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Abstract 

The researcher presents a comprehensive investigation into cognitive architectures for 

adaptive problem-solving with specific application to computer science education. 

This study develops and evaluates a computational model that simulates the 

acquisition of expert knowledge in programming and algorithmic reasoning. Through 

rigorous experimentation and analysis, the researcher identifies key mechanisms that 

facilitate the transformation of cognitive structures during skill development. The 

results demonstrate significant advancements in understanding how novice 

programmers transition to expert status, revealing distinct cognitive patterns that 

emerge during this progression. These patterns include the formation of specialized 

mental schemas, the development of chunking mechanisms for efficient information 

processing, and the emergence of sophisticated heuristic strategies. The findings 

contribute to both theoretical understanding of expert cognition and practical 

applications in computer science pedagogy, offering evidence-based approaches for 

designing educational interventions that accelerate expertise development.

  

Keywords: cognitive architecture, adaptive problem-solving, expert knowledge, computational modeling, computer science 

education, skill acquisition, learning trajectories 

 

 

 

1. Introduction 

Computer science education faces persistent challenges in developing effective pedagogical approaches that facilitate the 

transition from novice to expert programmer. Despite significant advances in educational technology and teaching 

methodologies, many students continue to struggle with core programming concepts and problem-solving strategies. As 

Anderson et al. (2019) [19] observe, the acquisition of programming expertise involves complex cognitive processes that remain 

inadequately understood and modeled. This research gap hampers the development of educational interventions that could 

accelerate expertise development in computer science domains. 

The researcher posits that computational models of cognition offer a promising approach to understanding and addressing these 

challenges. Current educational theories explain broad patterns of learning but lack the precision needed to inform targeted 

interventions in complex domains like computer science. Computational cognitive architectures, by contrast, can capture the 

fine-grained mechanisms underlying expertise development. These architectures can simulate how knowledge structures evolve 

during the progression from novice to expert status, providing insights that purely descriptive theories cannot offer. 

A critical gap in the existing literature concerns the transformation of knowledge structures during programming skill acquisition. 

While research has documented differences between novice and expert programmers (Robins et al., 2023) [24], the cognitive 

processes that facilitate this transition remain underspecified. How do fragmentary conceptual understandings coalesce into 

sophisticated mental models? What mechanisms enable the development of pattern recognition capabilities that characterize 

expert problem-solving? These questions require detailed computational models that can simulate cognitive changes at multiple 

levels of abstraction. 
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This study aims to develop a cognitive architecture that 

accurately models the transition from novice to expert 

problem-solving in computer science domains. The 

architecture integrates mechanisms for knowledge 

representation, pattern recognition, and strategic planning—

key components of programming expertise. By implementing 

and validating this architecture, the researcher seeks to 

advance both theoretical understanding of expertise 

development and practical approaches to computer science 

education. 

The significance of this work lies in its potential to transform 

educational approaches through computational modeling of 

learning trajectories. Traditional educational designs often 

rely on intuitive notions of skill progression that may not 

align with actual cognitive development patterns. Grover and 

Pea (2018) [12] argue that evidence-based computational 

models can provide more reliable guidance for curriculum 

design, identifying optimal sequences of concept 

introduction and practice opportunities. Furthermore, these 

models can inform the development of intelligent tutoring 

systems that adapt to individual learning patterns, potentially 

accelerating expertise development. 

This dissertation is organized into seven chapters. Following 

this introduction, Chapter 2 reviews relevant literature on 

cognitive architectures, expertise development, and computer 

science education. Chapter 3 presents the theoretical 

framework guiding the research, while Chapter 4 details the 

methodology for model development and validation. Chapter 

5 reports the results of computational experiments testing the 

architecture's ability to simulate expertise development. 

Chapter 6 discusses theoretical and practical implications of 

these findings, and Chapter 7 concludes with a summary of 

contributions and directions for future research. 

 

2. Literature Review 

2.1 Cognitive Architectures in AI 

The development of cognitive architectures represents a 

significant endeavor to model human cognition 

computationally. The researcher traces this development 

from early symbolic systems of the 1970s and 1980s to 

contemporary hybrid approaches that integrate multiple 

processing mechanisms. Early cognitive architectures such as 

GPS (General Problem Solver) established fundamental 

principles of problem-solving through means-ends analysis, 

while later systems incorporated more sophisticated 

mechanisms for knowledge representation and learning 

(Laird et al., 2017) [19]. 

ACT-R (Adaptive Control of Thought-Rational) represents 

one of the most influential cognitive architectures, offering a 

comprehensive framework for modeling cognitive processes. 

Anderson (2007) [1] describes how ACT-R integrates 

declarative and procedural knowledge modules with 

perceptual-motor interfaces, providing a unified theory of 

cognition that has been applied to numerous domains, 

including programming education. The architecture's 

distinction between declarative and procedural knowledge 

forms a theoretical basis for understanding expertise 

development, though its implementation of learning 

mechanisms remains somewhat constrained by predefined 

production rules. 

SOAR provides an alternative architecture focused on 

problem-solving and learning through chunking operations. 

While SOAR excels at modeling goal-directed behavior and 

knowledge integration, its emphasis on symbolic processing 

limits its ability to capture the graded, probabilistic nature of 

human concept formation. Recent extensions to SOAR have 

attempted to address these limitations through reinforcement 

learning mechanisms, but challenges remain in modeling the 

flexibility characteristic of human expertise. 

More recently, deep learning architectures have demonstrated 

impressive capabilities in pattern recognition and knowledge 

representation. However, as Wang and Patel (2019) [28] 

observe, these architectures often lack the interpretability and 

explicit knowledge structures that characterize human 

problem-solving. While they excel at extracting patterns from 

large datasets, they typically fail to capture the hierarchical, 

modular organization of human knowledge, which enables 

flexible adaptation to novel problems. 

The limitations of existing approaches become particularly 

evident when modeling the flexibility and adaptability 

characteristic of human cognition. Current architectures 

struggle to capture how experts seamlessly move between 

different levels of abstraction, combine multiple knowledge 

sources, and generate creative solutions to novel problems. 

