[international Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

P

N/

International Journal of Multidisciplinary
Research and Growth Evaluation.

Best Practices for Logging and Monitoring Big Data Pipelines with Grafana

Ujjawal Nayak
Software Development Manager, Experian Information Solutions, Inc. Costa Mesa, CA, USA

* Corresponding Author: Ujjawal Nayak

Article Info Abstract

Comprehensive logging and real-time monitoring are critical for ensuring pipeline
ISSN (online): 2582-7138 reliability, performance, and rapid troubleshooting in large-scale data engineering
Volume: 06 environments. Grafana—together with metrics stores such as Prometheus or AWS
Issue: 03 Timestream, and log backends like Grafana Loki—offers a unified platform for
May-June 2025 observability. This article surveys best practices for instrumenting big data pipelines—
Received: 06-04-2025 covering logging strategies, metrics collection (including Timestream as a long-term
Accepted: 08-05-2025 time-series store), alerting, and dashboard design—and illustrates how Grafana’s
Page No: 835-836 ecosystem enables end-to-end visibility.

DOI: https://doi.org/10.54660/.1IIMRGE.2025.6.3.835-836

Keywords: Logging, Monitoring, Big Data Pipelines, Grafana, AWS Timestream, Observability, Grafana Loki, Prometheus,
Dashboard Design

1. Introduction

Big data pipelines involve multiple distributed components, such as Apache Spark, Kafka, and Airflow, that process voluminous
and heterogeneous data. Failures or performance bottlenecks can propagate rapidly, leading to data loss or SLA violations.
Effective observability requires detailed logs and real-time metrics, correlated and visualized in a single pane of glass. Grafana’s
open-source platform, augmented by Grafana Loki for log aggregation, Prometheus for short-term metrics, and AWS
Timestream for scalable, cost-effective long-term time-series storage, provides scalability, flexible querying, and cohesive
dashboards for operational teams [2 111,

2. Logging Strategies

A. Structured Logging

Implement structured logs (e.g., JSON) to enable efficient parsing and filtering. Include standardized fields such as timestamp,
job_id, task_name, and severity ¥l. Consistent naming conventions and limited attribute cardinality prevent log-store bloat and
enable performant queries in Grafana Loki 1.

B. Log Levels and Sampling
Define log levels (DEBUG, INFO, WARN, ERROR) appropriately across pipeline stages. Use sampling or rate-limiting for
high-throughput components like Spark executors to avoid overwhelming your logging backend [,

C. Centralized Log Aggregation

Forward logs from all nodes to Grafana Loki via Promtail or fluentd. Configure labels (e.g., component, environment) to tag log
streams, facilitating cross-application searches and log-to-metrics correlation in Grafana [* .

835|Page

https://doi.org/10.54660/.IJMRGE.2025.6.3.835-836

International Journal of Multidisciplinary Research and Growth Evaluation

3. Metrics Collection and Alerting

A. Instrumenting with Prometheus and Timestream
Expose pipeline metrics (e.g., job durations, record
throughput, error counts) via Prometheus exporters or
OpenTelemetry instrumentation. For long-term retention and
complex time-series analysis, such as seasonal trends in
throughput, stream these metrics into AWS Timestream
using the native Timestream SDK or Grafana’s Timestream
data source plugin 112,

B. Avoiding Cardinality Explosion

Limit the number of unique label values—especially high-
cardinality labels such as user IDs—to maintain Prometheus
performance. When writing to Timestream, leverage its built-
in aggregation functions to downsample high-frequency
metrics before storage [,

C. Alerting Rules

Define SLO-driven alerts for critical thresholds (e.g., <90%
successful DAG runs, latency above acceptable limits). Use
Grafana Alerting to evaluate both Prometheus queries for
near-real-time alerts and Timestream queries for longer-
window trends. Group-related alerts and tune thresholds are
used to balance noise and coverage. Integrate notifications
with PagerDuty, Slack, or email 81,

4. Grafana Dashboard Design

A. Dashboard Layout Best Practices

Organize dashboards into logical sections: overall health,
throughput metrics, error trends, and infrastructure
utilization—place summary panels (KPIs) at the top and
detailed drill-downs below. Use Grafana’s templating
variables for dynamic filtering across jobs or environments;
include a template for selecting the metrics backend
(Prometheus vs. Timestream) to compare short-term spikes
against long-term trends % 111,

B. Use of Mixed Panels

Combine time-series graphs, heatmaps, bar gauges, and table
panels to represent different data types. For example, a
heatmap can visualize error frequency over time, and a table
can list recent failed tasks with context links to logs ™ 9.

