
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 948 | P a g e

Cognitive Architecture for Adaptive Problem-Solving and Computational Models of

Expert Knowledge Acquisition in Computer Science Education

Pamba Shatson Fasco

Department of Computer Science, School of Mathematics and Computing, Kampala International University, Uganda

* Corresponding Author: Pamba Shatson Fasco

Article Info
ISSN (online): 2582-7138

Volume: 06

Issue: 03

May-June 2025
Received: 10-04-2025

Accepted: 08-05-2025

Page No: 948-959

Abstract

The researcher presents a comprehensive investigation into cognitive architectures for

adaptive problem-solving with specific application to computer science education.

This study develops and evaluates a computational model that simulates the

acquisition of expert knowledge in programming and algorithmic reasoning. Through

rigorous experimentation and analysis, the researcher identifies key mechanisms that

facilitate the transformation of cognitive structures during skill development. The

results demonstrate significant advancements in understanding how novice

programmers transition to expert status, revealing distinct cognitive patterns that

emerge during this progression. These patterns include the formation of specialized

mental schemas, the development of chunking mechanisms for efficient information

processing, and the emergence of sophisticated heuristic strategies. The findings

contribute to both theoretical understanding of expert cognition and practical

applications in computer science pedagogy, offering evidence-based approaches for

designing educational interventions that accelerate expertise development.

Keywords: cognitive architecture, adaptive problem-solving, expert knowledge, computational modeling, computer science

education, skill acquisition, learning trajectories

1. Introduction

Computer science education faces persistent challenges in developing effective pedagogical approaches that facilitate the

transition from novice to expert programmer. Despite significant advances in educational technology and teaching

methodologies, many students continue to struggle with core programming concepts and problem-solving strategies. As

Anderson et al. (2019) [19] observe, the acquisition of programming expertise involves complex cognitive processes that remain

inadequately understood and modeled. This research gap hampers the development of educational interventions that could

accelerate expertise development in computer science domains.

The researcher posits that computational models of cognition offer a promising approach to understanding and addressing these

challenges. Current educational theories explain broad patterns of learning but lack the precision needed to inform targeted

interventions in complex domains like computer science. Computational cognitive architectures, by contrast, can capture the

fine-grained mechanisms underlying expertise development. These architectures can simulate how knowledge structures evolve

during the progression from novice to expert status, providing insights that purely descriptive theories cannot offer.

A critical gap in the existing literature concerns the transformation of knowledge structures during programming skill acquisition.

While research has documented differences between novice and expert programmers (Robins et al., 2023) [24], the cognitive

processes that facilitate this transition remain underspecified. How do fragmentary conceptual understandings coalesce into

sophisticated mental models? What mechanisms enable the development of pattern recognition capabilities that characterize

expert problem-solving? These questions require detailed computational models that can simulate cognitive changes at multiple

levels of abstraction.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 949 | P a g e

This study aims to develop a cognitive architecture that

accurately models the transition from novice to expert

problem-solving in computer science domains. The

architecture integrates mechanisms for knowledge

representation, pattern recognition, and strategic planning—

key components of programming expertise. By implementing

and validating this architecture, the researcher seeks to

advance both theoretical understanding of expertise

development and practical approaches to computer science

education.

The significance of this work lies in its potential to transform

educational approaches through computational modeling of

learning trajectories. Traditional educational designs often

rely on intuitive notions of skill progression that may not

align with actual cognitive development patterns. Grover and

Pea (2018) [12] argue that evidence-based computational

models can provide more reliable guidance for curriculum

design, identifying optimal sequences of concept

introduction and practice opportunities. Furthermore, these

models can inform the development of intelligent tutoring

systems that adapt to individual learning patterns, potentially

accelerating expertise development.

This dissertation is organized into seven chapters. Following

this introduction, Chapter 2 reviews relevant literature on

cognitive architectures, expertise development, and computer

science education. Chapter 3 presents the theoretical

framework guiding the research, while Chapter 4 details the

methodology for model development and validation. Chapter

5 reports the results of computational experiments testing the

architecture's ability to simulate expertise development.

Chapter 6 discusses theoretical and practical implications of

these findings, and Chapter 7 concludes with a summary of

contributions and directions for future research.

2. Literature Review

2.1 Cognitive Architectures in AI

The development of cognitive architectures represents a

significant endeavor to model human cognition

computationally. The researcher traces this development

from early symbolic systems of the 1970s and 1980s to

contemporary hybrid approaches that integrate multiple

processing mechanisms. Early cognitive architectures such as

GPS (General Problem Solver) established fundamental

principles of problem-solving through means-ends analysis,

while later systems incorporated more sophisticated

mechanisms for knowledge representation and learning

(Laird et al., 2017) [19].

ACT-R (Adaptive Control of Thought-Rational) represents

one of the most influential cognitive architectures, offering a

comprehensive framework for modeling cognitive processes.

Anderson (2007) [1] describes how ACT-R integrates

declarative and procedural knowledge modules with

perceptual-motor interfaces, providing a unified theory of

cognition that has been applied to numerous domains,

including programming education. The architecture's

distinction between declarative and procedural knowledge

forms a theoretical basis for understanding expertise

development, though its implementation of learning

mechanisms remains somewhat constrained by predefined

production rules.

SOAR provides an alternative architecture focused on

problem-solving and learning through chunking operations.

While SOAR excels at modeling goal-directed behavior and

knowledge integration, its emphasis on symbolic processing

limits its ability to capture the graded, probabilistic nature of

human concept formation. Recent extensions to SOAR have

attempted to address these limitations through reinforcement

learning mechanisms, but challenges remain in modeling the

flexibility characteristic of human expertise.

More recently, deep learning architectures have demonstrated

impressive capabilities in pattern recognition and knowledge

representation. However, as Wang and Patel (2019) [28]

observe, these architectures often lack the interpretability and

explicit knowledge structures that characterize human

problem-solving. While they excel at extracting patterns from

large datasets, they typically fail to capture the hierarchical,

modular organization of human knowledge, which enables

flexible adaptation to novel problems.

The limitations of existing approaches become particularly

evident when modeling the flexibility and adaptability

characteristic of human cognition. Current architectures

struggle to capture how experts seamlessly move between

different levels of abstraction, combine multiple knowledge

sources, and generate creative solutions to novel problems.

These limitations point to the need for new architectural

approaches that better integrate symbolic reasoning with

statistical learning mechanisms.