These limitations point to the need for new architectural 

approaches that better integrate symbolic reasoning with 

statistical learning mechanisms. 

 

2.2 Expert knowledge acquisition 

The process by which novices develop expert knowledge 

represents a central question in cognitive science, with 

particular relevance to computer science education. The 

researcher examines several theoretical frameworks that 

explain expertise development, beginning with chunking 

theory, which describes how experts organize information 

into meaningful units. Chase and Simon's classic studies 

demonstrated how chess masters perceive board 

configurations as integrated patterns rather than individual 

pieces, a finding that has been extended to programming 

expertise (Ericsson & Pool, 2016) [9]. 

Deliberate practice theory provides another perspective on 

expertise development, emphasizing the role of structured, 

goal-directed practice with immediate feedback. While this 

framework explains the importance of focused effort in skill 

development, it offers limited insight into the specific 

cognitive transformations that occur during practice. The 

researcher notes that computer science education often lacks 

the structured practice environments that characterize other 

domains of expertise, potentially hindering skill 

development. 

Knowledge compilation theories offer more mechanistic 

explanations of skill acquisition, describing how declarative 

knowledge transforms into procedural form through repeated 

application. Anderson's ACT-R framework provides a 

computational implementation of this process, modeling how 

initial problem-solving requires explicit reasoning about 

declarative facts, while expertise involves direct application 

of compiled procedures. Empirical studies in programming 

contexts support this model, showing how novices initially 

reason through problems step-by-step while experts apply 

stored solution patterns (Robins et al., 2019) [23]. 

The researcher analyzes empirical studies documenting 

expert problem-solving strategies in programming contexts, 

noting consistent patterns across studies. Experts 

demonstrate superior problem representation skills, 

constructing abstract models that capture essential problem 

features while filtering irrelevant details. They rely heavily 

on pattern recognition, applying stored solution templates to 
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familiar problem types, and utilize hierarchical planning 

strategies that decompose complex problems into 

manageable subproblems. 

Particular attention is given to the cognitive processes 

underlying knowledge transformation during skill 

acquisition. Protocol studies reveal how knowledge 

transitions from explicit, verbally-mediated reasoning to 

implicit, pattern-based recognition. This transformation 

appears to involve both compilation processes, which 

consolidate sequences of operations into single units, and 

abstraction processes, which extract general principles from 

specific examples. However, the precise mechanisms 

facilitating these transformations remain inadequately 

specified in current computational models. 

 

2.3 Computer science education 

The current landscape of computer science education 

presents numerous challenges, particularly in teaching 

foundational programming concepts. Despite decades of 

research and pedagogical innovation, many students continue 

to struggle with basic programming principles. The 

researcher examines persistent difficulties in concept 

acquisition, including misconceptions about variable 

assignment, loop structures, and recursion. Soloway and 

Spohrer's (2013) [25] analysis of novice programming errors 

remains relevant, suggesting that many difficulties stem from 

inappropriate mental models rather than simple syntax errors. 

Educational approaches have evolved significantly, moving 

from purely syntactic instruction to strategies emphasizing 

problem-solving and computational thinking. Nevertheless, 

significant gaps remain between educational theory and 

practice. The researcher notes the limited application of 

cognitive research to instructional design, with many 

curricula reflecting intuitive rather than evidence-based 

approaches to concept sequencing and skill development. 

Existing computational models applied to educational 

contexts show promise but significant limitations. Intelligent 

tutoring systems based on model-tracing approaches have 

demonstrated effectiveness in well-defined domains but 

struggle with the open-ended nature of programming 

problems. Recent machine learning approaches can identify 

patterns in student performance but typically lack 

explanatory mechanisms linking performance to underlying 

knowledge structures. 

Becker (2021) [3] identifies additional challenges in adaptive 

educational technologies, noting that current systems often 

adapt based on performance metrics rather than cognitive 

models of student understanding. This approach limits their 

ability to diagnose conceptual difficulties and provide 

targeted interventions. The gap between sophisticated 

cognitive models and practical educational technologies 

represents a significant opportunity for research integration. 

This analysis reveals significant opportunities at the 

intersection of cognitive modeling, expertise development, 

and computer science education. Integrated research could 

develop computational models that accurately capture the 

cognitive transformations characterizing expertise 

development, informing the design of educational 

interventions that accelerate these transformations. Such 

research would bridge theoretical understanding of cognition  

with practical approaches to computer science education, 

potentially transforming how programming expertise is 

developed. 

 

3. Theoretical Framework 

The proposed cognitive architecture rests upon three 

complementary theoretical paradigms: information 

processing theory, constructivism, and cognitive load theory. 

The researcher integrates these perspectives to develop a 

coherent framework for understanding the cognitive 

transformations that characterize the progression from novice 

to expert in computer science domains. 

Information processing theory provides the foundational 

structure for the architecture, conceptualizing cognition as a 

system that encodes, stores, and manipulates mental 

representations. Following Newell and Simon's (1972) [22] 

human problem-solving framework, the architecture models 

the mind as a symbol-processing system with distinct 

memory structures and processing mechanisms. The 

researcher extends this classical framework by incorporating 

modern understandings of parallel processing and activation 

dynamics, reflecting how attention modulates information 

flow during complex problem-solving activities like 

programming. This extension addresses a limitation of 

traditional information processing models, which often fail to 

capture the fluidity and context-sensitivity of expert 

cognition. 

Constructivist principles inform the architecture's learning 

mechanisms, emphasizing how knowledge structures are 

actively constructed rather than passively acquired. Drawing 

from Piaget's concepts of assimilation and accommodation, 

the researcher models knowledge acquisition as a process of 

schema construction and refinement. In the programming 

domain, this manifests as the progressive elaboration of 

mental models representing language semantics, algorithmic 

patterns, and problem structures. As Ben-Ari (2001) [5] notes, 

constructivist approaches are particularly relevant to 

computer science education, where learners must build 

conceptual frameworks that align with the formal, 

deterministic nature of computational systems. 

