity levels as it encompasses an

ample assortment of methods. The third, JFreeChart, is a big

and established charting library that also brings quite some

complexity regarding interactions among objects, GUI

elements, and data models below. These frameworks present

an interesting testbed for evaluating how RL and GA scale

with program complexity.

For the RL-based method, the generation of tests was defined

as a Markov Decision Process (MDP). Here, the state is a

snapshot of the testing procedure, e.g., which code portions

have been executed and what inputs have been attempted.

Actions are new input generation, method invocation, or

execution sequence modification. A reward signal leads the

learning process of the agent, which in this scenario is

coverage-based on line and branch coverage and also

includes penalties for duplicate or ineffective actions. The RL

agent used in this research was implemented as a Deep Q-

Network (DQN), which estimates the Q-function by a deep

neural network. This enables the agent to learn an optimal

policy even in high-dimensional input spaces. The model was

trained across several episodes, where each episode was a

series of actions resulting in the generation of a test case. The

exploration-exploitation tradeoff was addressed with an

epsilon-greedy policy, with increasing preference for

exploitation as training went on.

By contrast, the GA-based approach used the concepts of

evolutionary computation to evolve a population of potential

test cases. Every member of the population was encoded as a

chromosome, a string of method calls and associated input

parameters. The fitness of every chromosome was assessed

through a composite score based on code coverage and

mutation score. This fitness function was used to drive the

selection process, where individuals with higher performance

were more likely to be selected for reproduction. The

algorithm ran through multiple generations, employing

crossover to blend features from parent test cases and

mutation to inject diversity. Elitism guaranteed that the best

performing individuals of each generation were saved in the

subsequent generation. GA implementation was set up with

empirically proven parameters: population size of 50,

crossover rate of 70%, and mutation probability of 10%. The

execution was done for 100 generations per test suite.

In order to compare the two strategies, we decided on a

consistent set of evaluation criteria. Code coverage was

quantified with the JaCoCo framework, which measures line

and branch coverage. Mutation testing was done with PIT

(Pitest), which injects artificial faults into the codebase and

tests the test suite's capability to find them. The number of

distinct test cases generated was counted to measure test suite

size, and the total runtime of each algorithm was measured to

compare computational efficiency. Each experiment was

done five times to be robust and counteract the randomness

inherent in both GA and RL. The end results were averaged,

and standard deviations were computed. For statistical

significance, paired t-tests were used at a 95% confidence

level.

This approach ensures a solid background for the following

empirical analysis. By isolating environmental factors and

normalizing measures of evaluation, the research is able to

have a balanced and informative comparison of

reinforcement learning versus genetic algorithms for machine

learning-based test case generation.

4. Results

Empirical comparison of Reinforcement Learning (RL) and

Genetic Algorithms (GA) for test case generation was

performed on three different Java-based software systems:

Triangle, Commons Lang, and JFreeChart. The main metrics

used to compare the two methods were code coverage (line

and branch), mutation score, test suite size, and execution

time. Each experiment was run five times, and average values

with standard deviations were computed to ensure

consistency and statistical stability.

For the Triangle program with relatively straightforward

control logic, RL and GA performed similarly in terms of

branch and line coverage. RL had a mean line coverage of

98.2%, whereas GA only managed 96.7%. Likewise, branch

coverage was 94.5% for RL compared to 92.1% for GA. The

RL mutation score rose to 91.4%, slightly better than GA's

89.2%. Yet execution time was significantly different. RL

took around 78 seconds for a run, while GA took the same

task in 45 seconds, showing that the evolutionary process is

more efficient computationally for more basic systems.

In the case of Apache Commons Lang, a moderately sized

application having multiple utility classes, the findings

showed greater discrepancies. RL showed better exploration

and adaptability, scoring 91.8% of line coverage and 87.3%

of branch coverage, while GA scored 85.4% and 80.7%,

respectively. The mutation score was similarly higher for RL

(83.6%) than GA (77.5%), suggesting a better capability to

reveal faults. Interestingly, although RL generated a smaller

test suite with an average of 122 distinct test cases, GA

created a larger number of 174 test cases, which included

many redundant or overlapping test cases in coverage. On the

time front, GA finished test generation in 132 seconds,

whereas RL took 221 seconds owing to the overhead of

computation and interaction with the environment.

The most intricate system, JFreeChart, further underscored

the difference in performance between the two methods. RL

once again outperformed on the effectiveness front, obtaining

84.2% line coverage and 76.8% branch coverage, while GA

trailed behind with 74.5% and 68.2%, respectively. The

difference in mutation score was wide: 71.5% for RL and

61.3% for GA. The edge of RL comes from the fact that it

can capture complicated interactions and learn to modify its

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 741 | P a g e

strategy dynamically as per seen feedback. This did not come

without a price tag, however. RL's average running time

ballooned to 487 seconds, while GA ran in 289 seconds. The

size of the test suite in this case was similar: 248 test cases

for RL and 262 for GA, although tests generated by RL were

more varied and had superior fault localization.