C. Annotations and Links

Annotate deployments, configuration changes, or data
schema updates directly on time-series graphs. Add data links
in panels to jump from metrics to detailed logs or external run
histories for rapid root-cause analysis ™.

5. Correlating Logs, Metrics, and Time-Series Data
Grafana’s unified platform enables side-by-side visualization
of Prometheus metrics, AWS Timestream historical data, and
Grafana Loki logs. In Grafana Explore, clicking on an
anomalous spike in Timestream’s seven-day moving average
can automatically surface corresponding Prometheus alerts
and load the relevant log lines—accelerating troubleshooting
and reducing mean-time-to-resolution (MTTR) [6. 12,

6. Case Study: Real-Time Data Ingestion Pipeline with

Timestream

A financial services firm implemented a Kafka-Spark-

Snowflake pipeline. They used:

e Prometheus exporters on Spark executors for immediate
alerts,

e AWS Timestream for storing daily aggregates of
ingestion latency and throughput over months,

www.allmultidisciplinaryjournal.com

e Promtail forwards logs to Grafana Loki.

Their Grafana dashboard showed

e Ingestion Latency (P95 real-time via Prometheus vs. 30-
day trend via Timestream),

e Throughput (records/sec per partition),

e Error Rate (exceptions per minute),

e Executor Resource Utilization (CPU, memory).

Alerts combined Prometheus rules for spike detection and

Timestream-based alerts for sustained degradations over

hours. By correlating Timestream’s historical context with

real-time logs, they cut incident response times and

proactively identify capacity bottlenecks before SLA

breaches [,

7. Conclusion

Robust logging and monitoring are indispensable for
managing complex big data pipelines. By adopting structured
logging, calibrated metrics instrumentation (leveraging both
Prometheus and AWS Timestream), and thoughtful Grafana
dashboard design, teams gain holistic observability.
Grafana’s integrations—LoKki for logs, Prometheus for real-
time metrics, Timestream for scalable historical analysis, and
unified alerting—enable rapid detection, diagnosis, and
resolution of issues, ultimately safeguarding pipeline SLAS
and data quality.

8. References

1. Grafana Labs. Grafana dashboard best practices. Grafana
Documentation; 2025. Auvailable
from: https://grafana.com/docs/grafana/latest/dashboard
s/build-dashboards/best-practices/

2. Garzon C. A hands-on guide to monitoring data pipelines
with Prometheus and Grafana. Data Engineer Academy;
2025 Mar 6.

3. Doe S. Data engineering best practices — #2. Logging.
Start Data Engineering; 2024.

4. Grafana Labs. Best practices for tracing. Grafana

Documentation; 2025.

Logging pipelines. r/dataengineering. Reddit; 2023.

6. Grafana Labs. Best practices for faster insights from
your metrics, logs, traces, and profiles. Grafana Events;
2025. Available
from: https://grafana.com/events/observabilitycon-on-
the-road/

7. New Relic. Monitoring with Prometheus. New Relic
Blog; 2023.

8. Prometheus & Grafana: best practices with examples.
Kubecost Blog; 2025.

9. 6 easy ways to improve your log dashboards with
Grafana and Grafana Loki. Grafana Blog; 2023 May 18.

10. Nayak U. Building a scalable ETL pipeline with Apache
Spark, Airflow, and Snowflake. IJIRCT. 2025;11(2).

11. AWS Timestream documentation. AWS; 2024.
Auvailable from: https://aws.amazon.com/timestream

12. Grafana Labs. AWS Timestream data source. Grafana
Plugin Marketplace; 2025.

o

836|Page