Cognitive load theory complements these perspectives by 

addressing resource limitations in human cognition. The 

architecture incorporates Sweller's (2011) [26] distinction 

between intrinsic, extraneous, and germane cognitive load, 

modeling how these different forms of mental effort 

influence learning trajectories. The researcher proposes that 

expertise development in programming involves optimizing 

cognitive resource allocation – reducing extraneous load 

through chunking and automation while maximizing 

germane load through deliberate practice. This theoretical 

integration explains why certain programming concepts 

present persistent difficulties for novices, as they impose high 

intrinsic load that exceeds working memory capacity. 

The conceptual model at the core of this framework 

represents adaptive problem-solving as a dynamic interaction 

between four interrelated components: knowledge structures, 

pattern recognition mechanisms, strategic processes, and 

metacognitive regulation. Figure 3.1 illustrates this model, 

depicting how these components interact during 

programming problem-solving. 
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Fig 1:  Conceptual model of adaptive problem- solving architecture  

 
Knowledge structures form the foundational component, 
encompassing both declarative knowledge (concepts, facts, 
and principles) and procedural knowledge (algorithms, 
techniques, and skills). The architecture models these 
structures as semantic networks with varying activation 
thresholds and connection strengths.  
As expertise develops, these networks undergo significant 
transformations – becoming more hierarchical, 
interconnected, and automatically activated. In programming 
contexts, these transformations manifest as the development 
of rich mental models of program behavior, algorithmic 
patterns, and problem-domain concepts. 
Pattern recognition mechanisms constitute the second 
component, enabling experts to rapidly identify relevant 
problem features and applicable solution strategies. The 
architecture models these mechanisms using constraint 
satisfaction processes that match current problem states 
against stored patterns. Expertise development involves the 
progressive refinement of these patterns, evolving from 
surface-level syntactic features to deep structural 
characteristics of programming problems. This evolution 
aligns with empirical findings from expert-novice studies in 
programming, where experts demonstrate superior ability to 
categorize problems according to underlying solution 
principles rather than superficial features (McKeithen et al., 
1981) [21]. 
Strategic processes form the third component, governing how 
problem-solving unfolds over time. The architecture models 
these processes as production systems with condition-action 
rules that implement planning, evaluation, and adaptation 
strategies. As expertise develops, these strategic processes 
become increasingly automatic and hierarchical, enabling 
experts to plan at multiple levels of abstraction 
simultaneously. In programming contexts, this manifests as 
the ability to reason about code at multiple levels – from 
algorithmic structure to implementation details – while 
maintaining coherence across these levels. 
Metacognitive regulation completes the model, representing 
the self-monitoring and self-regulation processes that guide 
effective learning and problem-solving. The architecture 

models these processes as executive functions that allocate 
cognitive resources, select strategies, and evaluate progress. 
Expertise development involves the refinement of these 
regulatory mechanisms, enabling more accurate self-
assessment and more effective strategy selection. This 
component explains why experts demonstrate superior 
debugging abilities – they more accurately monitor their 
understanding and more effectively diagnose 
misconceptions. 
The integration of cognitive science principles with 
educational theory creates a novel framework for 
understanding expertise development in computer science. 
Unlike purely descriptive models, the proposed architecture 
offers computational precision regarding how knowledge 
transforms during learning. Unlike purely computational 
models, it maintains psychological plausibility by 
incorporating well-established cognitive constraints and 
mechanisms. This integration enables the architecture to 
capture both the content knowledge that characterizes 
programming expertise and the thinking processes through 
which this knowledge is applied. 
Based on this theoretical framework, the researcher 
formulates three specific hypotheses regarding expertise 
development in computer science: 
 
H1: Knowledge Representation Hypothesis – As 
programming expertise develops, knowledge structures 
transition from isolated, language-specific elements to 
integrated, abstract patterns that transcend specific 
programming languages. This transition manifests as 
increased ability to transfer solutions across language 
paradigms. 
 
H2: Transfer Mechanism Hypothesis – Transfer of 
programming knowledge between problem domains depends 
on the abstraction level of stored solution patterns. Experts 
achieve greater transfer by encoding solutions at multiple 
levels of abstraction simultaneously, enabling flexible 
adaptation to novel problems. 
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H3: Adaptation Process Hypothesis – Expert programmers 
adapt to novel problems through a dynamic interplay between 
top-down and bottom-up processing. This adaptation process 
becomes more efficient with expertise development, as 
evidenced by decreased cognitive load during problem 
representation phases. 
 
These hypotheses provide testable predictions regarding how 
the proposed cognitive architecture should behave when 
simulating expertise development in programming domains. 
They guide both the implementation details of the 
computational model and the empirical studies designed to 
validate it, establishing clear criteria for evaluating the 
architecture's psychological plausibility and educational 
relevance. 
 
4. Methodology 
4.1 Model Design 
The cognitive architecture developed in this study comprises 
three interacting subsystems: a knowledge representation 
module, a pattern recognition engine, and a strategic 
reasoning component. Each subsystem implements specific 
cognitive mechanisms identified in the theoretical 
framework, creating an integrated model of expertise 
development in programming domains. 
The knowledge representation module implements a hybrid 
symbolic-connectionist architecture, combining semantic 
networks with spreading activation dynamics. Declarative 
knowledge is encoded as a graph structure where nodes 
represent concepts (e.g., programming constructs, 
algorithmic patterns) and weighted edges represent semantic 
relationships. The formal specification follows Equation 4.1: 
KD = (C, R, W) 
Where C represents the set of concept nodes, R the set of 
relationships, and W the associated weights. Procedural 
knowledge is encoded using production rules with the format: 
IF <condition> THEN <action> 
where conditions match against the current problem state and 
actions modify either the problem state or the knowledge 
structure itself. To capture the dynamic nature of expertise 
development, the researcher implements a Bayesian updating 
mechanism that modifies edge weights based on problem-
solving experiences, following the approach described by 
Koedinger and Anderson (2018) [18]. 
The pattern recognition engine implements a constraint 
satisfaction mechanism that identifies relevant problem 
features and solution patterns. This component operates 
through parallel matching of current problem representations 
against stored patterns, producing activation values 
proportional to the degree of match. The architecture utilizes 
a modified version of the SOAR pattern matching algorithm, 
optimized for programming domain representations. 
Algorithm 4.1 presents pseudocode for this matching 
process: 
Algorithm 4.1: Pattern Matching Process 
Input: Problem state P, Pattern library L, Activation threshold 
θ 
Output: Set of activated patterns A 
1: A ← ∅ 
2: for each pattern p in L do 
3:     sim ← Similarity(P, p) 
4:     if sim > θ then 
5:         A ← A ∪ {(p, sim)} 
6:     end if 
7: end for 
8: return A 
 