In all systems, RL outperformed GA consistently in test

quality—measured by coverage and mutation score—

although GA still had a wide lead in execution time. The

findings confirm that RL's environment-aware learning is

particularly beneficial in complex systems where exploration

and adaptive behavior are important. On the other hand, GA

is more appropriate for situations requiring rapid results with

moderate effectiveness, particularly in low to medium

complexity domains.

These results lay the groundwork for further discussion

regarding trade-offs, scalability, and applicability in the real

world, which is discussed in the subsequent section.

5. Discussion

The comparative findings of this research highlight the strong

potential of both Genetic Algorithms (GA) and

Reinforcement Learning (RL) in automated test case

generation, but also indicate the subtle differences in their

performance across software systems of different

complexity. Although both methods have shown the

capability to generate efficient test suites, their respective

strengths and weaknesses imply that their applicability is

strongly context-dependent.

One of the most striking results of the empirical analysis is

the better performance of RL on test effectiveness, as

indicated by line and branch coverage and mutation score. On

all three subject systems—Triangle, Commons Lang, and

JFreeChart—RL always recorded higher line and branch

coverage, and more effective fault detection. This is partly

because RL can learn from environment interactions and

modify its test generation policy as a response to feedback.

Modeling the testing process as a sequential decision problem

allows RL to change its strategy dynamically to achieve

maximum coverage and reveal deeper faults, including in

code paths that are difficult to traverse using random or static

approaches.

Conversely, Genetic Algorithms, though conceptually easier

and quicker to run, had limitations in finding intricate

execution paths. The GA method is heavily dependent on

fitness functions to drive evolution, and while fitness-driven

optimization can bring about significant gains in structural

coverage, it does not have the real-time adaptability and state

awareness that RL naturally has. For less complex

applications such as Triangle, GA did almost as well as RL,

indicating that in such an area, the cost of deploying RL might

not be worth it. But with increased system complexity, RL

clearly had an advantage. In JFreeChart, a highly object-

oriented system involving GUI elements and tiered

interactions, RL's capability to observe execution states and

adapt behavior accordingly led to significantly improved

coverage and better-quality test cases.

The other important comment relates to the trade-off between

test quality and execution time. GA was always quicker at

delivering results and, thus, a more appealing choice in time-

sensitive situations like rapid development cycles or CI/CD

pipelines where speed of test generation is of utmost

importance. RL, however, took much greater computational

horsepower and time to converge on good strategies,

especially on larger codebases. This highlights a key

challenge in RL-based approaches—their scalability.

Training deep RL models is resource-intensive and may not

always be feasible in industrial settings without access to

sufficient computational infrastructure.

The size of the test suite also provided intriguing

observations. Whereas GA had a tendency to generate more

test cases, they tended to be less diverse and redundant. RL,

on the other hand, normally generated a lighter but more

focused test suite with a focus on high-risk scenarios and

corner cases. This difference in quality vs. quantity is

especially beneficial to contemporary software engineering

practices, wherein test maintenance and execution are

principal concerns.

It is also appropriate to consider implications for test oracles.

RL and GA were both tested in a setting in which test oracles

were generated automatically via assertions or crash-

detection mechanisms. But in practice, the lack of a reliable

oracle can place constraints on practical use of test

generation. RL, which produces context-dependent

sequences of inputs, could be better integrated with learned

or mined oracles, while GA can utilize predefined assertion

patterns or user-specified goals.

Another aspect that affects effectiveness is domain

knowledge. RL can have domain-specific rewards and

penalizations, and thus fine-grained control over the test

process. GA, however, relies heavily on the fitness function

design, which can be manually tuned and requires expert

knowledge. Thus, in domains where domain knowledge can

be encoded well, RL has more potential for optimization.

Although they are fundamentally different, the two

approaches are not incompatible. Combined models that

bring together the decision-making power of RL and the

exploratory prowess of GA may well provide the best of both

worlds. For example, populations in GA may be seeded with

trajectories discovered by RL agents, or GA-created tests

may be used as a basis by RL models to accelerate

convergence. These hybrids may neutralize the downside of

each technique.

Overall, the above discussion indicates that RL and GA both

have specific roles to perform in automated test generation.

RL is superior for adaptive, high-complexity environments

where thorough exploration is called for, while GA is still a

valid, effective choice for low-complexity or time-critical

situations. The selection between them should be based on

the particular demands of the test environment, such as

complexity, resources, and time factors. The results also

indicate promising areas for future work, specifically in the

creation of hybrid architectures and conjunctions of machine

learning with human-in-the-loop testing methodology.

6. Conclusion

The aim of this research was to perform a systematic

comparative analysis of Reinforcement Learning (RL) and

Genetic Algorithms (GA) for test case generation in an

automated manner, with specific emphasis on effectiveness,

efficiency, and usability across software systems of different

complexity levels. Based on empirical evidence collected

from controlled experiments on three open-source Java

systems, the research has presented a thorough insight into

the advantages, disadvantages, and trade-offs of each

method.