2.2 Expert knowledge acquisition

The process by which novices develop expert knowledge

represents a central question in cognitive science, with

particular relevance to computer science education. The

researcher examines several theoretical frameworks that

explain expertise development, beginning with chunking

theory, which describes how experts organize information

into meaningful units. Chase and Simon's classic studies

demonstrated how chess masters perceive board

configurations as integrated patterns rather than individual

pieces, a finding that has been extended to programming

expertise (Ericsson & Pool, 2016) [9].

Deliberate practice theory provides another perspective on

expertise development, emphasizing the role of structured,

goal-directed practice with immediate feedback. While this

framework explains the importance of focused effort in skill

development, it offers limited insight into the specific

cognitive transformations that occur during practice. The

researcher notes that computer science education often lacks

the structured practice environments that characterize other

domains of expertise, potentially hindering skill

development.

Knowledge compilation theories offer more mechanistic

explanations of skill acquisition, describing how declarative

knowledge transforms into procedural form through repeated

application. Anderson's ACT-R framework provides a

computational implementation of this process, modeling how

initial problem-solving requires explicit reasoning about

declarative facts, while expertise involves direct application

of compiled procedures. Empirical studies in programming

contexts support this model, showing how novices initially

reason through problems step-by-step while experts apply

stored solution patterns (Robins et al., 2019) [23].

The researcher analyzes empirical studies documenting

expert problem-solving strategies in programming contexts,

noting consistent patterns across studies. Experts

demonstrate superior problem representation skills,

constructing abstract models that capture essential problem

features while filtering irrelevant details. They rely heavily

on pattern recognition, applying stored solution templates to

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 950 | P a g e

familiar problem types, and utilize hierarchical planning

strategies that decompose complex problems into

manageable subproblems.

Particular attention is given to the cognitive processes

underlying knowledge transformation during skill

acquisition. Protocol studies reveal how knowledge

transitions from explicit, verbally-mediated reasoning to

implicit, pattern-based recognition. This transformation

appears to involve both compilation processes, which

consolidate sequences of operations into single units, and

abstraction processes, which extract general principles from

specific examples. However, the precise mechanisms

facilitating these transformations remain inadequately

specified in current computational models.

2.3 Computer science education

The current landscape of computer science education

presents numerous challenges, particularly in teaching

foundational programming concepts. Despite decades of

research and pedagogical innovation, many students continue

to struggle with basic programming principles. The

researcher examines persistent difficulties in concept

acquisition, including misconceptions about variable

assignment, loop structures, and recursion. Soloway and

Spohrer's (2013) [25] analysis of novice programming errors

remains relevant, suggesting that many difficulties stem from

inappropriate mental models rather than simple syntax errors.

Educational approaches have evolved significantly, moving

from purely syntactic instruction to strategies emphasizing

problem-solving and computational thinking. Nevertheless,

significant gaps remain between educational theory and

practice. The researcher notes the limited application of

cognitive research to instructional design, with many

curricula reflecting intuitive rather than evidence-based

approaches to concept sequencing and skill development.

Existing computational models applied to educational

contexts show promise but significant limitations. Intelligent

tutoring systems based on model-tracing approaches have

demonstrated effectiveness in well-defined domains but

struggle with the open-ended nature of programming

problems. Recent machine learning approaches can identify

patterns in student performance but typically lack

explanatory mechanisms linking performance to underlying

knowledge structures.

Becker (2021) [3] identifies additional challenges in adaptive

educational technologies, noting that current systems often

adapt based on performance metrics rather than cognitive

models of student understanding. This approach limits their

ability to diagnose conceptual difficulties and provide

targeted interventions. The gap between sophisticated

cognitive models and practical educational technologies

represents a significant opportunity for research integration.

This analysis reveals significant opportunities at the

intersection of cognitive modeling, expertise development,

and computer science education. Integrated research could

develop computational models that accurately capture the

cognitive transformations characterizing expertise

development, informing the design of educational

interventions that accelerate these transformations. Such

research would bridge theoretical understanding of cognition

with practical approaches to computer science education,

potentially transforming how programming expertise is

developed.

3. Theoretical Framework

The proposed cognitive architecture rests upon three

complementary theoretical paradigms: information

processing theory, constructivism, and cognitive load theory.

The researcher integrates these perspectives to develop a

coherent framework for understanding the cognitive

transformations that characterize the progression from novice

to expert in computer science domains.

Information processing theory provides the foundational

structure for the architecture, conceptualizing cognition as a

system that encodes, stores, and manipulates mental

representations. Following Newell and Simon's (1972) [22]

human problem-solving framework, the architecture models

the mind as a symbol-processing system with distinct

memory structures and processing mechanisms. The

researcher extends this classical framework by incorporating

modern understandings of parallel processing and activation

dynamics, reflecting how attention modulates information

flow during complex problem-solving activities like

programming. This extension addresses a limitation of

traditional information processing models, which often fail to

capture the fluidity and context-sensitivity of expert

cognition.

Constructivist principles inform the architecture's learning

mechanisms, emphasizing how knowledge structures are

actively constructed rather than passively acquired. Drawing

from Piaget's concepts of assimilation and accommodation,

the researcher models knowledge acquisition as a process of

schema construction and refinement. In the programming

domain, this manifests as the progressive elaboration of

mental models representing language semantics, algorithmic

patterns, and problem structures. As Ben-Ari (2001) [5] notes,

constructivist approaches are particularly relevant to

computer science education, where learners must build

conceptual frameworks that align with the formal,

deterministic nature of computational systems.

Cognitive load theory complements these perspectives by

addressing resource limitations in human cognition. The

architecture incorporates Sweller's (2011) [26] distinction

between intrinsic, extraneous, and germane cognitive load,

modeling how these different forms of mental effort

influence learning trajectories. The researcher proposes that

expertise development in programming involves optimizing

cognitive resource allocation – reducing extraneous load

through chunking and automation while maximizing

germane load through deliberate practice. This theoretical

integration explains why certain programming concepts

present persistent difficulties for novices, as they impose high

intrinsic load that exceeds working memory capacity.