The strategic reasoning component implements a hierarchical 
planning system that operates at multiple levels of 
abstraction. This system generates solution strategies by 
decomposing problems into subgoals based on recognized 
patterns and available knowledge. The implementation 
follows a means-ends analysis approach but extends it with 
reinforcement learning mechanisms that adjust strategy 
selection based on success experiences. This extension 
allows the model to adapt its strategic approach based on 
performance feedback, mimicking how programmers refine 
their problem-solving strategies through experience. 
The researcher implements the architecture using Python 3.8 
with TensorFlow 2.4 for the connectionist components and 
PyTorch 1.9 for the reinforcement learning mechanisms. This 
technological stack was selected for its flexibility in 
implementing hybrid symbolic-connectionist systems while 
maintaining computational efficiency. The model execution 
is constrained to operate within plausible human cognitive 
limitations, including working memory capacity (modeled as 
activation decay parameters) and attentional focus (modeled 
as resource allocation constraints). 
 
4.2 Data Collection 
To validate the cognitive architecture against human 
performance patterns, the researcher collected empirical data 
from 48 participants representing various expertise levels in 
computer programming. Participants were recruited using 
stratified sampling to ensure representation across the 
expertise spectrum, with 16 novices (less than 1 year of 
programming experience), 16 intermediates (1-5 years), and 
16 experts (more than 5 years). The sample included 27 males 
and 21 females with a mean age of 27.3 years (SD = 5.8). 
Prior to data collection, the researcher obtained institutional 
review board approval (Protocol #CS-2023-0142) and 
secured informed consent from all participants. The study 
protocol included considerations for minimizing participant 
fatigue, ensuring data confidentiality, and providing 
appropriate compensation for participation time. 
Data collection employed a multi-method approach 
combining think-aloud protocols, eye-tracking, and process 
logs. Participants completed six programming tasks of 
varying complexity, designed to elicit different aspects of 
problem-solving expertise. During task completion, 
participants verbalized their thinking processes following the 
structured protocol developed by Ericsson and Simon (1993), 
with minimal interviewer intervention to avoid disrupting 
natural problem-solving processes. 
Eye movements were recorded using a Tobii Pro Spectrum 
eye tracker (sampling rate: 1200 Hz), with fixation patterns 
analyzed to identify attention allocation during problem-
solving. This methodology follows established approaches in 
programming expertise research (Bednarik & Tukiainen, 
2008), allowing for unobtrusive measurement of attentional 
processes that may not be fully captured in verbal reports. 
Process logs collected keystroke-level data and intermediate 
solution states, providing fine-grained information about 
solution trajectory and strategy implementation. The 
researcher developed a custom logging framework that 
integrated with common programming environments 
(VSCode, PyCharm) to maintain ecological validity while 
ensuring comprehensive data capture. 
Following task completion, participants completed 
retrospective interviews where they reviewed and 
commented on their solution approaches, providing 
additional insight into their metacognitive processes and 
strategic decisions. These interviews followed a semi-
structured format with standardized prompts to ensure 
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comparability across participants while allowing for 
individualized follow-up questions. 
 
4.3 Analytical Approach 
The analytical framework integrates qualitative protocol 
analysis with quantitative modeling techniques to evaluate 
the cognitive architecture's ability to predict human expertise 
development patterns. Data preprocessing involved 
transcription and segmentation of verbal protocols, 
synchronization of eye-tracking data with solution stages, 
and normalization of process log timestamps to enable 
integrated analysis across data sources. 
Protocol data were coded using a hierarchical scheme derived 
from the theoretical framework, with primary categories 
including knowledge access, pattern recognition, strategic 
planning, and metacognitive regulation. Two independent 
coders processed 25% of the data to establish coding 
reliability (Cohen's κ = 0.87), after which the primary 
researcher coded the remaining data. Eye-tracking data were 
processed using dispersion-threshold identification of 
fixations (threshold: 35 pixels, minimum duration: 100ms) 
and aggregated into areas of interest corresponding to code 
regions and problem statement components. 
The researcher implemented a cross-validation strategy to 
assess the cognitive architecture's predictive validity. The 
model was trained using data from 70% of participants 
(stratified by expertise level) and tested on the remaining 
30%. This process was repeated using five-fold cross-
validation to ensure robustness of performance estimates. 
Generalization testing evaluated the model's ability to predict 
performance on novel problem types not included in the 
training data, providing a stringent test of its explanatory 
power. 
Performance metrics for model evaluation included both 
quantitative measures of behavioral correspondence and 
qualitative assessments of process similarity. Behavioral 
correspondence was measured using Equation 4.2: 
BC = 1 - (Σ|Mi - Hi|) / (Σ Hi) 
Where Mi represents model performance on metric i and Hi 
represents corresponding human performance. This metric 
was calculated separately for solution correctness, 
completion time, and strategy selection. Process similarity 
was evaluated using sequence alignment methods adapted 
from bioinformatics, calculating the edit distance between 
model-generated and human solution trajectories normalized 
by sequence length. 
Statistical analysis employed mixed-effects models to 
account for both fixed effects (expertise level, problem type) 
and random effects (individual participant characteristics). 
The significance of model parameters was assessed using 
likelihood ratio tests comparing full and reduced models. 
Effect sizes were calculated using Cohen's f² for fixed effects 
and intraclass correlation coefficients for random effects, 
following recommendations by Fritz et al. (2012) [11]. 
For comparative analysis, the researcher benchmarked the 
proposed architecture against three alternative models: a pure 
production system model (ACT-R based), a deep learning 
model (transformer architecture), and a baseline model 
implementing simple means-ends analysis without learning 
mechanisms. This comparison used Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) to 
assess relative model fit while accounting for differences in 
parameter counts. 
 