The findings unequivocally show that RL, when effectively

applied and fine-tuned, can generate high-quality test suites

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 742 | P a g e

with better code coverage and fault detection rates. Its

strength is its dynamic and adaptive learning process, which

enables it to learn complex software behavior and identify

hard-to-reach execution paths. This makes RL especially

well-suited for testing contemporary, large-scale software

systems with complex control flows and state-dependent

behaviors. But this power is with a price tag. The

computational expenditure required in training deep RL

models, the need for high-level interaction with the system

under test, and the comparatively higher runtime all are

hurdles in adopting RL in contexts where prompt feedback

and low resources are concerns.

On the other hand, GA presents a less computationally

expensive and simpler option. Its population-based evolution,

driven by coverage-oriented fitness functions, allows it to

produce effective test cases in a short time, particularly for

software systems of low to medium complexity. Its ease of

implementation and relatively short execution time make GA

a desirable candidate for inclusion in continuous

integration/continuous deployment (CI/CD) pipelines, where

time is usually a major constraint. However, GA's

performance degrades in more difficult settings, where it has

trouble repeatedly producing test inputs that reveal deeper or

less frequently traversed code paths.

The main lesson from the comparison is that there is no one-

size-fits-all technique. The applicability of either method

relies critically on the structure of the system being tested as

well as on the objectives of the testing activity. For highly

large-scale systems or systems of highly complex user

interaction, the ability of RL to learn and adjust is truly

priceless. In cases of relatively simpler systems and when test

cases are to be generated quickly and under tight resources,

GA still proves to be an extremely utilitarian method.

Additionally, this research draws attention to further

investigation of hybrid approaches that will be able to

combine the adaptability of RL with the population diversity

and efficiency of GA. Such methods can potentially take the

best from each paradigm while also reducing their own

respective drawbacks. Future work would also be interesting

in investigating optimization of reward and fitness function

formulation, incorporation of domain-specific domain

knowledge, as well as use of richer test oracles towards

enhanced real-world relevance.

Both Genetic Algorithms and Reinforcement Learning have

proved to hold vast potential in the field of machine learning-

based test case generation. Both offer different strengths that,

when aligned correctly with the context of testing, can result

in more efficient and effective software testing

methodologies. With software systems further increasing in

scale and complexity, the strategic implementation of these

intelligent methods will progressively become even more

important to providing software quality, reliability, and

resilience.

7. References

1. Corradini M, De Angelis G, Polini A. DeepREST: A

Reinforcement Learning-based Approach for Automated

Testing of RESTful APIs. In: Proc. IEEE Int. Conf.

Software Testing, Verification and Validation (ICST).

2020:103-114.

2. Bagherzadeh M, Garvin B, Diep M. Reinforcement

Learning for Test Case Prioritization in Continuous

Integration. In: Proc. Int. Symp. Software Reliability

Engineering Workshops (ISSREW). 2020:322-327.

3. Steenhoek D, Gupta A, Le T. RLSQM: Reinforcement

Learning from Static Quality Metrics for Unit Test

Generation. In: Proc. ACM/IEEE Int. Conf. Automated

Software Engineering (ASE). 2021:812-823.

4. Khan M, Touseef M, Sarwar S. Hybrid Genetic

Algorithm and Cuckoo Search for Software Test Case

Generation. Int J Adv Comput Sci Appl. 2020;11(5):71-

79.

5. Mishra S, Dey S, Sharma M. Survey on Random Test

Case Generation Using Genetic Algorithms. Int J

Comput Appl. 2020;175(38):10-18.

6. Kumar A, Singh J. Genetic Algorithm for Object-

Oriented Software Test Case Generation. J King Saud

Univ Comput Inf Sci. 2021;33(3):274-281.

7. Koza JR. Genetic Algorithms and Genetic

Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press; c1992.

8. Zhan Y, Zhang L, Liu X. Automatic Test Case

Generation Using Genetic Algorithms. Softw Test Verif

Reliab. 2012;22(1):51-71.

9. Silva ARTP, de Lima FLC, de Macedo L. A Survey of

Machine Learning Techniques in Software Testing:

Applications, Challenges, and Opportunities. Softw Eng

Conf. 2021.

10. Reddy SBKS, Prasad KSKRS, Kumar VGVS.

Reinforcement Learning for Software Test Case

Generation. J Softw Eng Appl. 2020;14(3):145-156.

11. Poole DL, Mackworth A. Artificial Intelligence:

Foundations of Computational Agents. Cambridge

University Press; 2017.

12. Singh SPS, Soni SKS, Sinha HA. Genetic Algorithms in

Software Testing: Survey and Future Directions. Int J

Comput Appl. 2015;116(1):11-18.

13. McMahon CJ. Test Case Generation Using Machine

Learning for Systematic Software Testing. Int J Softw

Eng. 2019;28(4):228-240.

14. Raj PSM, Shanmugasundaram SN, Chandra DS.

Exploring the Efficacy of Reinforcement Learning in

Software Test Case Generation. IEEE Trans Softw

Eng. 2021;48(7):1623-1634.