The conceptual model at the core of this framework

represents adaptive problem-solving as a dynamic interaction

between four interrelated components: knowledge structures,

pattern recognition mechanisms, strategic processes, and

metacognitive regulation. Figure 3.1 illustrates this model,

depicting how these components interact during

programming problem-solving.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 951 | P a g e

Fig 1: Conceptual model of adaptive problem- solving architecture

Knowledge structures form the foundational component,
encompassing both declarative knowledge (concepts, facts,
and principles) and procedural knowledge (algorithms,
techniques, and skills). The architecture models these
structures as semantic networks with varying activation
thresholds and connection strengths.
As expertise develops, these networks undergo significant
transformations – becoming more hierarchical,
interconnected, and automatically activated. In programming
contexts, these transformations manifest as the development
of rich mental models of program behavior, algorithmic
patterns, and problem-domain concepts.
Pattern recognition mechanisms constitute the second
component, enabling experts to rapidly identify relevant
problem features and applicable solution strategies. The
architecture models these mechanisms using constraint
satisfaction processes that match current problem states
against stored patterns. Expertise development involves the
progressive refinement of these patterns, evolving from
surface-level syntactic features to deep structural
characteristics of programming problems. This evolution
aligns with empirical findings from expert-novice studies in
programming, where experts demonstrate superior ability to
categorize problems according to underlying solution
principles rather than superficial features (McKeithen et al.,
1981) [21].
Strategic processes form the third component, governing how
problem-solving unfolds over time. The architecture models
these processes as production systems with condition-action
rules that implement planning, evaluation, and adaptation
strategies. As expertise develops, these strategic processes
become increasingly automatic and hierarchical, enabling
experts to plan at multiple levels of abstraction
simultaneously. In programming contexts, this manifests as
the ability to reason about code at multiple levels – from
algorithmic structure to implementation details – while
maintaining coherence across these levels.
Metacognitive regulation completes the model, representing
the self-monitoring and self-regulation processes that guide
effective learning and problem-solving. The architecture

models these processes as executive functions that allocate
cognitive resources, select strategies, and evaluate progress.
Expertise development involves the refinement of these
regulatory mechanisms, enabling more accurate self-
assessment and more effective strategy selection. This
component explains why experts demonstrate superior
debugging abilities – they more accurately monitor their
understanding and more effectively diagnose
misconceptions.
The integration of cognitive science principles with
educational theory creates a novel framework for
understanding expertise development in computer science.
Unlike purely descriptive models, the proposed architecture
offers computational precision regarding how knowledge
transforms during learning. Unlike purely computational
models, it maintains psychological plausibility by
incorporating well-established cognitive constraints and
mechanisms. This integration enables the architecture to
capture both the content knowledge that characterizes
programming expertise and the thinking processes through
which this knowledge is applied.
Based on this theoretical framework, the researcher
formulates three specific hypotheses regarding expertise
development in computer science:

H1: Knowledge Representation Hypothesis – As
programming expertise develops, knowledge structures
transition from isolated, language-specific elements to
integrated, abstract patterns that transcend specific
programming languages. This transition manifests as
increased ability to transfer solutions across language
paradigms.

H2: Transfer Mechanism Hypothesis – Transfer of
programming knowledge between problem domains depends
on the abstraction level of stored solution patterns. Experts
achieve greater transfer by encoding solutions at multiple
levels of abstraction simultaneously, enabling flexible
adaptation to novel problems.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 952 | P a g e

H3: Adaptation Process Hypothesis – Expert programmers
adapt to novel problems through a dynamic interplay between
top-down and bottom-up processing. This adaptation process
becomes more efficient with expertise development, as
evidenced by decreased cognitive load during problem
representation phases.

These hypotheses provide testable predictions regarding how
the proposed cognitive architecture should behave when
simulating expertise development in programming domains.
They guide both the implementation details of the
computational model and the empirical studies designed to
validate it, establishing clear criteria for evaluating the
architecture's psychological plausibility and educational
relevance.

4. Methodology
4.1 Model Design
The cognitive architecture developed in this study comprises
three interacting subsystems: a knowledge representation
module, a pattern recognition engine, and a strategic
reasoning component. Each subsystem implements specific
cognitive mechanisms identified in the theoretical
framework, creating an integrated model of expertise
development in programming domains.
The knowledge representation module implements a hybrid
symbolic-connectionist architecture, combining semantic
networks with spreading activation dynamics. Declarative
knowledge is encoded as a graph structure where nodes
represent concepts (e.g., programming constructs,
algorithmic patterns) and weighted edges represent semantic
relationships. The formal specification follows Equation 4.1:
KD = (C, R, W)
Where C represents the set of concept nodes, R the set of
relationships, and W the associated weights. Procedural
knowledge is encoded using production rules with the format:
IF <condition> THEN <action>
where conditions match against the current problem state and
actions modify either the problem state or the knowledge
structure itself. To capture the dynamic nature of expertise
development, the researcher implements a Bayesian updating
mechanism that modifies edge weights based on problem-
solving experiences, following the approach described by
Koedinger and Anderson (2018) [18].
The pattern recognition engine implements a constraint
satisfaction mechanism that identifies relevant problem
features and solution patterns. This component operates
through parallel matching of current problem representations
against stored patterns, producing activation values
proportional to the degree of match. The architecture utilizes
a modified version of the SOAR pattern matching algorithm,
optimized for programming domain representations.
Algorithm 4.1 presents pseudocode for this matching
process:
Algorithm 4.1: Pattern Matching Process
Input: Problem state P, Pattern library L, Activation threshold
θ
Output: Set of activated patterns A
1: A ← ∅
2: for each pattern p in L do
3: sim ← Similarity(P, p)
4: if sim > θ then
5: A ← A ∪ {(p, sim)}
6: end if
7: end for
8: return A

The strategic reasoning component implements a hierarchical
planning system that operates at multiple levels of
abstraction. This system generates solution strategies by
decomposing problems into subgoals based on recognized
patterns and available knowledge. The implementation
follows a means-ends analysis approach but extends it with
reinforcement learning mechanisms that adjust strategy
selection based on success experiences. This extension
allows the model to adapt its strategic approach based on
performance feedback, mimicking how programmers refine
their problem-solving strategies through experience.
The researcher implements the architecture using Python 3.8
with TensorFlow 2.4 for the connectionist components and
PyTorch 1.9 for the reinforcement learning mechanisms. This
technological stack was selected for its flexibility in
implementing hybrid symbolic-connectionist systems while
maintaining computational efficiency. The model execution
is constrained to operate within plausible human cognitive
limitations, including working memory capacity (modeled as
activation decay parameters) and attentional focus (modeled
as resource allocation constraints).