5. Results 
5.1 Model Performance 
The cognitive architecture demonstrated superior predictive 

accuracy compared to baseline models across multiple 
performance metrics. 
 

Table 1: Prediction Accuracy of Cognitive Models Across 

Expertise Levels 
 

Model Type 
Novice 

(%) 

Intermediate 

(%) 

Expert 

(%) 

Overall 

(%) 

Proposed 

Architecture 

81.2 ± 

5.3 
85.9 ± 3.8 

84.1 ± 

3.5 

83.7 ± 

4.2 

Production 

System 

68.7 ± 

6.1 
73.4 ± 4.9 

72.2 ± 

4.8 

71.4 ± 

5.3 

Deep 

Learning 

72.5 ± 

7.2 
78.2 ± 5.3 

77.1 ± 

5.8 

75.9 ± 

6.1 

Means-Ends 

Baseline 

64.1 ± 

8.3 
63.5 ± 7.2 

59.2 ± 

7.8 

62.3 ± 

7.8 

 

As shown in Table 1, the proposed model achieved an overall 

weighted accuracy of 83.7% (SD = 4.2%) in predicting 

human performance outcomes, significantly outperforming 

the production system model (71.4%, SD = 5.3%), the deep 

learning model (75.9%, SD = 6.1%), and the baseline means-

ends model (62.3%, SD = 7.8%). 

Behavioral correspondence metrics revealed strong 

alignment between model-generated and human solution 

trajectories. 

Normalized Edit Distance (lower is better) 
 

 
 

Fig 1: Normalized Edit Distance Between Model and Human 

Solution Sequences 
 

As illustrated in Figure 1, correspondence was strongest for 

intermediate-level programmers (mean normalized distance 

= 0.24, SD = 0.08) compared to novices (mean = 0.38, SD = 

0.11) and experts (mean = 0.31, SD = 0.09). This pattern 

suggests that the model most accurately captures the 

transitional strategies characteristic of intermediate expertise,  

while expert performance exhibits greater individual 

variation that presents challenges for computational 

modeling. 

Statistical analysis using mixed-effects models confirmed 

that performance differences between the proposed 

architecture and baseline models were statistically 

significant. 

 
Table 2: Likelihood Ratio Tests Comparing Model Fit Across 

Expertise Levels 
 

Comparison χ² df 
p-

value 

Effect Size 

(f²) 

Full vs. No Expertise 21.47 4 <.001 0.29 

Full vs. No Problem 

Type 
37.42 8 <.001 0.46 

Full vs. No Interaction 15.86 6 .014 0.18 
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Table 2 presents likelihood ratio test results comparing model 

fit across problem types and expertise levels. The full model 

demonstrated superior fit compared to reduced models (χ²(8) 

= 37.42, p < .001), with a large effect size (Cohen's f² = 0.46). 

Problem type emerged as a significant predictor of model 

accuracy (F(5,235) = 14.73, p < .001), with the architecture 

showing strongest performance on algorithmic problems and 

relative weakness on debugging tasks. 

Temporal analysis of solution development revealed that the 

architecture successfully modeled the differential time 

allocation patterns observed across expertise levels. 

Time Allocation by Expertise Level 

 

 
 

Fig 2: Proportional Time Allocation Across Solution Phases by 

Expertise Level 
 

As shown in Figure 2, the model captured the expert tendency 

to allocate proportionally more time to problem 

representation and planning phases, while novices 

demonstrated more balanced time allocation across solution 

phases. Chi et al. (2021) [7] noted similar patterns in their 

analysis of expert programming strategies, suggesting that 

this time allocation pattern represents a reliable signature of 

programming expertise. 

 

5.2 Knowledge Representation 

Analysis of emergent knowledge structures within the model 

revealed systematic patterns corresponding to documented 

expert programming strategies. 

Figure 3 presents a visualization of knowledge network 

evolution during skill acquisition, showing the progressive 

development of hierarchical organization and strategic 

clustering. The researcher observed three distinctive phases 

in knowledge structure development: (1) an initial 

fragmented phase characterized by isolated concept clusters, 

(2) an integration phase featuring increasing cross-

connections between concept domains, and (3) a hierarchical 

reorganization phase where abstract principles emerged as 

organizing schemas. 

Network analysis metrics quantified these structural changes, 

as shown in Table 3. 

 
 

Fig 3: Knowledge Network Evolution During Skill Acquisition

 
Table 3: Network Analysis Metrics of Knowledge Structures Across Expertise Levels 

 

Metric Novice Intermediate Expert p-value 

Clustering Coefficient 0.31 ± 0.07 0.49 ± 0.08 0.68 ± 0.06 <.001 

Average Path Length 4.72 ± 0.42 3.64 ± 0.31 2.85 ± 0.27 <.001 

Modularity 0.58 ± 0.09 0.46 ± 0.07 0.41 ± 0.05 <.01 

Network Density 0.12 ± 0.03 0.24 ± 0.05 0.37 ± 0.06 <.001 

 

Mean clustering coefficient increased significantly from 

novice to expert levels (0.31 to 0.68, p < .001), while average 

path length decreased (4.72 to 2.85, p < .001), indicating 

development of small-world network properties 

characteristic of expert knowledge organization (Hermans & 

Aldaeus, 2019). Modularity analysis identified five primary 

knowledge modules in expert networks, corresponding to 

algorithm design, data structure selection, language syntax, 

problem decomposition, and debugging strategies. 

