
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 835 | P a g e

Best Practices for Logging and Monitoring Big Data Pipelines with Grafana

Ujjawal Nayak

Software Development Manager, Experian Information Solutions, Inc. Costa Mesa, CA, USA

* Corresponding Author: Ujjawal Nayak

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 03

May-June 2025

Received: 06-04-2025

Accepted: 08-05-2025

Page No: 835-836

Abstract

Comprehensive logging and real-time monitoring are critical for ensuring pipeline

reliability, performance, and rapid troubleshooting in large-scale data engineering

environments. Grafana—together with metrics stores such as Prometheus or AWS

Timestream, and log backends like Grafana Loki—offers a unified platform for

observability. This article surveys best practices for instrumenting big data pipelines—

covering logging strategies, metrics collection (including Timestream as a long-term

time-series store), alerting, and dashboard design—and illustrates how Grafana’s

ecosystem enables end-to-end visibility.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.3.835-836

Keywords: Logging, Monitoring, Big Data Pipelines, Grafana, AWS Timestream, Observability, Grafana Loki, Prometheus,

Dashboard Design

1. Introduction

Big data pipelines involve multiple distributed components, such as Apache Spark, Kafka, and Airflow, that process voluminous

and heterogeneous data. Failures or performance bottlenecks can propagate rapidly, leading to data loss or SLA violations.

Effective observability requires detailed logs and real-time metrics, correlated and visualized in a single pane of glass. Grafana’s

open-source platform, augmented by Grafana Loki for log aggregation, Prometheus for short-term metrics, and AWS

Timestream for scalable, cost-effective long-term time-series storage, provides scalability, flexible querying, and cohesive

dashboards for operational teams [1, 2, 11].

2. Logging Strategies

A. Structured Logging

Implement structured logs (e.g., JSON) to enable efficient parsing and filtering. Include standardized fields such as timestamp,

job_id, task_name, and severity [3]. Consistent naming conventions and limited attribute cardinality prevent log-store bloat and

enable performant queries in Grafana Loki [4].

B. Log Levels and Sampling

Define log levels (DEBUG, INFO, WARN, ERROR) appropriately across pipeline stages. Use sampling or rate-limiting for

high-throughput components like Spark executors to avoid overwhelming your logging backend [5].

C. Centralized Log Aggregation

Forward logs from all nodes to Grafana Loki via Promtail or fluentd. Configure labels (e.g., component, environment) to tag log

streams, facilitating cross-application searches and log-to-metrics correlation in Grafana [4, 6].

https://doi.org/10.54660/.IJMRGE.2025.6.3.835-836

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 836 | P a g e

3. Metrics Collection and Alerting

A. Instrumenting with Prometheus and Timestream

Expose pipeline metrics (e.g., job durations, record

throughput, error counts) via Prometheus exporters or

OpenTelemetry instrumentation. For long-term retention and

complex time-series analysis, such as seasonal trends in

throughput, stream these metrics into AWS Timestream

using the native Timestream SDK or Grafana’s Timestream

data source plugin [11, 12].

B. Avoiding Cardinality Explosion

Limit the number of unique label values—especially high-

cardinality labels such as user IDs—to maintain Prometheus

performance. When writing to Timestream, leverage its built-

in aggregation functions to downsample high-frequency

metrics before storage [11].

C. Alerting Rules

Define SLO-driven alerts for critical thresholds (e.g., <90%

successful DAG runs, latency above acceptable limits). Use

Grafana Alerting to evaluate both Prometheus queries for

near-real-time alerts and Timestream queries for longer-

window trends. Group-related alerts and tune thresholds are

used to balance noise and coverage. Integrate notifications

with PagerDuty, Slack, or email [1, 8].

4. Grafana Dashboard Design

A. Dashboard Layout Best Practices

Organize dashboards into logical sections: overall health,

throughput metrics, error trends, and infrastructure

utilization—place summary panels (KPIs) at the top and

detailed drill-downs below. Use Grafana’s templating

variables for dynamic filtering across jobs or environments;

include a template for selecting the metrics backend

(Prometheus vs. Timestream) to compare short-term spikes

against long-term trends [1, 11].