4.2 Data Collection
To validate the cognitive architecture against human
performance patterns, the researcher collected empirical data
from 48 participants representing various expertise levels in
computer programming. Participants were recruited using
stratified sampling to ensure representation across the
expertise spectrum, with 16 novices (less than 1 year of
programming experience), 16 intermediates (1-5 years), and
16 experts (more than 5 years). The sample included 27 males
and 21 females with a mean age of 27.3 years (SD = 5.8).
Prior to data collection, the researcher obtained institutional
review board approval (Protocol #CS-2023-0142) and
secured informed consent from all participants. The study
protocol included considerations for minimizing participant
fatigue, ensuring data confidentiality, and providing
appropriate compensation for participation time.
Data collection employed a multi-method approach
combining think-aloud protocols, eye-tracking, and process
logs. Participants completed six programming tasks of
varying complexity, designed to elicit different aspects of
problem-solving expertise. During task completion,
participants verbalized their thinking processes following the
structured protocol developed by Ericsson and Simon (1993),
with minimal interviewer intervention to avoid disrupting
natural problem-solving processes.
Eye movements were recorded using a Tobii Pro Spectrum
eye tracker (sampling rate: 1200 Hz), with fixation patterns
analyzed to identify attention allocation during problem-
solving. This methodology follows established approaches in
programming expertise research (Bednarik & Tukiainen,
2008), allowing for unobtrusive measurement of attentional
processes that may not be fully captured in verbal reports.
Process logs collected keystroke-level data and intermediate
solution states, providing fine-grained information about
solution trajectory and strategy implementation. The
researcher developed a custom logging framework that
integrated with common programming environments
(VSCode, PyCharm) to maintain ecological validity while
ensuring comprehensive data capture.
Following task completion, participants completed
retrospective interviews where they reviewed and
commented on their solution approaches, providing
additional insight into their metacognitive processes and
strategic decisions. These interviews followed a semi-
structured format with standardized prompts to ensure

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 953 | P a g e

comparability across participants while allowing for
individualized follow-up questions.

4.3 Analytical Approach
The analytical framework integrates qualitative protocol
analysis with quantitative modeling techniques to evaluate
the cognitive architecture's ability to predict human expertise
development patterns. Data preprocessing involved
transcription and segmentation of verbal protocols,
synchronization of eye-tracking data with solution stages,
and normalization of process log timestamps to enable
integrated analysis across data sources.
Protocol data were coded using a hierarchical scheme derived
from the theoretical framework, with primary categories
including knowledge access, pattern recognition, strategic
planning, and metacognitive regulation. Two independent
coders processed 25% of the data to establish coding
reliability (Cohen's κ = 0.87), after which the primary
researcher coded the remaining data. Eye-tracking data were
processed using dispersion-threshold identification of
fixations (threshold: 35 pixels, minimum duration: 100ms)
and aggregated into areas of interest corresponding to code
regions and problem statement components.
The researcher implemented a cross-validation strategy to
assess the cognitive architecture's predictive validity. The
model was trained using data from 70% of participants
(stratified by expertise level) and tested on the remaining
30%. This process was repeated using five-fold cross-
validation to ensure robustness of performance estimates.
Generalization testing evaluated the model's ability to predict
performance on novel problem types not included in the
training data, providing a stringent test of its explanatory
power.
Performance metrics for model evaluation included both
quantitative measures of behavioral correspondence and
qualitative assessments of process similarity. Behavioral
correspondence was measured using Equation 4.2:
BC = 1 - (Σ|Mi - Hi|) / (Σ Hi)
Where Mi represents model performance on metric i and Hi
represents corresponding human performance. This metric
was calculated separately for solution correctness,
completion time, and strategy selection. Process similarity
was evaluated using sequence alignment methods adapted
from bioinformatics, calculating the edit distance between
model-generated and human solution trajectories normalized
by sequence length.
Statistical analysis employed mixed-effects models to
account for both fixed effects (expertise level, problem type)
and random effects (individual participant characteristics).
The significance of model parameters was assessed using
likelihood ratio tests comparing full and reduced models.
Effect sizes were calculated using Cohen's f² for fixed effects
and intraclass correlation coefficients for random effects,
following recommendations by Fritz et al. (2012) [11].
For comparative analysis, the researcher benchmarked the
proposed architecture against three alternative models: a pure
production system model (ACT-R based), a deep learning
model (transformer architecture), and a baseline model
implementing simple means-ends analysis without learning
mechanisms. This comparison used Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) to
assess relative model fit while accounting for differences in
parameter counts.

5. Results
5.1 Model Performance
The cognitive architecture demonstrated superior predictive

accuracy compared to baseline models across multiple
performance metrics.

Table 1: Prediction Accuracy of Cognitive Models Across

Expertise Levels

Model Type
Novice

(%)

Intermediate

(%)

Expert

(%)

Overall

(%)

Proposed

Architecture

81.2 ±

5.3
85.9 ± 3.8

84.1 ±

3.5

83.7 ±

4.2

Production

System

68.7 ±

6.1
73.4 ± 4.9

72.2 ±

4.8

71.4 ±

5.3

Deep

Learning

72.5 ±

7.2
78.2 ± 5.3

77.1 ±

5.8

75.9 ±

6.1

Means-Ends

Baseline

64.1 ±

8.3
63.5 ± 7.2

59.2 ±

7.8

62.3 ±

7.8

As shown in Table 1, the proposed model achieved an overall

weighted accuracy of 83.7% (SD = 4.2%) in predicting

human performance outcomes, significantly outperforming

the production system model (71.4%, SD = 5.3%), the deep

learning model (75.9%, SD = 6.1%), and the baseline means-

ends model (62.3%, SD = 7.8%).

Behavioral correspondence metrics revealed strong

alignment between model-generated and human solution

trajectories.

Normalized Edit Distance (lower is better)

Fig 1: Normalized Edit Distance Between Model and Human

Solution Sequences

As illustrated in Figure 1, correspondence was strongest for

intermediate-level programmers (mean normalized distance

= 0.24, SD = 0.08) compared to novices (mean = 0.38, SD =

0.11) and experts (mean = 0.31, SD = 0.09). This pattern

suggests that the model most accurately captures the

transitional strategies characteristic of intermediate expertise,

while expert performance exhibits greater individual

variation that presents challenges for computational

modeling.

Statistical analysis using mixed-effects models confirmed

that performance differences between the proposed

architecture and baseline models were statistically

significant.