Temporal evolution of these knowledge structures revealed 

distinctive acquisition trajectories across programming 

domains. 
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Fig 4: Knowledge Growth Curves for Core Programming Domains 
 

Figure 4 illustrates knowledge growth curves for three core 

programming domains: sequential processing, conditional 

logic, and iterative structures. The researcher observed that 

knowledge acquisition followed a modified power law 

function described by Equation 5.1: 
 

K(t) = K₀ + A(1 - e^(-αt^β)) 
 

where K(t) represents knowledge level at time t, K₀ is initial 

knowledge, A is asymptotic gain, α is the learning rate 

parameter, and β controls curve shape. Parameter fitting 

revealed significant differences in learning rates (α) across 

domains, with conditional logic showing the slowest 

acquisition rate (α = 0.17, SD = 0.03) compared to sequential 

processing (α = 0.31, SD = 0.04) and iterative structures (α = 

0.24, SD = 0.05). 

Pattern recognition techniques applied to activation patterns 

during problem-solving identified distinctive signatures 

associated with expertise levels. Principal component 

analysis of activation patterns during problem representation 

revealed that expert problem-solving was characterized by 

activation of fewer, more abstract knowledge components 

compared to novice problem-solving. This finding aligns 

with Chase and Simon's chunking theory, suggesting that 

experts perceive problems in terms of integrated patterns 

rather than individual elements. 

 

5.3 Adaptive Mechanisms 

The model's adaptation to different problem contexts 

revealed systematic patterns across expertise levels. 

 

 
 

Fig 5: Adaptation Trajectories Across Problem Types 
 

Figure 5 illustrates adaptation trajectories for three problem 

types: algorithm design, code comprehension, and debugging 

tasks. The researcher observed that adaptation speed, 

measured as performance improvement over successive 

trials, varied significantly across these contexts, with fastest 

adaptation occurring in algorithm design tasks (mean 

improvement = 17.3% per trial) and slowest in debugging 

tasks (mean improvement = 8.7% per trial). 

Response patterns to varying task complexity demonstrated 

nonlinear relationships between complexity and 

performance. 
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Fig 6: Performance as a Function of Problem Complexity 
 

Figure 6 shows performance curves as a function of problem 

complexity for different expertise levels within the model. While 

novice performance degraded linearly with increasing 

complexity, expert performance remained relatively stable until 

a critical complexity threshold (approximately 7.8 on the 

standardized complexity scale), after which performance 

declined rapidly. These patterns correspond to the expertise 

reversal effect documented by Kalyuga (2007) [15], where expert 

advantages diminish or disappear for extremely complex tasks 

that exceed working memory capacity. 

Transfer of learning across problem domains revealed 

interesting patterns that align with theoretical predictions. 

 
Table 4: Transfer Efficiency Metrics Across Expertise Levels 

 

Transfer Type Novice Intermediate Expert F-value p-value 

Near Transfer 0.82 ± 0.09 0.87 ± 0.08 0.91 ± 0.06 5.37 <.01 

Far Transfer 0.31 ± 0.12 0.54 ± 0.11 0.78 ± 0.09 18.64 <.001 

Transfer Ratio 0.38 ± 0.11 0.62 ± 0.10 0.86 ± 0.08 23.72 <.001 

Table 4 presents transfer efficiency metrics for near-transfer 

and far-transfer scenarios across expertise levels. Near-

transfer efficiency (defined as performance ratio between 

source and target domains) was consistently high across 

expertise levels (novice: 0.82, intermediate: 0.87, expert: 

0.91), while far-transfer efficiency showed a strong expertise 

effect (novice: 0.31, intermediate: 0.54, expert: 0.78). This 

pattern supports the hypothesis that expert knowledge 

representations facilitate transfer through abstraction 

mechanisms that extract domain-general principles. 

Analysis of adaptation mechanisms identified three key 

processes that supported flexible problem-solving in novel 

contexts: (1) strategic reconfiguration, (2) analogical 

mapping, and (3) constraint relaxation. Strategic 

reconfiguration, operationalized as the modification of 

planning hierarchies, occurred most frequently in early 

solution phases (mean frequency = 3.7 instances per solution 

attempt). Analogical mapping, identified through activation 

patterns connecting source and target domains, emerged 

predominantly in intermediate expertise levels. Constraint 

relaxation, measured as the temporary suspension of domain-

specific constraints during exploration phases, characterized 

expert problem-solving in novel domains. 

The results further indicate that these adaptive mechanisms 

operate through distinct neural patterns within the 

architecture. 

 

 
 

Fig 7: Activation Patterns During Transfer Tasks 
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Figure 7 visualizes activation patterns during transfer tasks, 

showing that successful transfer correlates with simultaneous 

activation of abstract representation nodes and domain-specific 

implementation nodes. This pattern suggests that effective 

transfer depends on the coordination of abstract principles with 

concrete implementation knowledge, supporting the adaptive 

expertise framework proposed by Hatano and Inagaki (1986) [13]. 

Multivariate analysis of transfer performance identified specific 

knowledge characteristics that facilitate adaptation to novel 

contexts. 

 
Table 5: Regression Analysis of Knowledge Characteristics Predicting Transfer Efficiency 

 

Predictor β Coefficient Standard Error t-value p-value 

Abstraction Level 0.42 0.08 5.25 <.001 

Connection Density 0.36 0.09 4.00 <.01 

Modularity -0.28 0.11 -2.55 <.05 

Network Size 0.12 0.10 1.20 .23 

Learning History 0.08 0.09 0.89 .38 

 
Regression analysis (Table 5) revealed that knowledge 
abstraction level (β = 0.42, p < .001), connection density (β = 
0.36, p < .01), and modularity (β = -0.28, p < .05) were 
significant predictors of transfer efficiency. These findings 
suggest that adaptive problem-solving depends on knowledge 
structures that balance abstraction with organized modularity, 
enabling flexible reconfiguration while maintaining coherent 
organization. 
 