B. Use of Mixed Panels

Combine time-series graphs, heatmaps, bar gauges, and table

panels to represent different data types. For example, a

heatmap can visualize error frequency over time, and a table

can list recent failed tasks with context links to logs [1, 9].

C. Annotations and Links

Annotate deployments, configuration changes, or data

schema updates directly on time-series graphs. Add data links

in panels to jump from metrics to detailed logs or external run

histories for rapid root-cause analysis [1].

5. Correlating Logs, Metrics, and Time-Series Data

Grafana’s unified platform enables side-by-side visualization

of Prometheus metrics, AWS Timestream historical data, and

Grafana Loki logs. In Grafana Explore, clicking on an

anomalous spike in Timestream’s seven-day moving average

can automatically surface corresponding Prometheus alerts

and load the relevant log lines—accelerating troubleshooting

and reducing mean-time-to-resolution (MTTR) [6, 12].

6. Case Study: Real-Time Data Ingestion Pipeline with

Timestream

A financial services firm implemented a Kafka-Spark-

Snowflake pipeline. They used:

● Prometheus exporters on Spark executors for immediate

alerts,

● AWS Timestream for storing daily aggregates of

ingestion latency and throughput over months,

● Promtail forwards logs to Grafana Loki.

Their Grafana dashboard showed

● Ingestion Latency (P95 real-time via Prometheus vs. 30-

day trend via Timestream),

● Throughput (records/sec per partition),

● Error Rate (exceptions per minute),

● Executor Resource Utilization (CPU, memory).

Alerts combined Prometheus rules for spike detection and

Timestream-based alerts for sustained degradations over

hours. By correlating Timestream’s historical context with

real-time logs, they cut incident response times and

proactively identify capacity bottlenecks before SLA

breaches [10].

7. Conclusion

Robust logging and monitoring are indispensable for

managing complex big data pipelines. By adopting structured

logging, calibrated metrics instrumentation (leveraging both

Prometheus and AWS Timestream), and thoughtful Grafana

dashboard design, teams gain holistic observability.

Grafana’s integrations—Loki for logs, Prometheus for real-

time metrics, Timestream for scalable historical analysis, and

unified alerting—enable rapid detection, diagnosis, and

resolution of issues, ultimately safeguarding pipeline SLAs

and data quality.

8. References

1. Grafana Labs. Grafana dashboard best practices. Grafana

Documentation; 2025. Available

from: https://grafana.com/docs/grafana/latest/dashboard

s/build-dashboards/best-practices/

2. Garzon C. A hands-on guide to monitoring data pipelines

with Prometheus and Grafana. Data Engineer Academy;

2025 Mar 6.

3. Doe S. Data engineering best practices – #2. Logging.

Start Data Engineering; 2024.

4. Grafana Labs. Best practices for tracing. Grafana

Documentation; 2025.

5. Logging pipelines. r/dataengineering. Reddit; 2023.

6. Grafana Labs. Best practices for faster insights from

your metrics, logs, traces, and profiles. Grafana Events;

2025. Available

from: https://grafana.com/events/observabilitycon-on-

the-road/

7. New Relic. Monitoring with Prometheus. New Relic

Blog; 2023.

8. Prometheus & Grafana: best practices with examples.

Kubecost Blog; 2025.

9. 6 easy ways to improve your log dashboards with

Grafana and Grafana Loki. Grafana Blog; 2023 May 18.

10. Nayak U. Building a scalable ETL pipeline with Apache

Spark, Airflow, and Snowflake. IJIRCT. 2025;11(2).

11. AWS Timestream documentation. AWS; 2024.

Available from: https://aws.amazon.com/timestream

12. Grafana Labs. AWS Timestream data source. Grafana

Plugin Marketplace; 2025.