Table 2: Likelihood Ratio Tests Comparing Model Fit Across

Expertise Levels

Comparison χ² df
p-

value

Effect Size

(f²)

Full vs. No Expertise 21.47 4 <.001 0.29

Full vs. No Problem

Type
37.42 8 <.001 0.46

Full vs. No Interaction 15.86 6 .014 0.18

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 954 | P a g e

Table 2 presents likelihood ratio test results comparing model

fit across problem types and expertise levels. The full model

demonstrated superior fit compared to reduced models (χ²(8)

= 37.42, p < .001), with a large effect size (Cohen's f² = 0.46).

Problem type emerged as a significant predictor of model

accuracy (F(5,235) = 14.73, p < .001), with the architecture

showing strongest performance on algorithmic problems and

relative weakness on debugging tasks.

Temporal analysis of solution development revealed that the

architecture successfully modeled the differential time

allocation patterns observed across expertise levels.

Time Allocation by Expertise Level

Fig 2: Proportional Time Allocation Across Solution Phases by

Expertise Level

As shown in Figure 2, the model captured the expert tendency

to allocate proportionally more time to problem

representation and planning phases, while novices

demonstrated more balanced time allocation across solution

phases. Chi et al. (2021) [7] noted similar patterns in their

analysis of expert programming strategies, suggesting that

this time allocation pattern represents a reliable signature of

programming expertise.

5.2 Knowledge Representation

Analysis of emergent knowledge structures within the model

revealed systematic patterns corresponding to documented

expert programming strategies.

Figure 3 presents a visualization of knowledge network

evolution during skill acquisition, showing the progressive

development of hierarchical organization and strategic

clustering. The researcher observed three distinctive phases

in knowledge structure development: (1) an initial

fragmented phase characterized by isolated concept clusters,

(2) an integration phase featuring increasing cross-

connections between concept domains, and (3) a hierarchical

reorganization phase where abstract principles emerged as

organizing schemas.

Network analysis metrics quantified these structural changes,

as shown in Table 3.

Fig 3: Knowledge Network Evolution During Skill Acquisition

Table 3: Network Analysis Metrics of Knowledge Structures Across Expertise Levels

Metric Novice Intermediate Expert p-value

Clustering Coefficient 0.31 ± 0.07 0.49 ± 0.08 0.68 ± 0.06 <.001

Average Path Length 4.72 ± 0.42 3.64 ± 0.31 2.85 ± 0.27 <.001

Modularity 0.58 ± 0.09 0.46 ± 0.07 0.41 ± 0.05 <.01

Network Density 0.12 ± 0.03 0.24 ± 0.05 0.37 ± 0.06 <.001

Mean clustering coefficient increased significantly from

novice to expert levels (0.31 to 0.68, p < .001), while average

path length decreased (4.72 to 2.85, p < .001), indicating

development of small-world network properties

characteristic of expert knowledge organization (Hermans &

Aldaeus, 2019). Modularity analysis identified five primary

knowledge modules in expert networks, corresponding to

algorithm design, data structure selection, language syntax,

problem decomposition, and debugging strategies.

Temporal evolution of these knowledge structures revealed

distinctive acquisition trajectories across programming

domains.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 955 | P a g e

Fig 4: Knowledge Growth Curves for Core Programming Domains

Figure 4 illustrates knowledge growth curves for three core

programming domains: sequential processing, conditional

logic, and iterative structures. The researcher observed that

knowledge acquisition followed a modified power law

function described by Equation 5.1:

K(t) = K₀ + A(1 - e^(-αt^β))

where K(t) represents knowledge level at time t, K₀ is initial

knowledge, A is asymptotic gain, α is the learning rate

parameter, and β controls curve shape. Parameter fitting

revealed significant differences in learning rates (α) across

domains, with conditional logic showing the slowest

acquisition rate (α = 0.17, SD = 0.03) compared to sequential

processing (α = 0.31, SD = 0.04) and iterative structures (α =

0.24, SD = 0.05).

Pattern recognition techniques applied to activation patterns

during problem-solving identified distinctive signatures

associated with expertise levels. Principal component

analysis of activation patterns during problem representation

revealed that expert problem-solving was characterized by

activation of fewer, more abstract knowledge components

compared to novice problem-solving. This finding aligns

with Chase and Simon's chunking theory, suggesting that

experts perceive problems in terms of integrated patterns

rather than individual elements.

5.3 Adaptive Mechanisms

The model's adaptation to different problem contexts

revealed systematic patterns across expertise levels.

Fig 5: Adaptation Trajectories Across Problem Types

Figure 5 illustrates adaptation trajectories for three problem

types: algorithm design, code comprehension, and debugging

tasks. The researcher observed that adaptation speed,

measured as performance improvement over successive

trials, varied significantly across these contexts, with fastest

adaptation occurring in algorithm design tasks (mean

improvement = 17.3% per trial) and slowest in debugging

tasks (mean improvement = 8.7% per trial).

Response patterns to varying task complexity demonstrated

nonlinear relationships between complexity and

performance.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 956 | P a g e

Fig 6: Performance as a Function of Problem Complexity

Figure 6 shows performance curves as a function of problem

complexity for different expertise levels within the model. While

novice performance degraded linearly with increasing

complexity, expert performance remained relatively stable until

a critical complexity threshold (approximately 7.8 on the

standardized complexity scale), after which performance

declined rapidly. These patterns correspond to the expertise

reversal effect documented by Kalyuga (2007) [15], where expert

advantages diminish or disappear for extremely complex tasks

that exceed working memory capacity.

Transfer of learning across problem domains revealed

interesting patterns that align with theoretical predictions.

Table 4: Transfer Efficiency Metrics Across Expertise Levels

Transfer Type Novice Intermediate Expert F-value p-value

Near Transfer 0.82 ± 0.09 0.87 ± 0.08 0.91 ± 0.06 5.37 <.01

Far Transfer 0.31 ± 0.12 0.54 ± 0.11 0.78 ± 0.09 18.64 <.001

Transfer Ratio 0.38 ± 0.11 0.62 ± 0.10 0.86 ± 0.08 23.72 <.001

Table 4 presents transfer efficiency metrics for near-transfer

and far-transfer scenarios across expertise levels. Near-

transfer efficiency (defined as performance ratio between

source and target domains) was consistently high across

expertise levels (novice: 0.82, intermediate: 0.87, expert:

0.91), while far-transfer efficiency showed a strong expertise

effect (novice: 0.31, intermediate: 0.54, expert: 0.78). This

pattern supports the hypothesis that expert knowledge

representations facilitate transfer through abstraction

mechanisms that extract domain-general principles.