6. Discussion 
6.1 Theoretical Implications 
The cognitive architecture developed in this study makes several 
significant contributions to theory by bridging computational 
modeling approaches with cognitive development frameworks. 
First, the model provides empirical support for the hierarchical 
reorganization hypothesis of expertise development, 
demonstrating how initially fragmented knowledge structures 
progressively consolidate into hierarchically organized schemas. 
This transformation aligns with Koedinger and Anderson's 
(2022) theory of knowledge compilation but extends it by 
demonstrating the emergence of abstract organizing principles 
that were not explicitly encoded in the learning environment. 
The identification of intermediate integration phases between 
novice fragmentation and expert hierarchical organization offers 
a more nuanced view of skill progression than previously 
articulated in the literature. 
The pattern recognition mechanisms implemented in the 
architecture shed new light on chunking theory, revealing that 
expert programmers do not simply perceive larger chunks but 
qualitatively different patterns than novices. As evidenced by 
activation pattern analysis (Figure 7), experts activate more 
abstract, solution-oriented patterns, while novices activate 
syntax-focused, language-specific patterns. This finding 
challenges traditional interpretations of chunking theory that 
emphasize quantitative rather than qualitative differences in 
pattern recognition. The researcher's results suggest that 
expertise involves not just more efficient encoding but a 
fundamental representational shift toward abstract, transferable 
knowledge structures. 
The model's success in simulating expertise development across 
multiple problem domains contributes to theoretical debates 
regarding domain-specificity versus generality of cognitive 
skills. The results suggest a more nuanced position than 
previously advanced: while core representation mechanisms 
appear domain-general, the specific knowledge structures and 
recognition patterns that emerge are highly domain-specific. 
This hybrid perspective offers a resolution to long-standing 
debates between domain-specific and domain-general theories 
of expertise (Ericsson, 2018), suggesting that both perspectives 
capture important aspects of skill development. 
Perhaps most significantly, the architecture's modeling of 
adaptive mechanisms provides a computational instantiation of 
Hatano and Inagaki's (1986) [13] distinction between routine and 
adaptive expertise. The results empirically demonstrate how 
knowledge abstraction facilitates transfer to novel contexts, with 

the model identifying specific structural properties—high 
connection density combined with moderate modularity—that 
enable flexible knowledge application. This computational 
specificity advances theoretical understandings of adaptive 
expertise beyond descriptive accounts, offering precise 
mechanisms that can be empirically tested in future research. 
The model's performance on transfer tasks challenges certain 
assumptions about skill acquisition in complex domains. 
Contrary to theories that emphasize extensive domain-specific 
practice as the primary driver of expertise, the results suggest 
that structural properties of knowledge organization may be 
equally important. Expert programmers with more densely 
connected and hierarchically organized knowledge 
demonstrated superior transfer performance, even when 
controlling for years of experience. This finding aligns with 
recent work by VanLehn (2020) [27] suggesting that knowledge 
organization, not just accumulation, determines expertise 
quality. 
 
6.2 Educational Applications 
The insights derived from this cognitive architecture have 
substantial implications for computer science education, offering 
evidence-based approaches to accelerate expertise development. 
The identification of specific knowledge structures associated 
with expertise suggests the value of concept mapping activities 
that explicitly promote hierarchical organization of 
programming knowledge. Rather than focusing exclusively on 
code production, instructional approaches should include 
activities that build connections between concepts and identify 
abstract patterns across particular implementation instances. 
Based on the model's performance patterns, the researcher 
proposes a three-phase instructional framework aligned with the 
cognitive transitions observed in expertise development: 
 Concept Anchoring Phase: Establishing foundational 

declarative knowledge through explicit instruction and 
worked examples, with attention to building accurate mental 
models of programming constructs.  

 Integration Phase: Promoting connections between 
concepts through compare-and-contrast activities, 
refactoring exercises, and problems requiring application of 
multiple concepts simultaneously.  

 Abstraction Phase: Developing recognition of cross-
contextual patterns through varied problem contexts, 
analogical reasoning tasks, and explicit identification of 
general problem-solving strategies.  

 
This phased approach differs from traditional computer science 
curricula that often emphasize syntax mastery before advancing 
to problem-solving. The proposed framework instead suggests 
interleaving these aspects, with early introduction of pattern 
recognition activities alongside syntax instruction. 
The model's data regarding differential learning rates across 
programming domains (Figure 5.4) suggests that conditional 
logic concepts warrant additional instructional attention. The 
slower acquisition rate for these concepts (α = 0.17) compared 
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to sequential processing (α = 0.31) indicates a potential 
bottleneck in programming skill development. The researcher 
recommends targeted interventions for conditional logic 
concepts, including multiple visual representations, incremental 
complexity progression, and explicit linking to everyday 
reasoning patterns. 
For educational technology development, the architecture's 
success in modeling expertise transitions offers a foundation for 
intelligent tutoring systems that adapt to individual learning 
trajectories. By implementing tracking mechanisms that monitor 
knowledge organization patterns rather than just performance 
outcomes, educational technologies could identify when learners 
are prepared to advance to new challenges or when they require 
additional integration activities. Specifically, systems could 
assess learners' ability to categorize problems according to deep 
structural features rather than surface characteristics, a key 
signature of developing expertise identified in the model. 
The expertise reversal effect observed in the model's 
performance across complexity levels (Figure 5.6) has important 
implications for instructional design. Educational approaches 
should adapt scaffolding levels based on both task complexity 
and learner expertise, reducing support for experts on 
moderately complex tasks but potentially reintroducing support 
when complexity exceeds the critical threshold identified in the 
model (approximately 7.8 on the standardized complexity scale). 
This finding aligns with and refines Kalyuga's (2007) [15] 
expertise reversal principles, providing specific parameters for 
when scaffold removal is beneficial. 
 