Analysis of adaptation mechanisms identified three key

processes that supported flexible problem-solving in novel

contexts: (1) strategic reconfiguration, (2) analogical

mapping, and (3) constraint relaxation. Strategic

reconfiguration, operationalized as the modification of

planning hierarchies, occurred most frequently in early

solution phases (mean frequency = 3.7 instances per solution

attempt). Analogical mapping, identified through activation

patterns connecting source and target domains, emerged

predominantly in intermediate expertise levels. Constraint

relaxation, measured as the temporary suspension of domain-

specific constraints during exploration phases, characterized

expert problem-solving in novel domains.

The results further indicate that these adaptive mechanisms

operate through distinct neural patterns within the

architecture.

Fig 7: Activation Patterns During Transfer Tasks

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 957 | P a g e

Figure 7 visualizes activation patterns during transfer tasks,

showing that successful transfer correlates with simultaneous

activation of abstract representation nodes and domain-specific

implementation nodes. This pattern suggests that effective

transfer depends on the coordination of abstract principles with

concrete implementation knowledge, supporting the adaptive

expertise framework proposed by Hatano and Inagaki (1986) [13].

Multivariate analysis of transfer performance identified specific

knowledge characteristics that facilitate adaptation to novel

contexts.

Table 5: Regression Analysis of Knowledge Characteristics Predicting Transfer Efficiency

Predictor β Coefficient Standard Error t-value p-value

Abstraction Level 0.42 0.08 5.25 <.001

Connection Density 0.36 0.09 4.00 <.01

Modularity -0.28 0.11 -2.55 <.05

Network Size 0.12 0.10 1.20 .23

Learning History 0.08 0.09 0.89 .38

Regression analysis (Table 5) revealed that knowledge
abstraction level (β = 0.42, p < .001), connection density (β =
0.36, p < .01), and modularity (β = -0.28, p < .05) were
significant predictors of transfer efficiency. These findings
suggest that adaptive problem-solving depends on knowledge
structures that balance abstraction with organized modularity,
enabling flexible reconfiguration while maintaining coherent
organization.

6. Discussion
6.1 Theoretical Implications
The cognitive architecture developed in this study makes several
significant contributions to theory by bridging computational
modeling approaches with cognitive development frameworks.
First, the model provides empirical support for the hierarchical
reorganization hypothesis of expertise development,
demonstrating how initially fragmented knowledge structures
progressively consolidate into hierarchically organized schemas.
This transformation aligns with Koedinger and Anderson's
(2022) theory of knowledge compilation but extends it by
demonstrating the emergence of abstract organizing principles
that were not explicitly encoded in the learning environment.
The identification of intermediate integration phases between
novice fragmentation and expert hierarchical organization offers
a more nuanced view of skill progression than previously
articulated in the literature.
The pattern recognition mechanisms implemented in the
architecture shed new light on chunking theory, revealing that
expert programmers do not simply perceive larger chunks but
qualitatively different patterns than novices. As evidenced by
activation pattern analysis (Figure 7), experts activate more
abstract, solution-oriented patterns, while novices activate
syntax-focused, language-specific patterns. This finding
challenges traditional interpretations of chunking theory that
emphasize quantitative rather than qualitative differences in
pattern recognition. The researcher's results suggest that
expertise involves not just more efficient encoding but a
fundamental representational shift toward abstract, transferable
knowledge structures.
The model's success in simulating expertise development across
multiple problem domains contributes to theoretical debates
regarding domain-specificity versus generality of cognitive
skills. The results suggest a more nuanced position than
previously advanced: while core representation mechanisms
appear domain-general, the specific knowledge structures and
recognition patterns that emerge are highly domain-specific.
This hybrid perspective offers a resolution to long-standing
debates between domain-specific and domain-general theories
of expertise (Ericsson, 2018), suggesting that both perspectives
capture important aspects of skill development.
Perhaps most significantly, the architecture's modeling of
adaptive mechanisms provides a computational instantiation of
Hatano and Inagaki's (1986) [13] distinction between routine and
adaptive expertise. The results empirically demonstrate how
knowledge abstraction facilitates transfer to novel contexts, with

the model identifying specific structural properties—high
connection density combined with moderate modularity—that
enable flexible knowledge application. This computational
specificity advances theoretical understandings of adaptive
expertise beyond descriptive accounts, offering precise
mechanisms that can be empirically tested in future research.
The model's performance on transfer tasks challenges certain
assumptions about skill acquisition in complex domains.
Contrary to theories that emphasize extensive domain-specific
practice as the primary driver of expertise, the results suggest
that structural properties of knowledge organization may be
equally important. Expert programmers with more densely
connected and hierarchically organized knowledge
demonstrated superior transfer performance, even when
controlling for years of experience. This finding aligns with
recent work by VanLehn (2020) [27] suggesting that knowledge
organization, not just accumulation, determines expertise
quality.

6.2 Educational Applications
The insights derived from this cognitive architecture have
substantial implications for computer science education, offering
evidence-based approaches to accelerate expertise development.
The identification of specific knowledge structures associated
with expertise suggests the value of concept mapping activities
that explicitly promote hierarchical organization of
programming knowledge. Rather than focusing exclusively on
code production, instructional approaches should include
activities that build connections between concepts and identify
abstract patterns across particular implementation instances.
Based on the model's performance patterns, the researcher
proposes a three-phase instructional framework aligned with the
cognitive transitions observed in expertise development:
 Concept Anchoring Phase: Establishing foundational

declarative knowledge through explicit instruction and
worked examples, with attention to building accurate mental
models of programming constructs.

 Integration Phase: Promoting connections between
concepts through compare-and-contrast activities,
refactoring exercises, and problems requiring application of
multiple concepts simultaneously.

 Abstraction Phase: Developing recognition of cross-
contextual patterns through varied problem contexts,
analogical reasoning tasks, and explicit identification of
general problem-solving strategies.

This phased approach differs from traditional computer science
curricula that often emphasize syntax mastery before advancing
to problem-solving. The proposed framework instead suggests
interleaving these aspects, with early introduction of pattern
recognition activities alongside syntax instruction.
The model's data regarding differential learning rates across
programming domains (Figure 5.4) suggests that conditional
logic concepts warrant additional instructional attention. The
slower acquisition rate for these concepts (α = 0.17) compared

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 958 | P a g e

to sequential processing (α = 0.31) indicates a potential
bottleneck in programming skill development. The researcher
recommends targeted interventions for conditional logic
concepts, including multiple visual representations, incremental
complexity progression, and explicit linking to everyday
reasoning patterns.
For educational technology development, the architecture's
success in modeling expertise transitions offers a foundation for
intelligent tutoring systems that adapt to individual learning
trajectories. By implementing tracking mechanisms that monitor
knowledge organization patterns rather than just performance
outcomes, educational technologies could identify when learners
are prepared to advance to new challenges or when they require
additional integration activities. Specifically, systems could
assess learners' ability to categorize problems according to deep
structural features rather than surface characteristics, a key
signature of developing expertise identified in the model.
The expertise reversal effect observed in the model's
performance across complexity levels (Figure 5.6) has important
implications for instructional design. Educational approaches
should adapt scaffolding levels based on both task complexity
and learner expertise, reducing support for experts on
moderately complex tasks but potentially reintroducing support
when complexity exceeds the critical threshold identified in the
model (approximately 7.8 on the standardized complexity scale).
This finding aligns with and refines Kalyuga's (2007) [15]
expertise reversal principles, providing specific parameters for
when scaffold removal is beneficial.

6.3 Limitations and future work
Despite the model's success in simulating expertise
development, several limitations constrain its scope and
generalizability. First, the current implementation focuses
primarily on procedural programming paradigms, with limited
coverage of object-oriented, functional, or other programming
approaches. The representational mechanisms may not fully
capture the knowledge structures characteristic of these
alternative paradigms. Future work should extend the
architecture to incorporate multiple programming paradigms,
testing whether the same cognitive mechanisms apply across
these distinct approaches or whether paradigm-specific
mechanisms are needed.
Methodological challenges arose from the reliance on think-
aloud protocols for model validation. While these protocols
provided rich data regarding conscious problem-solving
strategies, they likely underrepresent automatic processes
characteristic of expertise. The researcher acknowledges that
eye-tracking data partially addressed this limitation, but future
work would benefit from additional implicit measures such as
response time patterns and neuroimaging approaches.
Complementary methodologies would provide more
comprehensive validation of the knowledge structures proposed
in the model. The participant sample, while carefully stratified
across expertise levels, was drawn primarily from educational
contexts and software development environments emphasizing
individual problem-solving. This sampling approach may limit
generalizability to collaborative programming contexts or
specialized domains such as systems programming or embedded
development. Cross-validation with different programmer
populations represents an important direction for future research.
From a theoretical perspective, the current model does not fully
account for motivational and affective factors that influence
learning trajectories. Expertise development in real educational
contexts involves complex interactions between cognitive,
affective, and social processes. Future extensions of the
architecture should incorporate mechanisms representing how
factors such as interest, self-efficacy, and identity impact
knowledge acquisition patterns. Integration with socio-cognitive
models of learning would enhance the ecological validity of the
model's predictions for educational contexts.
Several promising directions for future research emerge from

these limitations. First, extending the model to incorporate
collaborative problem-solving would address a significant gap,
as modern programming increasingly involves team-based
approaches. Such extensions would require modeling
knowledge distribution across multiple agents and
communication mechanisms for knowledge sharing. Second,
longitudinal studies tracking individual learning trajectories over
extended periods would provide stronger validation of the
proposed developmental sequences than the current cross-
sectional approach. Finally, implementation of the proposed
educational interventions in authentic computer science
classrooms would test the practical utility of the model's insights,
potentially leading to refinements based on real-world
educational constraints.
The most ambitious direction for future research involves
extending the architecture to model expertise development
across multiple STEM domains, testing whether similar
cognitive mechanisms underlie expertise in fields such as
mathematics, engineering, and scientific inquiry. Such cross-
domain modeling would contribute to broader theoretical
questions regarding the domain-specificity versus generality of
cognitive skill development, potentially identifying both
domain-general learning mechanisms and domain-specific
knowledge structures that characterize expertise across technical
fields.

7. Conclusion
This research has developed and validated a cognitive
architecture that models the acquisition of programming
expertise, providing novel insights into the cognitive
transformations that characterize the progression from novice to
expert in computer science domains. The integration of symbolic
knowledge representation with spreading activation dynamics
and reinforcement learning mechanisms has yielded a
computational model capable of capturing both the structural
and procedural aspects of expertise development.
The key contributions of this work include: (1) a computational
model that accurately predicts performance patterns across
expertise levels, with particular strength in modeling
intermediate-level programmers; (2) identification of specific
knowledge organization patterns that facilitate transfer,
including hierarchical structure and strategic clustering; (3)
quantification of learning rates across programming domains,
revealing differential acquisition trajectories for sequential,
conditional, and iterative concepts; and (4) empirical
demonstration of the expertise reversal effect in programming
contexts, with precise specification of the complexity threshold
at which expert advantages diminish.
These findings advance theoretical understanding of expertise by
providing computational specificity to previously descriptive
accounts. The model offers a mechanistic explanation for how
declarative knowledge transforms into procedural skill, how
pattern recognition capabilities develop, and how adaptive
problem-solving emerges from knowledge restructuring
processes. By implementing these mechanisms in a
computational architecture, the research moves beyond
conceptual frameworks to provide testable, quantitative
predictions about expertise development.
The broader impact of this work extends to both artificial
intelligence and educational research. For AI systems, the
architecture demonstrates how human-like problem-solving
capabilities can emerge from the integration of multiple
cognitive mechanisms rather than from singular approaches. The
hybrid symbolic-connectionist implementation offers a blueprint
for developing AI systems that combine the interpretability of
symbolic approaches with the adaptability of connectionist
learning. As Laird and Mohan (2018) observe, cognitive
architectures that integrate multiple processing mechanisms hold
particular promise for producing human-like intelligence in
computational systems.
For educational research, the model provides an evidence-based

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 959 | P a g e

foundation for designing learning environments that accelerate
expertise development. The three-phase instructional framework
derived from the model—focusing on concept anchoring,
integration, and abstraction—offers a structured approach to
curriculum design in computer science education. By aligning
instructional sequences with the cognitive processes revealed by
the model, educators can potentially reduce the time required to
develop programming expertise while improving transfer
capabilities. The significance of this research lies in its
demonstration that computational cognitive models can bridge
theoretical understanding with practical application. By
implementing cognitive theories in computational form, the
researcher has converted descriptive accounts of expertise into
precise mechanisms that generate testable predictions. This
approach builds upon the vision articulated by Koedinger et al.
(2012) [18], who argued that computational cognitive models
provide the specificity needed to translate learning theory into
effective educational practice.
As computer science education continues to expand globally, the
need for evidence-based pedagogical approaches becomes
increasingly critical. This research represents a step toward
meeting that need by providing a theoretically grounded,
empirically validated model of how programming expertise
develops. Future work building on this foundation has the
potential to transform educational practice through intelligent
tutoring systems that adapt to individual cognitive development
patterns and instructional approaches that strategically target the
cognitive mechanisms underpinning expertise.
In conclusion, the cognitive architecture developed in this
research advances understanding of expertise acquisition in
computer science while demonstrating the value of
computational cognitive modeling for both theoretical
advancement and practical application. By providing a detailed
account of the cognitive transformations that characterize
expertise development, this work contributes to the broader
scientific effort to understand the remarkable human capacity for
skill acquisition while offering practical insights for enhancing
this capacity through well-designed educational interventions.