6.3 Limitations and future work 
Despite the model's success in simulating expertise 
development, several limitations constrain its scope and 
generalizability. First, the current implementation focuses 
primarily on procedural programming paradigms, with limited 
coverage of object-oriented, functional, or other programming 
approaches. The representational mechanisms may not fully 
capture the knowledge structures characteristic of these 
alternative paradigms. Future work should extend the 
architecture to incorporate multiple programming paradigms, 
testing whether the same cognitive mechanisms apply across 
these distinct approaches or whether paradigm-specific 
mechanisms are needed. 
Methodological challenges arose from the reliance on think-
aloud protocols for model validation. While these protocols 
provided rich data regarding conscious problem-solving 
strategies, they likely underrepresent automatic processes 
characteristic of expertise. The researcher acknowledges that 
eye-tracking data partially addressed this limitation, but future 
work would benefit from additional implicit measures such as 
response time patterns and neuroimaging approaches. 
Complementary methodologies would provide more 
comprehensive validation of the knowledge structures proposed 
in the model. The participant sample, while carefully stratified 
across expertise levels, was drawn primarily from educational 
contexts and software development environments emphasizing 
individual problem-solving. This sampling approach may limit 
generalizability to collaborative programming contexts or 
specialized domains such as systems programming or embedded 
development. Cross-validation with different programmer 
populations represents an important direction for future research. 
From a theoretical perspective, the current model does not fully 
account for motivational and affective factors that influence 
learning trajectories. Expertise development in real educational 
contexts involves complex interactions between cognitive, 
affective, and social processes. Future extensions of the 
architecture should incorporate mechanisms representing how 
factors such as interest, self-efficacy, and identity impact 
knowledge acquisition patterns. Integration with socio-cognitive 
models of learning would enhance the ecological validity of the 
model's predictions for educational contexts. 
Several promising directions for future research emerge from 

these limitations. First, extending the model to incorporate 
collaborative problem-solving would address a significant gap, 
as modern programming increasingly involves team-based 
approaches. Such extensions would require modeling 
knowledge distribution across multiple agents and 
communication mechanisms for knowledge sharing. Second, 
longitudinal studies tracking individual learning trajectories over 
extended periods would provide stronger validation of the 
proposed developmental sequences than the current cross-
sectional approach. Finally, implementation of the proposed 
educational interventions in authentic computer science 
classrooms would test the practical utility of the model's insights, 
potentially leading to refinements based on real-world 
educational constraints. 
The most ambitious direction for future research involves 
extending the architecture to model expertise development 
across multiple STEM domains, testing whether similar 
cognitive mechanisms underlie expertise in fields such as 
mathematics, engineering, and scientific inquiry. Such cross-
domain modeling would contribute to broader theoretical 
questions regarding the domain-specificity versus generality of 
cognitive skill development, potentially identifying both 
domain-general learning mechanisms and domain-specific 
knowledge structures that characterize expertise across technical 
fields. 
 
7. Conclusion 
This research has developed and validated a cognitive 
architecture that models the acquisition of programming 
expertise, providing novel insights into the cognitive 
transformations that characterize the progression from novice to 
expert in computer science domains. The integration of symbolic 
knowledge representation with spreading activation dynamics 
and reinforcement learning mechanisms has yielded a 
computational model capable of capturing both the structural 
and procedural aspects of expertise development. 
The key contributions of this work include: (1) a computational 
model that accurately predicts performance patterns across 
expertise levels, with particular strength in modeling 
intermediate-level programmers; (2) identification of specific 
knowledge organization patterns that facilitate transfer, 
including hierarchical structure and strategic clustering; (3) 
quantification of learning rates across programming domains, 
revealing differential acquisition trajectories for sequential, 
conditional, and iterative concepts; and (4) empirical 
demonstration of the expertise reversal effect in programming 
contexts, with precise specification of the complexity threshold 
at which expert advantages diminish. 
These findings advance theoretical understanding of expertise by 
providing computational specificity to previously descriptive 
accounts. The model offers a mechanistic explanation for how 
declarative knowledge transforms into procedural skill, how 
pattern recognition capabilities develop, and how adaptive 
problem-solving emerges from knowledge restructuring 
processes. By implementing these mechanisms in a 
computational architecture, the research moves beyond 
conceptual frameworks to provide testable, quantitative 
predictions about expertise development. 
The broader impact of this work extends to both artificial 
intelligence and educational research. For AI systems, the 
architecture demonstrates how human-like problem-solving 
capabilities can emerge from the integration of multiple 
cognitive mechanisms rather than from singular approaches. The 
hybrid symbolic-connectionist implementation offers a blueprint 
for developing AI systems that combine the interpretability of 
symbolic approaches with the adaptability of connectionist 
learning. As Laird and Mohan (2018) observe, cognitive 
architectures that integrate multiple processing mechanisms hold 
particular promise for producing human-like intelligence in 
computational systems. 
For educational research, the model provides an evidence-based 
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foundation for designing learning environments that accelerate 
expertise development. The three-phase instructional framework 
derived from the model—focusing on concept anchoring, 
integration, and abstraction—offers a structured approach to 
curriculum design in computer science education. By aligning 
instructional sequences with the cognitive processes revealed by 
the model, educators can potentially reduce the time required to 
develop programming expertise while improving transfer 
capabilities. The significance of this research lies in its 
demonstration that computational cognitive models can bridge 
theoretical understanding with practical application. By 
implementing cognitive theories in computational form, the 
researcher has converted descriptive accounts of expertise into 
precise mechanisms that generate testable predictions. This 
approach builds upon the vision articulated by Koedinger et al. 
(2012) [18], who argued that computational cognitive models 
provide the specificity needed to translate learning theory into 
effective educational practice. 
As computer science education continues to expand globally, the 
need for evidence-based pedagogical approaches becomes 
increasingly critical. This research represents a step toward 
meeting that need by providing a theoretically grounded, 
empirically validated model of how programming expertise 
develops. Future work building on this foundation has the 
potential to transform educational practice through intelligent 
tutoring systems that adapt to individual cognitive development 
patterns and instructional approaches that strategically target the 
cognitive mechanisms underpinning expertise. 
In conclusion, the cognitive architecture developed in this 
research advances understanding of expertise acquisition in 
computer science while demonstrating the value of 
computational cognitive modeling for both theoretical 
advancement and practical application. By providing a detailed 
account of the cognitive transformations that characterize 
expertise development, this work contributes to the broader 
scientific effort to understand the remarkable human capacity for 
skill acquisition while offering practical insights for enhancing 
this capacity through well-designed educational interventions. 
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