8. References
1. Anderson JR. How can the human mind occur in the

physical universe? Oxford University Press; 2007.
2. Anderson JR, Farrell R, Sauers R. Learning to program in

LISP. Cognitive Science. 2019;43(3):419-460.
3. Becker BA. Computational thinking: A new basic skill for

the 21st century. In: Impagliazzo J, Proydakov E, editors.
Perspectives on Digital Humanism. Springer; 2021. p. 145-
155.

4. Bednarik R, Tukiainen M. Temporal eye-tracking data:
Evolution of debugging strategies with multiple
representations. In: Proceedings of the 2008 Symposium on
Eye Tracking Research & Applications. ACM; 2008. p. 99-
102. https://doi.org/10.1145/1344471.1344497.

5. Ben-Ari M. Constructivism in computer science education.
Journal of Computers in Mathematics and Science
Teaching. 2001;20(1):45-73.

6. Chase WG, Simon HA. Perception in chess. Cognitive
Psychology. 1973;4(1):55-81.
https://doi.org/10.1016/0010-0285(73)90004-2.

7. Chi MTH, Glaser R, Farr MJ. The nature of expertise. 2nd
ed. Psychology Press; 2021.
https://doi.org/10.4324/9781315799681.

8. Ericsson KA. Superior performance in complex cognition:
Insights from expertise research. Journal of Applied
Research in Memory and Cognition. 2018;7(4):473-485.
https://doi.org/10.1016/j.jarmac.2018.07.008.

9. Ericsson KA, Pool R. Peak: Secrets from the new science
of expertise. Houghton Mifflin Harcourt; 2016.

10. Ericsson KA, Simon HA. Protocol analysis: Verbal reports
as data. Rev. ed. MIT Press; 1993.

11. Fritz CO, Morris PE, Richler JJ. Effect size estimates:

Current use, calculations, and interpretation. Journal of
Experimental Psychology: General. 2012;141(1):2-18.
https://doi.org/10.1037/a0024338.

12. Grover S, Pea R. Computational thinking: A competency
whose time has come. In: Sentance S, Barendsen E, Schulte
C, editors. Computer Science Education: Perspectives on
Teaching and Learning. Bloomsbury Academic; 2018. p.
19-38.

13. Hatano G, Inagaki K. Two courses of expertise. In:
Stevenson H, Azuma H, Hakuta K, editors. Child
development and education in Japan. Freeman; 1986. p.
262-272.

14. Hermans F, Aldaeus M. A systematic mapping study of
small-world network characteristics in expert knowledge
representations. Journal of Computer Science Education.
2019;29(3):253-279.
https://doi.org/10.1080/08993408.2019.1620304.

15. Kalyuga S. Expertise reversal effect and its implications for
learner-tailored instruction. Educational Psychology
Review. 2007;19(4):509-539.
https://doi.org/10.1007/s10648-007-9054-3.

16. Koedinger KR, Anderson JR. Intelligent tutoring systems.
In: Fincher SI, Robins AV, editors. The Cambridge
handbook of computing education research. Cambridge
University Press; 2018. p. 447-472.
https://doi.org/10.1017/9781108654555.016.

17. Koedinger KR, Anderson JR. Interactive skill acquisition,
cognitive processes in: Learning as a function of
instructional format. In: Sternberg RJ, Sternberg K, editors.
The Cambridge handbook of cognitive science. 2nd ed.
Cambridge University Press; 2022. p. 527-546.
https://doi.org/10.1017/9781108985468.033.

18. Koedinger KR, Corbett AT, Perfetti C. The Knowledge-
Learning-Instruction framework: Bridging the science-
practice chasm to enhance robust student learning.
Cognitive Science. 2012;36(5):757-798.
https://doi.org/10.1111/j.1551-6709.2012.01245.x.

19. Laird JE, Lebiere C, Rosenbloom PS. A standard model of
the mind: Toward a common computational framework
across artificial intelligence, cognitive science,
neuroscience, and robotics. AI Magazine. 2017;38(4):13-
26.

20. Laird JE, Mohan S. Learning fast and slow: Levels of
learning in general autonomous intelligent agents.
Proceedings of the AAAI Conference on Artificial
Intelligence. 2018;32(1):7983-7987.
https://doi.org/10.1609/aaai.v32i1.12302.

21. McKeithen KB, Reitman JS, Rueter HH, Hirtle SC.
Knowledge organization and skill differences in computer
programmers. Cognitive Psychology. 1981;13(3):307-325.

22. Newell A, Simon HA. Human problem solving. Prentice-
Hall; 1972.

23. Robins A, Rountree J, Rountree N. Learning and teaching
programming: A review. Computer Science Education.
2019;29(2-3):215-263.

24. Robins A, Rountree J, Rountree N. Learning and teaching
programming: A review. Computer Science Education.
2023;33(2):137-172.

25. Soloway E, Spohrer JC. Studying the novice programmer.
Psychology Press; 2013.

26. Sweller J. Cognitive load theory. In: Mestre JP, Ross BH,
editors. Psychology of learning and motivation. Vol. 55.
Academic Press; 2011. p. 37-76.

27. VanLehn K. Structure mapping and analogical comparison
in scientific thinking and learning. Educational
Psychologist. 2020;55(3):143-157.
https://doi.org/10.1080/00461520.2020.1773147.

28. Wang P, Patel M. Human-level AI needs the developmental
approach: A position paper. Proceedings of the Seventh
Annual Conference on Advances in Cognitive Systems.
2019. p. 12-27.

